Abstract

A stable and simple interferometric arrangement based on a Wollaston prism is designed to combine two helical beams into a polarization vortex (PV). Different modes of helical beams are generated by a spatial light modulator (SLM). Due to the flexibility of the SLM, PVs with different kinds of intensity distribution, such as Laguerre–Gaussian modes and Bessel modes, are generated.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
    [CrossRef]
  2. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef]
  3. H. Kawauchi, K. Yonezawa, Y. Kozawa, and S. Sato, “Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam,” Opt. Lett. 32, 1839–1841 (2007).
    [CrossRef]
  4. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).
    [CrossRef]
  5. W. Chen and Q. Zhan, “Numerical study of an aperture less near field scanning optical microscope probe under radial polarization illumination,” Opt Express 15, 4106–4111(2007).
    [CrossRef]
  6. Y. Liu, D. Cline, and P. He, “Vacuum laser acceleration using a radially polarized CO2 laser beam,” Nucl. Instrum. Methods Phys. Res. A 424, 296–303 (1999).
    [CrossRef]
  7. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially and azimuthally-polarized beams,” Opt. Commun. 281, 732–738 (2008).
    [CrossRef]
  8. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21, 1948–1950 (1996).
    [CrossRef]
  9. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29, 2234–2239 (1990).
    [CrossRef]
  10. N. Passilly, R. de Saint Denis, K. Aït-Ameur, F. Treussart, R. Hierle, and J.-F. Roch, “Simple interferometric technique for generation of a radially polarized light beam,” J. Opt. Soc. Am. A 22, 984–991 (2005).
    [CrossRef]
  11. Z. Zhou, Q. Tan, and G. Jin, “Surface plasmon interference formed by tightly focused higher polarization order axially symmetric polarized beams,” Chin. Opt. Lett. 8, 1178–1181 (2010).
    [CrossRef]
  12. W. Cheng, J. W. Haus, and Q. Zhan, “Propagation of vector vortex beams through a turbulent atmosphere,” Opt. Express 17, 17829–17836 (2009).
    [CrossRef]
  13. X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32, 3549–3551 (2007).
    [CrossRef]
  14. P. H. Jones, M. Rashid, M. Makita, and O. M. Maragò, “Sagnac interferometer method for synthesis of fractional polarization vortices,” Opt. Lett. 34, 2560–2562 (2009).
    [CrossRef]
  15. C. Maurer, A. Jesacher, and S. Fürhapter, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
    [CrossRef]
  16. S. Iwahashi, Y. Kurosaka, K. Sakai, K. Kitamura, N. Takayama, and S. Noda, “Higher-order vector beams produced by photonic-crystal lasers,” Opt. Express 19, 11963–11968 (2011).
    [CrossRef]
  17. M. W. Beijersbergen and L. Allen, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
    [CrossRef]
  18. C. Q. Gao, G. H. Wei, and H. Weber, “Generation of the stigmatic beam with orbital angular momentum,” Chin. Phys. Lett. 18, 771–773 (2001).
    [CrossRef]
  19. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wave front laser beams produced with a spiral phase plate,” Opt. Commun. 112, 321–327 (1994).
    [CrossRef]
  20. K. Sueda, G. Miyaji, N. Miyanaga, and M. Nakatsuka, “Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses,” Opt. Express 12, 3548–3553 (2004).
    [CrossRef]
  21. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221–223 (1992).
    [CrossRef]
  22. R. W. Gerchberg and W. O. Saxton, ‘‘A practical algorithm for the determination of phase from image and diffraction plane pictures,’’ Optik 35, 237–246 (1972).

