Abstract

In this paper, the characteristics of a polarization-based vibration sensor are theoretically and experimentally analyzed with a focus on its sensitivity and linearity. It is shown that this sensor can correctly recover the vibration frequency spectrum (i.e., with limited distortions) up to an acceleration of 140m/s2, with a sensitivity equal to 9.98mV/(m/s2).

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Marty, J. Fouletier, P. Desgoutte, B. Crétinon, L. Blum, G. Asch, and A. Piquet, Les Capteurs en Instrumentation Industrielle, 2nd ed., Technique et Ingénierie (Dunod, 2010).
  2. F. Qin, H. Li, W. Fan, and Q. Sheng, “Experimental study on vibration frequency response of micro-bend optic-fiber sensor,” Chin. Opt. Lett. 7, 556–559 (2009).
    [CrossRef]
  3. S. Larochelle, V. Mizrahi, K. D. Simmons, G. I. Stegeman, and J. E. Sipe, “Photosensitive optical fibers used as vibration sensors,” Opt. Lett. 15, 399–401 (1990).
    [CrossRef]
  4. X. Guo, Z. Yin, and N. Song, “Measuring vibration by using fiber Bragg grating and demodulating it by blazed grating,” Chin. Opt. Lett. 2, 393–395 (2004).
  5. T. Guo, A. Ivanov, C. Chen, and J. Albert, “Temperature-independent tilted fiber grating vibration sensor based on cladding-core recoupling,” Opt. Lett. 33, 1004–1006 (2008).
    [CrossRef]
  6. A. Fender, W. N. Macpherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. Mcculloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sensors 8, 1292–1298 (2008).
    [CrossRef]
  7. R. M. Manuel, M. G. Shlyagin, and S. V. Miridonov, “Location of a time-varying disturbance using an array of identical fiber-optic interferometers interrogated by CW DFB laser,” Opt. Express 16, 20666–20675 (2008).
    [CrossRef]
  8. X. Fang, “Fiber-optic distributed sensing by two-loop Sagnac interferometer,” Opt. Lett. 21, 444–446 (1996).
    [CrossRef]
  9. J. C. Juarez and H. F. Taylor, “Field test of a distributed fiber-optic intrusion sensor system for long perimeters,” Appl. Opt. 46, 1968–1971 (2007).
    [CrossRef]
  10. Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28, 3243–3249 (2010).
    [CrossRef]
  11. Z. Zhang and X. Bao, “Distributed optical fiber vibration sensor based on spectrum analysis of polarization-OTDR system,” Opt. Express 16, 10240–10247 (2008).
    [CrossRef]
  12. M. Han, Y. Wang, and A. Wang, “Grating-assisted polarization optical time-domain reflectometry for distributed fiber-optic sensing,” Opt. Lett. 32, 2028–2030 (2007).
    [CrossRef]
  13. F. Pigeon, S. Pelissier, A. Mure-Ravaud, H. Gagnaire, S. I. Hosain, and C. Veillas, “A vibration sensor, using telecommunication grade monomode fiber, immune to temperature variations,” J. Phys. III 3, 1835–1838 (1993).
    [CrossRef]
  14. Z. Zhang and X. Bao, “Continuous and damped vibration detection based on fiber diversity detection sensor by Rayleigh backscattering,” J. Lightwave Technol. 26, 832–838 (2008).
    [CrossRef]
  15. L. Hong, X. S. Dong, H. Y. Ming, M. Zhou, and N. Ming, “Research on all polarization-maintaining fiber optic accelerometer,” Proc. SPIE 6004, 60040R (2005).
    [CrossRef]
  16. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).
  17. P. Tihon, N. Linze, O. Verlinden, P. Mégret, and M. Wuilpart, “Design of a mechanical transducer for an optical fiber accelerometer based on polarization variation,” Proc. SPIE 8439, 84390M (2012).
    [CrossRef]
  18. M. Wuilpart and M. Tur, “Chapter 2. Polarization effects in optical fibers,” in Advanced Fiber Optics: Concepts and Technology, L. Thévenaz, eds. (EPFL Press, 2011), pp. 29–86.
  19. S. C. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” J. Lightwave Technol. 1, 312–331 (1983).
    [CrossRef]
  20. A. Bertholds and R. Dandliker, “Determination of the individual strain-optic coefficients in single mode optical fibre,” J. Lightwave Technol. 6, 17–20 (1988).
    [CrossRef]
  21. A. Galtarossa, D. Grosso, and L. Palmieri, “Accurate characterization of twist-induced optical activity in single-mode fibers by means of polarization-sensitive reflectometry,” IEEE Photon. Technol. Lett. 21, 1713–1715 (2009).
    [CrossRef]
  22. C. M. Harris and C. E. Crede, Shock and Vibration Handbook (McGraw-Hill, 1961).

