Abstract

In this article, we establish blood stain detection criteria that are less substrate dependent for use in a liquid crystal tunable filter-based multispectral-imaging system. Kubelka–Munk (KM) theory is applied to transform the acquired stains’ reflectance spectra into the less substrate dependent spectra. Chosen spectral parameters are extracted from the KM absorbance spectra of several stain samples on several substrates. Blood discrimination criteria based upon those spectral parameters are then established from empirical data, tested, and refined. In our newly invented method, instead of introducing conventional contrast enhancement on the blood stain image, blood stain determination is executed mathematically via Boolean logic, resulting in more discriminative blood stain identification. This proposed approach allows for nondestructive, quick, discriminative, and easy-to-improve presumptive blood stain detection. Experimental results confirm that our blood stain discrimination criteria can be used to locate blood stains on several construction materials with high precision. True positive rates (sensitivity) from 0.60 to 0.95 are achieved depending on blood stain faintness and substrate types. Also, true negative rates (specificity) between 0.55 and 0.96 and identification time of 4–5 min are accomplished, respectively. The established blood stain discrimination criteria will be incorporated in a real blood stain detection system in part 2 of this article, where system design and considerations as well as speed issues are discussed.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Ponce and A. C. Pascual, “Critical revision of presumptive tests bloodstains,” Forensic Sci. Commun. 1, 1–15 (1999).
  2. M. A. Cox, “A study of the sensitivity and specificity of four presumptive tests for blood,” J. Forensic Sci. 36, 1503–1511 (1991).
  3. A. M. Gross, K. A. Harris, and G. L. Kaldun, “The effect of luminol on presumptive tests and DNA analysis using the polymerase chain reaction,” J. Forensic Sci. 44, 837–840 (1999).
  4. N. Vandenberg and R. A. van Oorschot, “The use of Polilight in the detection of seminal fluid, saliva, and bloodstains and comparison with conventional chemical-based screening tests,” J. Forensic Sci. 51, 361–370 (2006).
    [CrossRef]
  5. W. C. Lee and B. E. Khoo, “Forensic light sources for detection of biological evidences in crime scene investigation: a review,” Malays. J. Forensic Sci. 1, 17–28 (2010).
  6. A. C. Lin, H. M. Hsieh, L. C. Tsai, A. Linacre, and J. C. Lee, “Forensic applications of infrared imaging for the detection and recording of latent evidence,” J. Forensic Sci. 52, 1148–1150 (2007).
    [CrossRef]
  7. M. Perkins, “The application of infrared photography in bloodstain pattern documentation of clothing,” J. Forensic Sci. 55, 1–9 (2005).
  8. H. Brooke, M. R. Baranowski, J. N. McCutcheon, S. L. Morgan, and M. L. Myrick, “Multimode imaging in the thermal infrared for chemical contrast enhancement. Part 1: methodology,” Anal. Chem. 82, 8412–8420 (2010).
    [CrossRef]
  9. H. Brooke, M. R. Baranowski, J. N. McCutcheon, S. L. Morgan, and M. L. Myrick, “Multimode imaging in the thermal infrared for chemical contrast enhancement. Part 2: simulation driven design,” Anal. Chem. 82, 8421–8426 (2010).
    [CrossRef]
  10. H. Brooke, M. R. Baranowski, J. N. McCutcheon, S. L. Morgan, and M. L. Myrick, “Multimode imaging in the thermal infrared for chemical contrast enhancement. Part 3: visualizing blood on fabrics,” Anal. Chem. 82, 8427–8431 (2010).
    [CrossRef]
  11. S. Sumriddetchkajorn and Y. Intaravanne, “A hyperspectral imaging-based credit card verifier structure with adaptive learning,” Appl. Opt. 47, 6594–6600 (2008).
    [CrossRef]
  12. S. Sumriddetchkajorn and Y. Intaravanne, “Data-nonintrusive photonics-based credit card verifier with a low noise rejection rate,” Appl. Opt. 49, 764–771 (2010).
    [CrossRef]
  13. S. Sumriddetchkajorn, K. Suwansukho, and P. Buranasiri, “Two-wavelength spectral image-based Thai rice breed identification,” Proc. SPIE 7715, 77150I (2010).
    [CrossRef]
  14. K. Suwansukho, S. Sumriddetchkajorn, and P. Buranasiri, “Demonstration of a single-wavelength spectral-imaging-based Thai jasmine rice identification,” Appl. Opt. 50, 4024–4030 (2011).
    [CrossRef]
  15. Y. Intaravanne, S. Sumriddetchkajorn, and J. Nukeaw, “Cell phone-based two-dimensional spectral analysis for banana ripeness estimation,” Sens. Actuators B 168, 390–394 (2012).
    [CrossRef]
  16. J. H. Wagner, “Applications of UV-visible spectral imaging in forensic science,” Ph.D. dissertation (University Of Auckland, 2008).
  17. G. M. Miskelly and J. H. Wagner, “Using spectral information in forensic imaging,” Forensic Sci. Int. 155, 112–118 (2005).
