Abstract

We use the LOCal oxidation of silicon (LOCOS) method as a fabrication technique to define submicrometer photonic waveguides. We attempted fabricating the wire waveguides with two different masking processes, one with a stack of pad oxide and silicon nitride layers, and the other with a single silicon nitride layer. The smallest waveguide we achieved had a cross-section profile of 280nm×650nm. The propagation loss of the waveguides was measured by the cut-back method, and the bending loss was measured by employing the serpentine pattern. The minimum propagation loss achieved was 8.78dB/cm and the bending loss was 0.0089dB/90° bend for a 5 μm bending radius.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
    [CrossRef]
  2. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
    [CrossRef]
  3. G. T. Reed, W. R. Headley, G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, and M. M. Milosevic, “Silicon photonics-the evolution of integration,” in Silicon Photonics for Telecommunication and Biomedicine, S. Fathpour and B. Jalali, eds. (CRC Press, 2011), pp. 7–8.
  4. L. K. Rowe, M. Elsey, N. G. Tarr, A. P. Knights, and E. Post, “CMOS-compatible optical rib waveguides defined by local oxidation of silicon,” IEEE Electron. Lett. 43, 392–393 (2007).
    [CrossRef]
  5. F. Y. Gardes, G. T. Reed, A. P. Knight, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonic formed via the local oxidation of silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
    [CrossRef]
  6. M. P. Nezhad, O. Bondarenko, M. Khajavikhan, A. Simic, and Y. Fainman, “Etch-free low loss silicon waveguides using hydrogen silsesquioxane oxidation masks,” Opt. Express 19, 18827–18832 (2011).
    [CrossRef]
  7. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17, 4752–4757 (2009).
    [CrossRef]
  8. B. Desiatov, I. Goykhman, and U. Levy, “Demonstration of submicron square-like silicon waveguide using optimized LOCOS process,” Opt. Express 18, 18592–18597 (2010).
    [CrossRef]
  9. A. W. Tam, M. Ibrahin, B. Lamontagne, N. G. Tarr, W. N. Ye, S. Janz, and D.-X. Xu, “Deep submicron LOCOS-defined SOI photonic wire waveguides,” in 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 249–251.
  10. Y. Xiong, M. Ibrahim, and W. N. Ye, “Low-loss photonic wires defined by local oxidation of silicon (LOCOS),” Proc. SPIE 8265, 82650D (2012).
    [CrossRef]
  11. http://www.synopsys.com/TOOLS/TCAD/PROCESSSIMULATION/Pages/TaurusTSupreme4.aspx .
  12. http://www.rsoftdesign.com/ .
  13. K. Yamada, “Silicon photonics wire waveguides: fundamentals and applications,” in Silicon Photonics II Components and Integration, D. J. Lockwood and L. Passesi, eds. (Springer, 2011), pp. 7–13.
  14. F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguide,” Opt. Quantum. Electron. 26, 977–986 (1994).
    [CrossRef]
  15. D. Dai, Y. Shi, and S. He, “Characteristics analysis of nanosilicon rectangular waveguides for planar light-wave circuits of high integration,” Appl. Opt. 45, 4941–4946 (2006).
    [CrossRef]
  16. K. Kakihara, N. Kono, K. Saitoh, T. Fujisawa, and M. Koshiba, “Impact of structural deformations on polarization conversion in high index contrast waveguides,” Opt. Express 14, 7046–7056 (2006).
    [CrossRef]

2012 (1)

Y. Xiong, M. Ibrahim, and W. N. Ye, “Low-loss photonic wires defined by local oxidation of silicon (LOCOS),” Proc. SPIE 8265, 82650D (2012).
[CrossRef]

2011 (1)

2010 (1)

2009 (1)

2008 (1)

F. Y. Gardes, G. T. Reed, A. P. Knight, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonic formed via the local oxidation of silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
[CrossRef]

2007 (1)

L. K. Rowe, M. Elsey, N. G. Tarr, A. P. Knights, and E. Post, “CMOS-compatible optical rib waveguides defined by local oxidation of silicon,” IEEE Electron. Lett. 43, 392–393 (2007).
[CrossRef]

2006 (3)

2004 (1)

1994 (1)

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguide,” Opt. Quantum. Electron. 26, 977–986 (1994).
[CrossRef]

Bondarenko, O.