2012 (1)

P. Tihon, N. Linze, O. Verlinden, P. Mégret, and M. Wuilpart, “Design of a mechanical transducer for an optical fiber accelerometer based on polarization variation,” Proc. SPIE 8439, 84390M (2012).
[CrossRef]

2010 (1)

2009 (2)

F. Qin, H. Li, W. Fan, and Q. Sheng, “Experimental study on vibration frequency response of micro-bend optic-fiber sensor,” Chin. Opt. Lett. 7, 556–559 (2009).
[CrossRef]

A. Galtarossa, D. Grosso, and L. Palmieri, “Accurate characterization of twist-induced optical activity in single-mode fibers by means of polarization-sensitive reflectometry,” IEEE Photon. Technol. Lett. 21, 1713–1715 (2009).
[CrossRef]

2008 (5)

2007 (2)

2005 (1)

L. Hong, X. S. Dong, H. Y. Ming, M. Zhou, and N. Ming, “Research on all polarization-maintaining fiber optic accelerometer,” Proc. SPIE 6004, 60040R (2005).
[CrossRef]

2004 (1)

1996 (1)

1993 (1)

F. Pigeon, S. Pelissier, A. Mure-Ravaud, H. Gagnaire, S. I. Hosain, and C. Veillas, “A vibration sensor, using telecommunication grade monomode fiber, immune to temperature variations,” J. Phys. III 3, 1835–1838 (1993).
[CrossRef]

1990 (1)

1988 (1)

A. Bertholds and R. Dandliker, “Determination of the individual strain-optic coefficients in single mode optical fibre,” J. Lightwave Technol. 6, 17–20 (1988).
[CrossRef]

1983 (1)

S. C. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” J. Lightwave Technol. 1, 312–331 (1983).
[CrossRef]

Albert, J.

Asch, G.

J. L. Marty, J. Fouletier, P. Desgoutte, B. Crétinon, L. Blum, G. Asch, and A. Piquet, Les Capteurs en Instrumentation Industrielle, 2nd ed., Technique et Ingénierie (Dunod, 2010).

Azzam, R. M. A.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).

Bao, X.

Barton, J. S.

A. Fender, W. N. Macpherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. Mcculloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sensors 8, 1292–1298 (2008).
[CrossRef]

Bashara, N. M.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).

Bennion, I.

A. Fender, W. N. Macpherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. Mcculloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sensors 8, 1292–1298 (2008).
[CrossRef]

Bertholds, A.

A. Bertholds and R. Dandliker, “Determination of the individual strain-optic coefficients in single mode optical fibre,” J. Lightwave Technol. 6, 17–20 (1988).
[CrossRef]

Blum, L.

J. L. Marty, J. Fouletier, P. Desgoutte, B. Crétinon, L. Blum, G. Asch, and A. Piquet, Les Capteurs en Instrumentation Industrielle, 2nd ed., Technique et Ingénierie (Dunod, 2010).

Chen, C.

Chen, L.

Chen, X.

A. Fender, W. N. Macpherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. Mcculloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sensors 8, 1292–1298 (2008).
[CrossRef]

Crede, C. E.

C. M. Harris and C. E. Crede, Shock and Vibration Handbook (McGraw-Hill, 1961).

Crétinon, B.

J. L. Marty, J. Fouletier, P. Desgoutte, B. Crétinon, L. Blum, G. Asch, and A. Piquet, Les Capteurs en Instrumentation Industrielle, 2nd ed., Technique et Ingénierie (Dunod, 2010).