    [CrossRef]
  18. N. Rajaram, A. Gopal, X. J. Zhang, and J. W. Tunnell, “Experimental validation of the effects of microvasculature pigment packaging on in vivo diffuse reflectance spectroscopy,” Lasers Surg Med. 42, 680–688 (2010).
    [CrossRef]
  19. http://www.chemimage.com/docs/product.../CI-productsheet-CONDOR.pdf , “Condor Wide-field hyperspectral imaging system,” ChemImage product sheet PSREV005 (2010).
  20. https://www.chemimage.com/docs/application-notes/forensics/CI-appnote-Visualization-of-Bloodstains.pdf , “Hyperspectral imaging enables straightforward visualization of bloodstains,” ChemImage Application note, ANREV002 (2010).
  21. http://www.chemimage.com/news/newsletter/forensic_focus/november2010.aspx , “Hypserspectral imaging: a high-contrast alternative to visualizing blood spatter and stains,” Forensic Focus E-Newsletter 11 (2010).
  22. http://www.chemimage.com/products/instrumentation/examiner/ , “HSI Examiner 1000,” ChemImage product sheet PSREV001 (2012).
  23. S. Janchaysang, S. Sumriddetchkajorn, and P. Buranasiri, “Tunable filter-based multispectral imaging for detection of blood stains on construction material substrates. Part 2. Realization of rapid blood stain detection,” Appl. Opt. 51, xx–xx (2012).
  24. W. G. Zijlstra and A. Buursma, “Spectrophotometry of hemoglobin: absorption spectra of bovine oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Comp. Biochem. Physiol. B 118, 743–749 (1997).
    [CrossRef]
  25. E. Pirard, “Multispectral imaging of ore minerals in optical microscopy,” Mineral. Mag. 68, 323–333 (2004).
    [CrossRef]
  26. R. Shogenji, Y. Kitamura, K. Yamada, S. Miyatake, and J. Tanida, “Multispectral imaging using compact compound optics,” Opt. Express 12, 1643–1655 (2004).
    [CrossRef]
  27. J. M. Medina, L. M. Pereira, H. T. Correia, and S. Nascimento, “Hyperspectral optical imaging of human iris in vivo: characteristics of reflectance spectra,” J. Biomed. Opt. 16, 076001 (2011).
    [CrossRef]
  28. P. Kubelka, “New contributions to the optics of intensely light scattering materials. Part I,” J. Opt. Soc. Am. 38, 448–457 (1948).
    [CrossRef]
  29. M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans Biomed. Eng. 36, 1146–1154 (1989).
    [CrossRef]
  30. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [CrossRef]
  31. M. M. Lana, M. Hogenkamp, and R. B. M. Koehorst, “Application of Kubelka–Munk analysis to the study of translucency in fresh-cut tomato,” Innov. Food Sci. Emerg. Technol. 7, 302–308 (2006).
    [CrossRef]
  32. L. M. Schabbach, F. Bondioli, and M. C. Fredel, “Colouring of opaque ceramic glaze with zircon pigments: formulation with simplified Kubelka–Munk model,” J. Eur. Ceram. Soc. 31, 659–664 (2011).
    [CrossRef]
  33. S. Shibusawa, “On-line real time soil sensor,” in Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (2003), pp. 1061–1066.
  34. L. Yang, “Characterization of inks and ink application for ink-jet printing: model and simulation,” J. Opt. Soc Am. A 20, 1149–1154 (2003).
    [CrossRef]
  35. R. Berns, J. Kreuger, and M. Swicklik, “Multiple pigment selection for in painting using visible reflectance spectrophotometry,” Stud. Conserv. 47, 46 (2002).
    [CrossRef]
  36. R. S. Berns, “Spectral modeling of a dye diffusion thermal transfer printer,” J. Electron. Imaging 2, 359–369(1993).
    [CrossRef]
  37. R. H. Bremmer, A. Nadort, T. G. van Leeuwen, M. J. van Gemert, and M. C. Aalders, “Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy,” Forensic Sci. Int. 206, 166–171(2011).
    [CrossRef]
  38. W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-Van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633–1638 (1991).
  39. T. Asakura, K. Minakata, K. Adachi, M. O. Russell, and E. Schwartz, “Denatured hemo-globin in sickle erythrocytes,” J. Clin. Invest. 59, 633–640 (1977).
    [CrossRef]
  40. http://en.wikipedia.org/wiki/Sensitivity_and_specificity (March 2012).
  41. D. R. Busch, W. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37, 1840–1849 (2010).
    [CrossRef]
  42. M. U. Akram, A. Tariq, M. A. Anjum, and M. Y. Javed, “Automated detection of exudates in colored retinal images for diagnosis of diabetic retinopathy,” Appl. Opt. 51, 4858–4866 (2012).
    [CrossRef]
  43. M. D. Adamson and S. J. Rehse, “Detection of trace Al in model biological tissue with laser-induced breakdown spectroscopy,” Appl. Opt. 46, 5844–5852 (2007).
    [CrossRef]
  44. I. Leonard, A. Alfalou, and C. Brosseau, “Spectral optimized asymmetric segmented phase-only correlation filter,” Appl. Opt. 51, 2638–2650 (2012).
    [CrossRef]
  45. M. Amini, “Novel design of an optical probe for detecting perfusion changes in Buccal tissue,” IEEE Sens. J. 12, 1861–1867 (2012).
    [CrossRef]