2011 (1)

2010 (1)

2009 (2)

2008 (1)

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially and azimuthally-polarized beams,” Opt. Commun. 281, 732–738 (2008).
[CrossRef]

2007 (4)

2005 (1)

2004 (1)

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

2001 (1)

C. Q. Gao, G. H. Wei, and H. Weber, “Generation of the stigmatic beam with orbital angular momentum,” Chin. Phys. Lett. 18, 771–773 (2001).
[CrossRef]

2000 (1)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

1999 (2)

Y. Liu, D. Cline, and P. He, “Vacuum laser acceleration using a radially polarized CO2 laser beam,” Nucl. Instrum. Methods Phys. Res. A 424, 296–303 (1999).
[CrossRef]

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).
[CrossRef]

1996 (1)

1994 (1)

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wave front laser beams produced with a spiral phase plate,” Opt. Commun. 112, 321–327 (1994).
[CrossRef]

1993 (1)

M. W. Beijersbergen and L. Allen, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[CrossRef]

1992 (1)

1990 (1)

1972 (1)

R. W. Gerchberg and W. O. Saxton, ‘‘A practical algorithm for the determination of phase from image and diffraction plane pictures,’’ Optik 35, 237–246 (1972).

Aït-Ameur, K.

Allen, L.

M. W. Beijersbergen and L. Allen, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[CrossRef]

Beijersbergen, M. W.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wave front laser beams produced with a spiral phase plate,” Opt. Commun. 112, 321–327 (1994).
[CrossRef]

M. W. Beijersbergen and L. Allen, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[CrossRef]

Chen, W.

W. Chen and Q. Zhan, “Numerical study of an aperture less near field scanning optical microscope probe under radial polarization illumination,” Opt Express 15, 4106–4111(2007).
[CrossRef]

Cheng, W.

Cline, D.

Y. Liu, D. Cline, and P. He, “Vacuum laser acceleration using a radially polarized CO2 laser beam,” Nucl. Instrum. Methods Phys. Res. A 424, 296–303 (1999).
[CrossRef]

Coerwinkel, R. P. C.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wave front laser beams produced with a spiral phase plate,” Opt. Commun. 112, 321–327 (1994).
[CrossRef]

de Saint Denis, R.

Ding, J.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Ford, D. H.

Fürhapter, S.

C. Maurer, A. Jesacher, and S. Fürhapter, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
[CrossRef]

Gao, C. Q.

C. Q. Gao, G. H. Wei, and H. Weber, “Generation of the stigmatic beam with orbital angular momentum,” Chin. Phys. Lett. 18, 771–773 (2001).
[CrossRef]

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, ‘‘A practical algorithm for the determination of phase from image and diffraction plane pictures,’’ Optik 35, 237–246 (1972).

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Guo, C. S.

Haus, J. W.

He, P.

Y. Liu, D. Cline, and P. He, “Vacuum laser acceleration using a radially polarized CO2 laser beam,” Nucl. Instrum. Methods Phys. Res. A 424, 296–303 (1999).
[CrossRef]

Heckenberg, N. R.

Hierle, R.

Iwahashi, S.

Jackel, S.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially and azimuthally-polarized beams,” Opt. Commun. 281, 732–738 (2008).
[CrossRef]

Jesacher, A.

C. Maurer, A. Jesacher, and S. Fürhapter, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
[CrossRef]

Jin, G.

Jones, P. H.

Kawauchi, H.

Kimura, W. D.

Kitamura, K.

Kozawa, Y.

Kristensen, M.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wave front laser beams produced with a spiral phase plate,” Opt. Commun. 112, 321–327 (1994).
[CrossRef]

Kurosaka, Y.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Liu, Y.

Y. Liu, D. Cline, and P. He, “Vacuum laser acceleration using a radially polarized CO2 laser beam,” Nucl. Instrum. Methods Phys. Res. A 424, 296–303 (1999).
[CrossRef]

Lumer, Y.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially and azimuthally-polarized beams,” Opt. Commun. 281, 732–738 (2008).
[CrossRef]

Machavariani, G.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially and azimuthally-polarized beams,” Opt. Commun. 281, 732–738 (2008).
[CrossRef]

Makita, M.

Maragò, O. M.

Maurer, C.

C. Maurer, A. Jesacher, and S. Fürhapter, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
[CrossRef]

McDuff, R.

Meir, A.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially and azimuthally-polarized beams,” Opt. Commun. 281, 732–738 (2008).
[CrossRef]

Miyaji, G.

Miyanaga, N.

Moshe, I.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially and azimuthally-polarized beams,” Opt. Commun. 281, 732–738 (2008).
[CrossRef]

Nakatsuka, M.

Nesterov, A. V.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).
[CrossRef]

Ni, W. J.

