Abstract

A single-mode Brillouin-erbium fiber laser (BEFL) is realized using only a 5 m single-mode fiber (SMF) as Brillouin gain medium, which to our best knowledge is the shortest SMF ever used to construct a BEFL. The Brillouin pump (BP) preamplification technique is adopted using a bidirectionally amplified erbium-doped fiber amplifier inside the BEFL cavity. This BEFL presents a high optical signal-to-noise ratio (40dB), a large output power (10mW), and a low 980 nm pump threshold (15mW). Experimental results indicate that this threshold increases with the BP power. Two lower and upper BP thresholds exist for the BEFL onset and turnoff, respectively, for a fixed 980 nm pump power. Moreover, the output power of this BEFL increases linearly with the 980 nm pump power at the same slope efficiency of 10% for various BP powers, but decreases linearly with the BP power at the same slope efficiency of 26% for various 980 nm pump powers.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Performance of a WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1, 111–113(1989).
    [CrossRef]
  2. S. P. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Opt. Lett. 16, 393–395 (1991).
    [CrossRef]
  3. X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
    [CrossRef]
  4. K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “CW generation of multiple Stokes and anti-Stokes Brillouin-shifted frequencies,” Appl. Phys. Lett. 29, 185–187 (1976).
    [CrossRef]
  5. G. J. Cowle and D.Yu. Stepanov, “Hybrid Brillouin/erbium fiber laser,” Opt. Lett. 21, 1250–1252 (1996).
    [CrossRef]
  6. G. J. Cowle, D.Yu. Stepanov, and Y. T. Chieng, “Brillouin/erbium fiber laser,” J. Lightwave Technol. 15, 1198–1204 (1997).
    [CrossRef]
  7. G. J. Cowle and D.Yu. Stepanov, “Properties of Brillouin/erbium fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 1049–1057 (1997).
    [CrossRef]
  8. A. Loayssa, D. Benito, and M. J. Garde, “High-resolution measurement of stimulated Brillouin scattering spectra in single-mode fiber,” IEE Proc. Optoelectron. 148, 143–148 (2001).
    [CrossRef]
  9. L. Liu, Y. Shen, S. Zheng, X. Jin, H. Chi, and X. Zhang, “Optical generation of microwave/millmeter-wave based on Brillouin-erbium fiber laser,” Microw. Opt. Technol. Lett. 53, 1761–1763 (2011).
    [CrossRef]
  10. Y. J. Song, L. Zhan, J. H. Ji, Y. Su, Q. H. Ye, and Y. X. Xia, “Self-seeded multiwavelength Brillouin-erbium fiber laser,” Opt. Lett. 30, 486–488 (2005).
    [CrossRef]
  11. L. Zhan, J. H. Ji, J. Xia, S. Y. Luo, and Y. X. Xia, “160-line multiwavelength generation of linear-cavity self-seeded Brillouin-ebium fiber laser,” Opt. Express 14, 10233–10238 (2006).
    [CrossRef]
  12. J. Tang, J. Sun, L. Zhao, T. Chen, T. Huang, and Y. Zhou, “Tunable multiwavelength generation based on Brillouin-erbium comb fiber laser assisted by multiple four-wave mixing processes,” Opt. Express 19, 14682–14689 (2011).
    [CrossRef]
  13. M. H. Al-Mansoori and M. A. Mahdi, “Tunable range enhancement of Brillouin-erbium fiber laser utilizing Brillouin pump pre-amplification technique,” Opt. Express 16, 7649–7654 (2008).
    [CrossRef]
  14. N. Md. Samsuri, A. K. Zamzuri, M. H. Al-Mansoori, A. Ahmad, and M. A. Mahdi, “Brillouin-erbium fiber laser with enhanced feedback couping using common Erbium gain section,” Opt. Express 16, 16475–16480 (2008).
    [CrossRef]
  15. M. H. Al-Mansoori and M. A. Mahdi, “Reduction of gain depletion and saturation on a Brillouin-erbium fiber laser utilizing a Brillouin pump preamplification technique,” Appl. Opt. 48, 3424–3428 (2009).
    [CrossRef]
  16. N. A. Hambali, M. A. Mahdi, M. H. Al-Mansoori, A. F. Abas, and M. I. Saripan, “Investigation on the effect of EDFA location in ring cavity Brillouin-erbium fiber laser,” Opt. Express 17, 11768–11775 (2009).
    [CrossRef]
  17. S. W. Harun, S. Shahi, and H. Ahmad, “Compact Brillouin-erbium fiber laser,” Opt. Lett. 34, 46–48 (2009).
    [CrossRef]
  18. S. Shahi and S. W. Harun, “Brillouin fiber laser with significantly reduced gain medium length operating in L-band region,” Prog. Electromagn. Res. Lett. 8, 143–149 (2009).
    [CrossRef]
  19. A. Loayssa, D. Benito, and M. J. Garde, “Applications of optical carrier Brillouin processing to microwave photonics,” Opt. Fiber Technol. 8, 24–42 (2002).
    [CrossRef]
  20. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