Dandliker, R.

A. Bertholds and R. Dandliker, “Determination of the individual strain-optic coefficients in single mode optical fibre,” J. Lightwave Technol. 6, 17–20 (1988).
[CrossRef]

Desgoutte, P.

J. L. Marty, J. Fouletier, P. Desgoutte, B. Crétinon, L. Blum, G. Asch, and A. Piquet, Les Capteurs en Instrumentation Industrielle, 2nd ed., Technique et Ingénierie (Dunod, 2010).

Dong, X. S.

L. Hong, X. S. Dong, H. Y. Ming, M. Zhou, and N. Ming, “Research on all polarization-maintaining fiber optic accelerometer,” Proc. SPIE 6004, 60040R (2005).
[CrossRef]

Fan, W.

Fang, X.

Fender, A.

A. Fender, W. N. Macpherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. Mcculloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sensors 8, 1292–1298 (2008).
[CrossRef]

Fouletier, J.

J. L. Marty, J. Fouletier, P. Desgoutte, B. Crétinon, L. Blum, G. Asch, and A. Piquet, Les Capteurs en Instrumentation Industrielle, 2nd ed., Technique et Ingénierie (Dunod, 2010).

Gagnaire, H.

F. Pigeon, S. Pelissier, A. Mure-Ravaud, H. Gagnaire, S. I. Hosain, and C. Veillas, “A vibration sensor, using telecommunication grade monomode fiber, immune to temperature variations,” J. Phys. III 3, 1835–1838 (1993).
[CrossRef]

Galtarossa, A.

A. Galtarossa, D. Grosso, and L. Palmieri, “Accurate characterization of twist-induced optical activity in single-mode fibers by means of polarization-sensitive reflectometry,” IEEE Photon. Technol. Lett. 21, 1713–1715 (2009).
[CrossRef]

George, D. S.

A. Fender, W. N. Macpherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. Mcculloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sensors 8, 1292–1298 (2008).
[CrossRef]

Grosso, D.

A. Galtarossa, D. Grosso, and L. Palmieri, “Accurate characterization of twist-induced optical activity in single-mode fibers by means of polarization-sensitive reflectometry,” IEEE Photon. Technol. Lett. 21, 1713–1715 (2009).
[CrossRef]

Guo, T.

Guo, X.

Han, M.

Harris, C. M.

C. M. Harris and C. E. Crede, Shock and Vibration Handbook (McGraw-Hill, 1961).

Hong, L.

L. Hong, X. S. Dong, H. Y. Ming, M. Zhou, and N. Ming, “Research on all polarization-maintaining fiber optic accelerometer,” Proc. SPIE 6004, 60040R (2005).
[CrossRef]

Hosain, S. I.

F. Pigeon, S. Pelissier, A. Mure-Ravaud, H. Gagnaire, S. I. Hosain, and C. Veillas, “A vibration sensor, using telecommunication grade monomode fiber, immune to temperature variations,” J. Phys. III 3, 1835–1838 (1993).
[CrossRef]

Howden, R. I.

A. Fender, W. N. Macpherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. Mcculloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sensors 8, 1292–1298 (2008).
[CrossRef]

Ivanov, A.

Jones, B. J. S.

A. Fender, W. N. Macpherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. Mcculloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sensors 8, 1292–1298 (2008).
[CrossRef]

Juarez, J. C.

Larochelle, S.

Li, H.

Linze, N.

P. Tihon, N. Linze, O. Verlinden, P. Mégret, and M. Wuilpart, “Design of a mechanical transducer for an optical fiber accelerometer based on polarization variation,” Proc. SPIE 8439, 84390M (2012).
[CrossRef]

Lu, Y.

Macpherson, W. N.

A. Fender, W. N. Macpherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. Mcculloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sensors 8, 1292–1298 (2008).
[CrossRef]

Maier, R. R. J.

A. Fender, W. N. Macpherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. Mcculloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sensors 8, 1292–1298 (2008).
[CrossRef]

Manuel, R. M.