2012

Y. Intaravanne, S. Sumriddetchkajorn, and J. Nukeaw, “Cell phone-based two-dimensional spectral analysis for banana ripeness estimation,” Sens. Actuators B 168, 390–394 (2012).
[CrossRef]

S. Janchaysang, S. Sumriddetchkajorn, and P. Buranasiri, “Tunable filter-based multispectral imaging for detection of blood stains on construction material substrates. Part 2. Realization of rapid blood stain detection,” Appl. Opt. 51, xx–xx (2012).

M. U. Akram, A. Tariq, M. A. Anjum, and M. Y. Javed, “Automated detection of exudates in colored retinal images for diagnosis of diabetic retinopathy,” Appl. Opt. 51, 4858–4866 (2012).
[CrossRef]

I. Leonard, A. Alfalou, and C. Brosseau, “Spectral optimized asymmetric segmented phase-only correlation filter,” Appl. Opt. 51, 2638–2650 (2012).
[CrossRef]

M. Amini, “Novel design of an optical probe for detecting perfusion changes in Buccal tissue,” IEEE Sens. J. 12, 1861–1867 (2012).
[CrossRef]

2011

J. M. Medina, L. M. Pereira, H. T. Correia, and S. Nascimento, “Hyperspectral optical imaging of human iris in vivo: characteristics of reflectance spectra,” J. Biomed. Opt. 16, 076001 (2011).
[CrossRef]

L. M. Schabbach, F. Bondioli, and M. C. Fredel, “Colouring of opaque ceramic glaze with zircon pigments: formulation with simplified Kubelka–Munk model,” J. Eur. Ceram. Soc. 31, 659–664 (2011).
[CrossRef]

R. H. Bremmer, A. Nadort, T. G. van Leeuwen, M. J. van Gemert, and M. C. Aalders, “Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy,” Forensic Sci. Int. 206, 166–171(2011).
[CrossRef]