2011 (3)

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
[CrossRef]

L. Liu, Y. Shen, S. Zheng, X. Jin, H. Chi, and X. Zhang, “Optical generation of microwave/millmeter-wave based on Brillouin-erbium fiber laser,” Microw. Opt. Technol. Lett. 53, 1761–1763 (2011).
[CrossRef]

J. Tang, J. Sun, L. Zhao, T. Chen, T. Huang, and Y. Zhou, “Tunable multiwavelength generation based on Brillouin-erbium comb fiber laser assisted by multiple four-wave mixing processes,” Opt. Express 19, 14682–14689 (2011).
[CrossRef]

2009 (4)

2008 (2)

2006 (1)

2005 (1)

2002 (1)

A. Loayssa, D. Benito, and M. J. Garde, “Applications of optical carrier Brillouin processing to microwave photonics,” Opt. Fiber Technol. 8, 24–42 (2002).
[CrossRef]

2001 (1)

A. Loayssa, D. Benito, and M. J. Garde, “High-resolution measurement of stimulated Brillouin scattering spectra in single-mode fiber,” IEE Proc. Optoelectron. 148, 143–148 (2001).
[CrossRef]

1997 (2)

G. J. Cowle, D.Yu. Stepanov, and Y. T. Chieng, “Brillouin/erbium fiber laser,” J. Lightwave Technol. 15, 1198–1204 (1997).
[CrossRef]

G. J. Cowle and D.Yu. Stepanov, “Properties of Brillouin/erbium fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 1049–1057 (1997).
[CrossRef]

1996 (1)

1991 (1)

1989 (1)

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Performance of a WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1, 111–113(1989).
[CrossRef]

1976 (1)

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “CW generation of multiple Stokes and anti-Stokes Brillouin-shifted frequencies,” Appl. Phys. Lett. 29, 185–187 (1976).
[CrossRef]

Abas, A. F.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Ahmad, A.

Ahmad, H.

Al-Mansoori, M. H.

Bao, X.

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
[CrossRef]

Benito, D.

A. Loayssa, D. Benito, and M. J. Garde, “Applications of optical carrier Brillouin processing to microwave photonics,” Opt. Fiber Technol. 8, 24–42 (2002).
[CrossRef]

A. Loayssa, D. Benito, and M. J. Garde, “High-resolution measurement of stimulated Brillouin scattering spectra in single-mode fiber,” IEE Proc. Optoelectron. 148, 143–148 (2001).
[CrossRef]

Chen, L.

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
[CrossRef]

Chen, T.

Chi, H.

L. Liu, Y. Shen, S. Zheng, X. Jin, H. Chi, and X. Zhang, “Optical generation of microwave/millmeter-wave based on Brillouin-erbium fiber laser,” Microw. Opt. Technol. Lett. 53, 1761–1763 (2011).
[CrossRef]

Chieng, Y. T.

G. J. Cowle, D.Yu. Stepanov, and Y. T. Chieng, “Brillouin/erbium fiber laser,” J. Lightwave Technol. 15, 1198–1204 (1997).
[CrossRef]

Chraplyvy, A. R.

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Performance of a WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1, 111–113(1989).
[CrossRef]

Cowle, G. J.