Marty, J. L.

J. L. Marty, J. Fouletier, P. Desgoutte, B. Crétinon, L. Blum, G. Asch, and A. Piquet, Les Capteurs en Instrumentation Industrielle, 2nd ed., Technique et Ingénierie (Dunod, 2010).

Mcculloch, S.

A. Fender, W. N. Macpherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. Mcculloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sensors 8, 1292–1298 (2008).
[CrossRef]

Mégret, P.

P. Tihon, N. Linze, O. Verlinden, P. Mégret, and M. Wuilpart, “Design of a mechanical transducer for an optical fiber accelerometer based on polarization variation,” Proc. SPIE 8439, 84390M (2012).
[CrossRef]

Ming, H. Y.

L. Hong, X. S. Dong, H. Y. Ming, M. Zhou, and N. Ming, “Research on all polarization-maintaining fiber optic accelerometer,” Proc. SPIE 6004, 60040R (2005).
[CrossRef]

Ming, N.

L. Hong, X. S. Dong, H. Y. Ming, M. Zhou, and N. Ming, “Research on all polarization-maintaining fiber optic accelerometer,” Proc. SPIE 6004, 60040R (2005).
[CrossRef]

Miridonov, S. V.

Mizrahi, V.

Mure-Ravaud, A.

F. Pigeon, S. Pelissier, A. Mure-Ravaud, H. Gagnaire, S. I. Hosain, and C. Veillas, “A vibration sensor, using telecommunication grade monomode fiber, immune to temperature variations,” J. Phys. III 3, 1835–1838 (1993).
[CrossRef]

Palmieri, L.

A. Galtarossa, D. Grosso, and L. Palmieri, “Accurate characterization of twist-induced optical activity in single-mode fibers by means of polarization-sensitive reflectometry,” IEEE Photon. Technol. Lett. 21, 1713–1715 (2009).
[CrossRef]

Pelissier, S.

F. Pigeon, S. Pelissier, A. Mure-Ravaud, H. Gagnaire, S. I. Hosain, and C. Veillas, “A vibration sensor, using telecommunication grade monomode fiber, immune to temperature variations,” J. Phys. III 3, 1835–1838 (1993).
[CrossRef]

Pigeon, F.

F. Pigeon, S. Pelissier, A. Mure-Ravaud, H. Gagnaire, S. I. Hosain, and C. Veillas, “A vibration sensor, using telecommunication grade monomode fiber, immune to temperature variations,” J. Phys. III 3, 1835–1838 (1993).
[CrossRef]

Piquet, A.

J. L. Marty, J. Fouletier, P. Desgoutte, B. Crétinon, L. Blum, G. Asch, and A. Piquet, Les Capteurs en Instrumentation Industrielle, 2nd ed., Technique et Ingénierie (Dunod, 2010).

Qin, F.

Rashleigh, S. C.

S. C. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” J. Lightwave Technol. 1, 312–331 (1983).
[CrossRef]

Sheng, Q.

Shlyagin, M. G.

Simmons, K. D.

Sipe, J. E.

Smith, G. W.

A. Fender, W. N. Macpherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. Mcculloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sensors 8, 1292–1298 (2008).
[CrossRef]

Song, N.

Stegeman, G. I.

Suo, R.

A. Fender, W. N. Macpherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. Mcculloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sensors 8, 1292–1298 (2008).
[CrossRef]

Taylor, H. F.

Tihon, P.

P. Tihon, N. Linze, O. Verlinden, P. Mégret, and M. Wuilpart, “Design of a mechanical transducer for an optical fiber accelerometer based on polarization variation,” Proc. SPIE 8439, 84390M (2012).
[CrossRef]

Tur, M.

M. Wuilpart and M. Tur, “Chapter 2. Polarization effects in optical fibers,” in Advanced Fiber Optics: Concepts and Technology, L. Thévenaz, eds. (EPFL Press, 2011), pp. 29–86.

Veillas, C.