K. Suwansukho, S. Sumriddetchkajorn, and P. Buranasiri, “Demonstration of a single-wavelength spectral-imaging-based Thai jasmine rice identification,” Appl. Opt. 50, 4024–4030 (2011).
[CrossRef]

2010

N. Rajaram, A. Gopal, X. J. Zhang, and J. W. Tunnell, “Experimental validation of the effects of microvasculature pigment packaging on in vivo diffuse reflectance spectroscopy,” Lasers Surg Med. 42, 680–688 (2010).
[CrossRef]

W. C. Lee and B. E. Khoo, “Forensic light sources for detection of biological evidences in crime scene investigation: a review,” Malays. J. Forensic Sci. 1, 17–28 (2010).

S. Sumriddetchkajorn and Y. Intaravanne, “Data-nonintrusive photonics-based credit card verifier with a low noise rejection rate,” Appl. Opt. 49, 764–771 (2010).
[CrossRef]

S. Sumriddetchkajorn, K. Suwansukho, and P. Buranasiri, “Two-wavelength spectral image-based Thai rice breed identification,” Proc. SPIE 7715, 77150I (2010).
[CrossRef]

H. Brooke, M. R. Baranowski, J. N. McCutcheon, S. L. Morgan, and M. L. Myrick, “Multimode imaging in the thermal infrared for chemical contrast enhancement. Part 1: methodology,” Anal. Chem. 82, 8412–8420 (2010).
[CrossRef]

H. Brooke, M. R. Baranowski, J. N. McCutcheon, S. L. Morgan, and M. L. Myrick, “Multimode imaging in the thermal infrared for chemical contrast enhancement. Part 2: simulation driven design,” Anal. Chem. 82, 8421–8426 (2010).
[CrossRef]

H. Brooke, M. R. Baranowski, J. N. McCutcheon, S. L. Morgan, and M. L. Myrick, “Multimode imaging in the thermal infrared for chemical contrast enhancement. Part 3: visualizing blood on fabrics,” Anal. Chem. 82, 8427–8431 (2010).
[CrossRef]

D. R. Busch, W. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37, 1840–1849 (2010).
[CrossRef]

2008

2007

A. C. Lin, H. M. Hsieh, L. C. Tsai, A. Linacre, and J. C. Lee, “Forensic applications of infrared imaging for the detection and recording of latent evidence,” J. Forensic Sci. 52, 1148–1150 (2007).
[CrossRef]

M. D. Adamson and S. J. Rehse, “Detection of trace Al in model biological tissue with laser-induced breakdown spectroscopy,” Appl. Opt. 46, 5844–5852 (2007).
[CrossRef]

2006

N. Vandenberg and R. A. van Oorschot, “The use of Polilight in the detection of seminal fluid, saliva, and bloodstains and comparison with conventional chemical-based screening tests,” J. Forensic Sci. 51, 361–370 (2006).
[CrossRef]

M. M. Lana, M. Hogenkamp, and R. B. M. Koehorst, “Application of Kubelka–Munk analysis to the study of translucency in fresh-cut tomato,” Innov. Food Sci. Emerg. Technol. 7, 302–308 (2006).
[CrossRef]

2005

M. Perkins, “The application of infrared photography in bloodstain pattern documentation of clothing,” J. Forensic Sci. 55, 1–9 (2005).

G. M. Miskelly and J. H. Wagner, “Using spectral information in forensic imaging,” Forensic Sci. Int. 155, 112–118 (2005).
[CrossRef]

2004

2003

L. Yang, “Characterization of inks and ink application for ink-jet printing: model and simulation,” J. Opt. Soc Am. A 20, 1149–1154 (2003).
[CrossRef]

2002

R. Berns, J. Kreuger, and M. Swicklik, “Multiple pigment selection for in painting using visible reflectance spectrophotometry,” Stud. Conserv. 47, 46 (2002).
[CrossRef]

1999

A. M. Gross, K. A. Harris, and G. L. Kaldun, “The effect of luminol on presumptive tests and DNA analysis using the polymerase chain reaction,” J. Forensic Sci. 44, 837–840 (1999).