Niziev, V. G.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).
[CrossRef]

Noda, S.

Passilly, N.

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Rashid, M.

Roch, J.-F.

Sakai, K.

Sato, S.

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, ‘‘A practical algorithm for the determination of phase from image and diffraction plane pictures,’’ Optik 35, 237–246 (1972).

Schadt, M.

Smith, C. P.

Stalder, M.

Sueda, K.

Takayama, N.

Tan, Q.

Tidwell, S. C.

Treussart, F.

Wang, H. T.

Wang, X. L.

Weber, H.

C. Q. Gao, G. H. Wei, and H. Weber, “Generation of the stigmatic beam with orbital angular momentum,” Chin. Phys. Lett. 18, 771–773 (2001).
[CrossRef]

Wei, G. H.

C. Q. Gao, G. H. Wei, and H. Weber, “Generation of the stigmatic beam with orbital angular momentum,” Chin. Phys. Lett. 18, 771–773 (2001).
[CrossRef]

White, A. G.

Woerdman, J. P.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wave front laser beams produced with a spiral phase plate,” Opt. Commun. 112, 321–327 (1994).
[CrossRef]

Yonezawa, K.

Zhan, Q.

W. Cheng, J. W. Haus, and Q. Zhan, “Propagation of vector vortex beams through a turbulent atmosphere,” Opt. Express 17, 17829–17836 (2009).
[CrossRef]

W. Chen and Q. Zhan, “Numerical study of an aperture less near field scanning optical microscope probe under radial polarization illumination,” Opt Express 15, 4106–4111(2007).
[CrossRef]

Zhou, Z.

Appl. Opt. (1)

Chin. Opt. Lett. (1)

Chin. Phys. Lett. (1)

C. Q. Gao, G. H. Wei, and H. Weber, “Generation of the stigmatic beam with orbital angular momentum,” Chin. Phys. Lett. 18, 771–773 (2001).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. D (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).
[CrossRef]

New J. Phys. (1)

C. Maurer, A. Jesacher, and S. Fürhapter, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (1)

Y. Liu, D. Cline, and P. He, “Vacuum laser acceleration using a radially polarized CO2 laser beam,” Nucl. Instrum. Methods Phys. Res. A 424, 296–303 (1999).
[CrossRef]

Opt Express (1)

W. Chen and Q. Zhan, “Numerical study of an aperture less near field scanning optical microscope probe under radial polarization illumination,” Opt Express 15, 4106–4111(2007).
[CrossRef]

Opt. Commun. (4)

M. W. Beijersbergen and L. Allen, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[CrossRef]

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially and azimuthally-polarized beams,” Opt. Commun. 281, 732–738 (2008).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wave front laser beams produced with a spiral phase plate,” Opt. Commun. 112, 321–327 (1994).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Optik (1)

R. W. Gerchberg and W. O. Saxton, ‘‘A practical algorithm for the determination of phase from image and diffraction plane pictures,’’ Optik 35, 237–246 (1972).

Phys. Rev. Lett. (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Diffraction grating pattern and far-field diffraction distribution. (a) Diffraction grating to generate LG03 and LG0-3 mode beams. (b) Diffraction grating to generate LG22 and LG2-2 mode beams. (c) Diffraction grating to generate 3rd- and 3rd-order Bessel beam. (d), (e), (f) Simulation results of their corresponding far-field diffraction field distribution.

Fig. 2.
Fig. 2.

Experimental setup to generate PVs: P, polarizer; BE, beam expanders; SLM, spatial light modulator; L, lens; QWP, quarter-wave plate; HWP, half-wave plate; WP, Wollaston prism.

Fig. 3.
Fig. 3.

Far-field distribution of the generated PVs when LG0p and LG0-p mode beams are used.

Fig. 4.
Fig. 4.

Far-field distribution of the generated PVs when LGqp and LGq-p mode beams are used.

Fig. 5.
Fig. 5.

Far-field distribution of the generated PVs when two Bessel beams are used.

Fig. 6.
Fig. 6.

Light field distribution of the generated Bessel-type PVs out of “nondiffraction” range.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Ep=(cospϕsinpϕ)=12eipϕ(1i)+12eipϕ(1+i).

Metrics