F. Pigeon, S. Pelissier, A. Mure-Ravaud, H. Gagnaire, S. I. Hosain, and C. Veillas, “A vibration sensor, using telecommunication grade monomode fiber, immune to temperature variations,” J. Phys. III 3, 1835–1838 (1993).
[CrossRef]

Verlinden, O.

P. Tihon, N. Linze, O. Verlinden, P. Mégret, and M. Wuilpart, “Design of a mechanical transducer for an optical fiber accelerometer based on polarization variation,” Proc. SPIE 8439, 84390M (2012).
[CrossRef]

Wang, A.

Wang, Y.

Wuilpart, M.

P. Tihon, N. Linze, O. Verlinden, P. Mégret, and M. Wuilpart, “Design of a mechanical transducer for an optical fiber accelerometer based on polarization variation,” Proc. SPIE 8439, 84390M (2012).
[CrossRef]

M. Wuilpart and M. Tur, “Chapter 2. Polarization effects in optical fibers,” in Advanced Fiber Optics: Concepts and Technology, L. Thévenaz, eds. (EPFL Press, 2011), pp. 29–86.

Yin, Z.

Zhang, L.

A. Fender, W. N. Macpherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. Mcculloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sensors 8, 1292–1298 (2008).
[CrossRef]

Zhang, Z.

Zhou, M.

L. Hong, X. S. Dong, H. Y. Ming, M. Zhou, and N. Ming, “Research on all polarization-maintaining fiber optic accelerometer,” Proc. SPIE 6004, 60040R (2005).
[CrossRef]

Zhu, T.

Appl. Opt. (1)

Chin. Opt. Lett. (2)

IEEE Photon. Technol. Lett. (1)

A. Galtarossa, D. Grosso, and L. Palmieri, “Accurate characterization of twist-induced optical activity in single-mode fibers by means of polarization-sensitive reflectometry,” IEEE Photon. Technol. Lett. 21, 1713–1715 (2009).
[CrossRef]

IEEE Sensors (1)

A. Fender, W. N. Macpherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. Mcculloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sensors 8, 1292–1298 (2008).
[CrossRef]

J. Lightwave Technol. (4)

Z. Zhang and X. Bao, “Continuous and damped vibration detection based on fiber diversity detection sensor by Rayleigh backscattering,” J. Lightwave Technol. 26, 832–838 (2008).
[CrossRef]

Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28, 3243–3249 (2010).
[CrossRef]

S. C. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” J. Lightwave Technol. 1, 312–331 (1983).
[CrossRef]

A. Bertholds and R. Dandliker, “Determination of the individual strain-optic coefficients in single mode optical fibre,” J. Lightwave Technol. 6, 17–20 (1988).
[CrossRef]

J. Phys. III (1)

F. Pigeon, S. Pelissier, A. Mure-Ravaud, H. Gagnaire, S. I. Hosain, and C. Veillas, “A vibration sensor, using telecommunication grade monomode fiber, immune to temperature variations,” J. Phys. III 3, 1835–1838 (1993).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Proc. SPIE (2)

L. Hong, X. S. Dong, H. Y. Ming, M. Zhou, and N. Ming, “Research on all polarization-maintaining fiber optic accelerometer,” Proc. SPIE 6004, 60040R (2005).
[CrossRef]

P. Tihon, N. Linze, O. Verlinden, P. Mégret, and M. Wuilpart, “Design of a mechanical transducer for an optical fiber accelerometer based on polarization variation,” Proc. SPIE 8439, 84390M (2012).
[CrossRef]

Other (4)

M. Wuilpart and M. Tur, “Chapter 2. Polarization effects in optical fibers,” in Advanced Fiber Optics: Concepts and Technology, L. Thévenaz, eds. (EPFL Press, 2011), pp. 29–86.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).

J. L. Marty, J. Fouletier, P. Desgoutte, B. Crétinon, L. Blum, G. Asch, and A. Piquet, Les Capteurs en Instrumentation Industrielle, 2nd ed., Technique et Ingénierie (Dunod, 2010).

C. M. Harris and C. E. Crede, Shock and Vibration Handbook (McGraw-Hill, 1961).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Experimental setup.

Fig. 2.
Fig. 2.

Mechanical transducer used to transform the mechanical perturbation into a birefringence modification.