Bruce, D.

F. Y. Gardes, G. T. Reed, A. P. Knight, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonic formed via the local oxidation of silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
[CrossRef]

Cardenas, J.

Chen, L.

Dai, D.

Desiatov, B.

Elsey, M.

L. K. Rowe, M. Elsey, N. G. Tarr, A. P. Knights, and E. Post, “CMOS-compatible optical rib waveguides defined by local oxidation of silicon,” IEEE Electron. Lett. 43, 392–393 (2007).
[CrossRef]

Fainman, Y.

Fujisawa, T.

Gardes, F. Y.

F. Y. Gardes, G. T. Reed, A. P. Knight, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonic formed via the local oxidation of silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
[CrossRef]

G. T. Reed, W. R. Headley, G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, and M. M. Milosevic, “Silicon photonics-the evolution of integration,” in Silicon Photonics for Telecommunication and Biomedicine, S. Fathpour and B. Jalali, eds. (CRC Press, 2011), pp. 7–8.

Goykhman, I.

He, S.

Headley, W. R.

G. T. Reed, W. R. Headley, G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, and M. M. Milosevic, “Silicon photonics-the evolution of integration,” in Silicon Photonics for Telecommunication and Biomedicine, S. Fathpour and B. Jalali, eds. (CRC Press, 2011), pp. 7–8.

Ibrahim, M.

Y. Xiong, M. Ibrahim, and W. N. Ye, “Low-loss photonic wires defined by local oxidation of silicon (LOCOS),” Proc. SPIE 8265, 82650D (2012).
[CrossRef]

Ibrahin, M.

A. W. Tam, M. Ibrahin, B. Lamontagne, N. G. Tarr, W. N. Ye, S. Janz, and D.-X. Xu, “Deep submicron LOCOS-defined SOI photonic wire waveguides,” in 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 249–251.

Janz, S.

A. W. Tam, M. Ibrahin, B. Lamontagne, N. G. Tarr, W. N. Ye, S. Janz, and D.-X. Xu, “Deep submicron LOCOS-defined SOI photonic wire waveguides,” in 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 249–251.

Jessop, P. E.

F. Y. Gardes, G. T. Reed, A. P. Knight, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonic formed via the local oxidation of silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
[CrossRef]

Kakihara, K.

Khajavikhan, M.

Knight, A. P.

F. Y. Gardes, G. T. Reed, A. P. Knight, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonic formed via the local oxidation of silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
[CrossRef]

Knights, A. P.

L. K. Rowe, M. Elsey, N. G. Tarr, A. P. Knights, and E. Post, “CMOS-compatible optical rib waveguides defined by local oxidation of silicon,” IEEE Electron. Lett. 43, 392–393 (2007).
[CrossRef]

Kono, N.

Koshiba, M.

Lacey, J. P. R.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguide,” Opt. Quantum. Electron. 26, 977–986 (1994).
[CrossRef]

Lamontagne, B.

A. W. Tam, M. Ibrahin, B. Lamontagne, N. G. Tarr, W. N. Ye, S. Janz, and D.-X. Xu, “Deep submicron LOCOS-defined SOI photonic wire waveguides,” in 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 249–251.

Levy, U.

Lipson, M.

Mashanovich, G.

F. Y. Gardes, G. T. Reed, A. P. Knight, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonic formed via the local oxidation of silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
[CrossRef]

Mashanovich, G. Z.

G. T. Reed, W. R. Headley, G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, and M. M. Milosevic, “Silicon photonics-the evolution of integration,” in Silicon Photonics for Telecommunication and Biomedicine, S. Fathpour and B. Jalali, eds. (CRC Press, 2011), pp. 7–8.

McFaul, S.

F. Y. Gardes, G. T. Reed, A. P. Knight, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonic formed via the local oxidation of silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
[CrossRef]

McNab, S. J.