A. C. Ponce and A. C. Pascual, “Critical revision of presumptive tests bloodstains,” Forensic Sci. Commun. 1, 1–15 (1999).

1997

W. G. Zijlstra and A. Buursma, “Spectrophotometry of hemoglobin: absorption spectra of bovine oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Comp. Biochem. Physiol. B 118, 743–749 (1997).
[CrossRef]

1993

R. S. Berns, “Spectral modeling of a dye diffusion thermal transfer printer,” J. Electron. Imaging 2, 359–369(1993).
[CrossRef]

1991

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-Van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633–1638 (1991).

M. A. Cox, “A study of the sensitivity and specificity of four presumptive tests for blood,” J. Forensic Sci. 36, 1503–1511 (1991).

1990

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

1989

M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef]

1977

T. Asakura, K. Minakata, K. Adachi, M. O. Russell, and E. Schwartz, “Denatured hemo-globin in sickle erythrocytes,” J. Clin. Invest. 59, 633–640 (1977).
[CrossRef]

1948

Aalders, M. C.

R. H. Bremmer, A. Nadort, T. G. van Leeuwen, M. J. van Gemert, and M. C. Aalders, “Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy,” Forensic Sci. Int. 206, 166–171(2011).
[CrossRef]

Adachi, K.

T. Asakura, K. Minakata, K. Adachi, M. O. Russell, and E. Schwartz, “Denatured hemo-globin in sickle erythrocytes,” J. Clin. Invest. 59, 633–640 (1977).
[CrossRef]

Adamson, M. D.

Akram, M. U.

Alfalou, A.

Amini, M.

M. Amini, “Novel design of an optical probe for detecting perfusion changes in Buccal tissue,” IEEE Sens. J. 12, 1861–1867 (2012).
[CrossRef]

Anjum, M. A.

Asakura, T.

T. Asakura, K. Minakata, K. Adachi, M. O. Russell, and E. Schwartz, “Denatured hemo-globin in sickle erythrocytes,” J. Clin. Invest. 59, 633–640 (1977).
[CrossRef]

Baranowski, M. R.

H. Brooke, M. R. Baranowski, J. N. McCutcheon, S. L. Morgan, and M. L. Myrick, “Multimode imaging in the thermal infrared for chemical contrast enhancement. Part 1: methodology,” Anal. Chem. 82, 8412–8420 (2010).
[CrossRef]

H. Brooke, M. R. Baranowski, J. N. McCutcheon, S. L. Morgan, and M. L. Myrick, “Multimode imaging in the thermal infrared for chemical contrast enhancement. Part 2: simulation driven design,” Anal. Chem. 82, 8421–8426 (2010).
[CrossRef]

H. Brooke, M. R. Baranowski, J. N. McCutcheon, S. L. Morgan, and M. L. Myrick, “Multimode imaging in the thermal infrared for chemical contrast enhancement. Part 3: visualizing blood on fabrics,” Anal. Chem. 82, 8427–8431 (2010).
[CrossRef]

Berns, R.

R. Berns, J. Kreuger, and M. Swicklik, “Multiple pigment selection for in painting using visible reflectance spectrophotometry,” Stud. Conserv. 47, 46 (2002).
[CrossRef]

Berns, R. S.

R. S. Berns, “Spectral modeling of a dye diffusion thermal transfer printer,” J. Electron. Imaging 2, 359–369(1993).
[CrossRef]

Bondioli, F.

L. M. Schabbach, F. Bondioli, and M. C. Fredel, “Colouring of opaque ceramic glaze with zircon pigments: formulation with simplified Kubelka–Munk model,” J. Eur. Ceram. Soc. 31, 659–664 (2011).
[CrossRef]

Bremmer, R. H.

R. H. Bremmer, A. Nadort, T. G. van Leeuwen, M. J. van Gemert, and M. C. Aalders, “Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy,” Forensic Sci. Int. 206, 166–171(2011).
[CrossRef]

Brooke, H.