Fig. 3.
Fig. 3.

Evolution of H2/H1 versus acceleration level am, for different values of fDC (simulations).

Fig. 4.
Fig. 4.

Evolution of H3/H1 versus acceleration level am, for different values of fDC (simulations).

Fig. 5.
Fig. 5.

Evolution of VAC,pk versus acceleration level am (simulations); dots, simulation values; plain line, fitted curve.

Fig. 6.
Fig. 6.

Evolution of H2/H1 and H3/H1 versus acceleration level am (experiments, optical measurements).

Fig. 7.
Fig. 7.

Spectra of the signal coming from the signal generator, for four different acceleration levels am.

Fig. 8.
Fig. 8.

Evolution of H2/H1 versus acceleration level am, for different values of fDC, when inducing a nonperfectly sinusoidal acceleration signal.

Fig. 9.
Fig. 9.

Evolution of H3/H1 versus acceleration level am, for different values of fDC, when inducing a nonperfectly sinusoidal acceleration signal.

Fig. 10.
Fig. 10.

Evolution of VAC,pk versus acceleration level am (experiments); dots, measurements; plain line, fitted curve.

Tables (2)

Tables Icon

Table 1. Values of χ, φ, and q, Which Lead to the Highest Peak-to-Peak Value of the AC Part of the Output Voltage, for Different Preloading Values fDC

Tables Icon

Table 2. Calculated Sensitivity Values, for Different Preloading Values fDC

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

Sin=(1cos2χcos2φcos2χsin2φsin2χ)Pin.
MSensor=(10000cos2δ2+sin2δ2cos4qsin2δ2sin4qsinδsin2q0sin2δ2sin4qcos2δ2sin2δ2cos4qsinδcos2q0sinδsin2qsinδcos2qcosδ).
MPol,θ=3π/4=12(1cos2θsin2θ0cos2θcos22θsin2θcos2θ0sin2θsin2θcos2θsin22θ00000)=12(1010000010100000).
Sout,3π/4=MPol,3π/4·MSensor·Sin.
Vout=GSout,3π/4(1)=12GP̲in[1cos2χcos2φsin2δ2sin4qsin2χcos2qsinδcos2χsin2φ(cos2δ2sin2δ2cos4q)].
δ=2kn03(p11p12)(1+νP)fπbEl=Kf.
f(t)=fDC+fAC(t).
fAC(t)=fmsin(ωt).
a(t)=kfiber+kbeamkfiberlmfAC(t)lmfAC(t)=amsin(ωt).
am=lmfm.
δ(t)=Kf(t)=KfDC+KfAC(t)=KfDC+Kmlamsin(ωt).
Vout(t)=Vout(fDC)+dVoutdf|f=fDC·(f(t)fDC)+12!d2Voutdf2|f=fDC·(f(t)fDC)2+13!d3Voutdf3|f=fDC·(f(t)fDC)3=Vout(fDC)+dVoutdf|f=fDC·fAC(t)+12!d2Voutdf2|f=fDC·fAC2(t)+13!d3Voutdf3|f=fDC·fAC3(t).
Vout(t)=GPin[H0+H1sin(ωt)+H2sin(2ωt)+H3sin(3ωt)+]=VDC+VAC(t).
H0=α0+α2fm24;H1=α1fm+α3fm38;H2=α2fm24;H3=α3fm324.
α0=12+(ABcos4q)sin2(KfDC2)+Bcos2(KfDC2)+Csin(KfDC),α1=AK2sin(KfDC)BK2(cos4q+1)sin(KfDC)+CKcos(KfDC),α2=AK22cos(KfDC)BK22(cos4q+1)cos(KfDC)CK2sin(KfDC),α3=AK32sin(KfDC)+BK32(cos4q+1)sin(KfDC)CK3cos(KfDC),
A=12cos2χcos2φsin4q;B=12cos2χsin2φ;C=12sin2χcos2q.
S=ΔVAC,pkΔam.
fAC(t)=fmsin(ωt)+0.001fmsin(2ωt)+0.001fmsin(3ωt).

Metrics