Milosevic, M. M.

G. T. Reed, W. R. Headley, G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, and M. M. Milosevic, “Silicon photonics-the evolution of integration,” in Silicon Photonics for Telecommunication and Biomedicine, S. Fathpour and B. Jalali, eds. (CRC Press, 2011), pp. 7–8.

Nezhad, M. P.

Payne, F. P.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguide,” Opt. Quantum. Electron. 26, 977–986 (1994).
[CrossRef]

Poitras, C. B.

Post, E.

L. K. Rowe, M. Elsey, N. G. Tarr, A. P. Knights, and E. Post, “CMOS-compatible optical rib waveguides defined by local oxidation of silicon,” IEEE Electron. Lett. 43, 392–393 (2007).
[CrossRef]

Preston, K.

Reed, G. T.

F. Y. Gardes, G. T. Reed, A. P. Knight, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonic formed via the local oxidation of silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
[CrossRef]

G. T. Reed, W. R. Headley, G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, and M. M. Milosevic, “Silicon photonics-the evolution of integration,” in Silicon Photonics for Telecommunication and Biomedicine, S. Fathpour and B. Jalali, eds. (CRC Press, 2011), pp. 7–8.

Robinson, J. T.

Rowe, L.

F. Y. Gardes, G. T. Reed, A. P. Knight, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonic formed via the local oxidation of silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
[CrossRef]

Rowe, L. K.

L. K. Rowe, M. Elsey, N. G. Tarr, A. P. Knights, and E. Post, “CMOS-compatible optical rib waveguides defined by local oxidation of silicon,” IEEE Electron. Lett. 43, 392–393 (2007).
[CrossRef]

Saitoh, K.

Shi, Y.

Simic, A.

Soref, R.

R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[CrossRef]

Tam, A. W.

A. W. Tam, M. Ibrahin, B. Lamontagne, N. G. Tarr, W. N. Ye, S. Janz, and D.-X. Xu, “Deep submicron LOCOS-defined SOI photonic wire waveguides,” in 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 249–251.

Tarr, N. G.

F. Y. Gardes, G. T. Reed, A. P. Knight, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonic formed via the local oxidation of silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
[CrossRef]

L. K. Rowe, M. Elsey, N. G. Tarr, A. P. Knights, and E. Post, “CMOS-compatible optical rib waveguides defined by local oxidation of silicon,” IEEE Electron. Lett. 43, 392–393 (2007).
[CrossRef]

A. W. Tam, M. Ibrahin, B. Lamontagne, N. G. Tarr, W. N. Ye, S. Janz, and D.-X. Xu, “Deep submicron LOCOS-defined SOI photonic wire waveguides,” in 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 249–251.

Thomson, D. J.

G. T. Reed, W. R. Headley, G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, and M. M. Milosevic, “Silicon photonics-the evolution of integration,” in Silicon Photonics for Telecommunication and Biomedicine, S. Fathpour and B. Jalali, eds. (CRC Press, 2011), pp. 7–8.

Vlasov, Y. A.

Xiong, Y.

Y. Xiong, M. Ibrahim, and W. N. Ye, “Low-loss photonic wires defined by local oxidation of silicon (LOCOS),” Proc. SPIE 8265, 82650D (2012).
[CrossRef]

Xu, D.-X.

A. W. Tam, M. Ibrahin, B. Lamontagne, N. G. Tarr, W. N. Ye, S. Janz, and D.-X. Xu, “Deep submicron LOCOS-defined SOI photonic wire waveguides,” in 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 249–251.

Yamada, K.

K. Yamada, “Silicon photonics wire waveguides: fundamentals and applications,” in Silicon Photonics II Components and Integration, D. J. Lockwood and L. Passesi, eds. (Springer, 2011), pp. 7–13.

Ye, W. N.

Y. Xiong, M. Ibrahim, and W. N. Ye, “Low-loss photonic wires defined by local oxidation of silicon (LOCOS),” Proc. SPIE 8265, 82650D (2012).
[CrossRef]

A. W. Tam, M. Ibrahin, B. Lamontagne, N. G. Tarr, W. N. Ye, S. Janz, and D.-X. Xu, “Deep submicron LOCOS-defined SOI photonic wire waveguides,” in 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 249–251.