G. J. Cowle, D.Yu. Stepanov, and Y. T. Chieng, “Brillouin/erbium fiber laser,” J. Lightwave Technol. 15, 1198–1204 (1997).
[CrossRef]

G. J. Cowle and D.Yu. Stepanov, “Properties of Brillouin/erbium fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 1049–1057 (1997).
[CrossRef]

G. J. Cowle and D.Yu. Stepanov, “Hybrid Brillouin/erbium fiber laser,” Opt. Lett. 21, 1250–1252 (1996).
[CrossRef]

Derosier, R. M.

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Performance of a WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1, 111–113(1989).
[CrossRef]

Ezekiel, S.

Garde, M. J.

A. Loayssa, D. Benito, and M. J. Garde, “Applications of optical carrier Brillouin processing to microwave photonics,” Opt. Fiber Technol. 8, 24–42 (2002).
[CrossRef]

A. Loayssa, D. Benito, and M. J. Garde, “High-resolution measurement of stimulated Brillouin scattering spectra in single-mode fiber,” IEE Proc. Optoelectron. 148, 143–148 (2001).
[CrossRef]

Hambali, N. A.

Harun, S. W.

S. Shahi and S. W. Harun, “Brillouin fiber laser with significantly reduced gain medium length operating in L-band region,” Prog. Electromagn. Res. Lett. 8, 143–149 (2009).
[CrossRef]

S. W. Harun, S. Shahi, and H. Ahmad, “Compact Brillouin-erbium fiber laser,” Opt. Lett. 34, 46–48 (2009).
[CrossRef]

Hill, K. O.

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “CW generation of multiple Stokes and anti-Stokes Brillouin-shifted frequencies,” Appl. Phys. Lett. 29, 185–187 (1976).
[CrossRef]

Huang, T.

Ji, J. H.

Jin, X.

L. Liu, Y. Shen, S. Zheng, X. Jin, H. Chi, and X. Zhang, “Optical generation of microwave/millmeter-wave based on Brillouin-erbium fiber laser,” Microw. Opt. Technol. Lett. 53, 1761–1763 (2011).
[CrossRef]

Johnson, D. C.

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “CW generation of multiple Stokes and anti-Stokes Brillouin-shifted frequencies,” Appl. Phys. Lett. 29, 185–187 (1976).
[CrossRef]

Kawasaki, B. S.

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “CW generation of multiple Stokes and anti-Stokes Brillouin-shifted frequencies,” Appl. Phys. Lett. 29, 185–187 (1976).
[CrossRef]

Liu, L.

L. Liu, Y. Shen, S. Zheng, X. Jin, H. Chi, and X. Zhang, “Optical generation of microwave/millmeter-wave based on Brillouin-erbium fiber laser,” Microw. Opt. Technol. Lett. 53, 1761–1763 (2011).
[CrossRef]

Loayssa, A.

A. Loayssa, D. Benito, and M. J. Garde, “Applications of optical carrier Brillouin processing to microwave photonics,” Opt. Fiber Technol. 8, 24–42 (2002).
[CrossRef]

A. Loayssa, D. Benito, and M. J. Garde, “High-resolution measurement of stimulated Brillouin scattering spectra in single-mode fiber,” IEE Proc. Optoelectron. 148, 143–148 (2001).
[CrossRef]

Luo, S. Y.

Mahdi, M. A.

Samsuri, N. Md.

Saripan, M. I.

Shahi, S.

S. Shahi and S. W. Harun, “Brillouin fiber laser with significantly reduced gain medium length operating in L-band region,” Prog. Electromagn. Res. Lett. 8, 143–149 (2009).
[CrossRef]

S. W. Harun, S. Shahi, and H. Ahmad, “Compact Brillouin-erbium fiber laser,” Opt. Lett. 34, 46–48 (2009).
[CrossRef]

Shen, Y.

L. Liu, Y. Shen, S. Zheng, X. Jin, H. Chi, and X. Zhang, “Optical generation of microwave/millmeter-wave based on Brillouin-erbium fiber laser,” Microw. Opt. Technol. Lett. 53, 1761–1763 (2011).
[CrossRef]

Smith, S. P.

Song, Y. J.

Stepanov, D.Yu.