Appl. Opt. (1)

IEEE Electron. Lett. (1)

L. K. Rowe, M. Elsey, N. G. Tarr, A. P. Knights, and E. Post, “CMOS-compatible optical rib waveguides defined by local oxidation of silicon,” IEEE Electron. Lett. 43, 392–393 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[CrossRef]

Opt. Express (5)

Opt. Quantum. Electron. (1)

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguide,” Opt. Quantum. Electron. 26, 977–986 (1994).
[CrossRef]

Proc. SPIE (2)

Y. Xiong, M. Ibrahim, and W. N. Ye, “Low-loss photonic wires defined by local oxidation of silicon (LOCOS),” Proc. SPIE 8265, 82650D (2012).
[CrossRef]

F. Y. Gardes, G. T. Reed, A. P. Knight, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonic formed via the local oxidation of silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
[CrossRef]

Other (5)

G. T. Reed, W. R. Headley, G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, and M. M. Milosevic, “Silicon photonics-the evolution of integration,” in Silicon Photonics for Telecommunication and Biomedicine, S. Fathpour and B. Jalali, eds. (CRC Press, 2011), pp. 7–8.

A. W. Tam, M. Ibrahin, B. Lamontagne, N. G. Tarr, W. N. Ye, S. Janz, and D.-X. Xu, “Deep submicron LOCOS-defined SOI photonic wire waveguides,” in 8th IEEE International Conference on Group IV Photonics (IEEE, 2011), pp. 249–251.

http://www.synopsys.com/TOOLS/TCAD/PROCESSSIMULATION/Pages/TaurusTSupreme4.aspx .

http://www.rsoftdesign.com/ .

K. Yamada, “Silicon photonics wire waveguides: fundamentals and applications,” in Silicon Photonics II Components and Integration, D. J. Lockwood and L. Passesi, eds. (Springer, 2011), pp. 7–13.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Fabrication process flow of (a) Type A LOCOS waveguide (a stack of pad oxide and silicon nitride layers as the mask). (b) Type B LOCOS waveguide (a single silicon nitride layer as the mask). (1) and (5) Silicon on insulator wafer. (2) and (6) Depositing silicon nitride and/or pad oxide layers. (3) and (7) Patterning of silicon nitride. (4) and (8) Wet oxidation.

Fig. 2.
Fig. 2.

Cross-section of the LOCOS wire waveguides. (a) Simulated shape for Type A waveguides (a stack of pad oxide and silicon nitride layers as the mask). (b) Simulated shape for Type B waveguides (a single silicon nitride layer as the mask). (c) SEM image of Type A waveguides. (d) SEM image of Type B waveguides.

Fig. 3.
Fig. 3.

Simulated quasi-TE polarization profiles of the fabricated LOCOS wire waveguide. (a) Type A waveguides (a stack of pad oxide and silicon nitride layers as the mask). (b) Type B waveguides (a single silicon nitride layer as the mask).

Fig. 4.
Fig. 4.

Waveguide paperclip structure for cut-back measurements of the propagation loss.

Fig. 5.
Fig. 5.

Propagation loss for the LOCOS wire waveguide for the quasi-TE polarization. (a) Type A waveguides (a stack of pad oxide and silicon nitride layers as the mask). (b) Type B waveguides (a single silicon nitride layer as the mask).

Fig. 6.
Fig. 6.

Waveguide serpentine pattern for measurements of the bending loss.

Fig. 7.
Fig. 7.

Bending loss for the LOCOS wire waveguide for the quasi-TE polarization. (a) Type A waveguides (a stack of pad oxide and silicon nitride layers as the mask). (b) Type B waveguides (a single silicon nitride layer as the mask).

Fig. 8.
Fig. 8.

Output power of quasi-TE and quasi-TM polarizations for Type B waveguides when TE polarization was launched.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α=σ2κk0w4neff,
Tpol=10log10PTEPTM,

Metrics