G. J. Cowle, D.Yu. Stepanov, and Y. T. Chieng, “Brillouin/erbium fiber laser,” J. Lightwave Technol. 15, 1198–1204 (1997).
[CrossRef]

G. J. Cowle and D.Yu. Stepanov, “Properties of Brillouin/erbium fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 1049–1057 (1997).
[CrossRef]

G. J. Cowle and D.Yu. Stepanov, “Hybrid Brillouin/erbium fiber laser,” Opt. Lett. 21, 1250–1252 (1996).
[CrossRef]

Su, Y.

Sun, J.

Tang, J.

Tkach, R. W.

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Performance of a WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1, 111–113(1989).
[CrossRef]

Xia, J.

Xia, Y. X.

Ye, Q. H.

Zamzuri, A. K.

Zarinetchi, F.

Zhan, L.

Zhang, X.

L. Liu, Y. Shen, S. Zheng, X. Jin, H. Chi, and X. Zhang, “Optical generation of microwave/millmeter-wave based on Brillouin-erbium fiber laser,” Microw. Opt. Technol. Lett. 53, 1761–1763 (2011).
[CrossRef]

Zhao, L.

Zheng, S.

L. Liu, Y. Shen, S. Zheng, X. Jin, H. Chi, and X. Zhang, “Optical generation of microwave/millmeter-wave based on Brillouin-erbium fiber laser,” Microw. Opt. Technol. Lett. 53, 1761–1763 (2011).
[CrossRef]

Zhou, Y.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “CW generation of multiple Stokes and anti-Stokes Brillouin-shifted frequencies,” Appl. Phys. Lett. 29, 185–187 (1976).
[CrossRef]

IEE Proc. Optoelectron. (1)

A. Loayssa, D. Benito, and M. J. Garde, “High-resolution measurement of stimulated Brillouin scattering spectra in single-mode fiber,” IEE Proc. Optoelectron. 148, 143–148 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

G. J. Cowle and D.Yu. Stepanov, “Properties of Brillouin/erbium fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 1049–1057 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Performance of a WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1, 111–113(1989).
[CrossRef]

J. Lightwave Technol. (1)

G. J. Cowle, D.Yu. Stepanov, and Y. T. Chieng, “Brillouin/erbium fiber laser,” J. Lightwave Technol. 15, 1198–1204 (1997).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

L. Liu, Y. Shen, S. Zheng, X. Jin, H. Chi, and X. Zhang, “Optical generation of microwave/millmeter-wave based on Brillouin-erbium fiber laser,” Microw. Opt. Technol. Lett. 53, 1761–1763 (2011).
[CrossRef]

Opt. Express (5)

Opt. Fiber Technol. (1)

A. Loayssa, D. Benito, and M. J. Garde, “Applications of optical carrier Brillouin processing to microwave photonics,” Opt. Fiber Technol. 8, 24–42 (2002).
[CrossRef]

Opt. Lett. (4)

Prog. Electromagn. Res. Lett. (1)

S. Shahi and S. W. Harun, “Brillouin fiber laser with significantly reduced gain medium length operating in L-band region,” Prog. Electromagn. Res. Lett. 8, 143–149 (2009).
[CrossRef]

Sensors (1)

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Configuration of the proposed BEFL. DFB-LD, distributed feedback laser diode; WDM, wavelength-division multiplexer; EDF, erbium-doped fiber; SMF, single-mode fiber; PC, polarization controller; TOF, tunable optical filter; SFPI, scanning Fabry–Perot interferometer; OSA, optical spectrum analyzer.

Fig. 2.
Fig. 2.

Optical spectra of the proposed BEFL measured at the BP power of 5.7 mW for three 980 nm pump power values 36, 60, and 76 mW.

Fig. 3.
Fig. 3.

Single-longitudinal mode operation of the proposed BEFL measured by the SFPI and observed on the oscilloscope.

Fig. 4.
Fig. 4.

BEFL output power as a function of the 980 nm pump power for four BP power values.

Fig. 5.
Fig. 5.

BEFL output power as a function of the BP power measured for six 980 nm pump power values.

Fig. 6.
Fig. 6.

Characteristics of the bidirectional EDFA.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

G=exp(gBP0Leff/AeffαL),

Metrics