H. Brooke, M. R. Baranowski, J. N. McCutcheon, S. L. Morgan, and M. L. Myrick, “Multimode imaging in the thermal infrared for chemical contrast enhancement. Part 2: simulation driven design,” Anal. Chem. 82, 8421–8426 (2010).
[CrossRef]

H. Brooke, M. R. Baranowski, J. N. McCutcheon, S. L. Morgan, and M. L. Myrick, “Multimode imaging in the thermal infrared for chemical contrast enhancement. Part 3: visualizing blood on fabrics,” Anal. Chem. 82, 8427–8431 (2010).
[CrossRef]

H. Brooke, M. R. Baranowski, J. N. McCutcheon, S. L. Morgan, and M. L. Myrick, “Multimode imaging in the thermal infrared for chemical contrast enhancement. Part 1: methodology,” Anal. Chem. 82, 8412–8420 (2010).
[CrossRef]

Brosseau, C.

Buranasiri, P.

S. Janchaysang, S. Sumriddetchkajorn, and P. Buranasiri, “Tunable filter-based multispectral imaging for detection of blood stains on construction material substrates. Part 2. Realization of rapid blood stain detection,” Appl. Opt. 51, xx–xx (2012).

K. Suwansukho, S. Sumriddetchkajorn, and P. Buranasiri, “Demonstration of a single-wavelength spectral-imaging-based Thai jasmine rice identification,” Appl. Opt. 50, 4024–4030 (2011).
[CrossRef]

S. Sumriddetchkajorn, K. Suwansukho, and P. Buranasiri, “Two-wavelength spectral image-based Thai rice breed identification,” Proc. SPIE 7715, 77150I (2010).
[CrossRef]

Busch, D. R.

D. R. Busch, W. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37, 1840–1849 (2010).
[CrossRef]

Buursma, A.

W. G. Zijlstra and A. Buursma, “Spectrophotometry of hemoglobin: absorption spectra of bovine oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Comp. Biochem. Physiol. B 118, 743–749 (1997).
[CrossRef]

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-Van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633–1638 (1991).

Cheong, W. F.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Choe, R.

D. R. Busch, W. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37, 1840–1849 (2010).
[CrossRef]

Correia, H. T.

J. M. Medina, L. M. Pereira, H. T. Correia, and S. Nascimento, “Hyperspectral optical imaging of human iris in vivo: characteristics of reflectance spectra,” J. Biomed. Opt. 16, 076001 (2011).
[CrossRef]

Cox, M. A.

M. A. Cox, “A study of the sensitivity and specificity of four presumptive tests for blood,” J. Forensic Sci. 36, 1503–1511 (1991).

Czerniecki, B. J.

D. R. Busch, W. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37, 1840–1849 (2010).
[CrossRef]

DeMichele, A.

D. R. Busch, W. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37, 1840–1849 (2010).
[CrossRef]

Durduran, T.

D. R. Busch, W. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37, 1840–1849 (2010).
[CrossRef]

Feldman, M. D.

D. R. Busch, W. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37, 1840–1849 (2010).
[CrossRef]

Fredel, M. C.

L. M. Schabbach, F. Bondioli, and M. C. Fredel, “Colouring of opaque ceramic glaze with zircon pigments: formulation with simplified Kubelka–Munk model,” J. Eur. Ceram. Soc. 31, 659–664 (2011).
[CrossRef]

Gopal, A.

N. Rajaram, A. Gopal, X. J. Zhang, and J. W. Tunnell, “Experimental validation of the effects of microvasculature pigment packaging on in vivo diffuse reflectance spectroscopy,” Lasers Surg Med. 42, 680–688 (2010).
[CrossRef]

Gross, A. M.

A. M. Gross, K. A. Harris, and G. L. Kaldun, “The effect of luminol on presumptive tests and DNA analysis using the polymerase chain reaction,” J. Forensic Sci. 44, 837–840 (1999).

Guo, W.

D. R. Busch, W. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37, 1840–1849 (2010).
[CrossRef]

Harris, K. A.

A. M. Gross, K. A. Harris, and G. L. Kaldun, “The effect of luminol on presumptive tests and DNA analysis using the polymerase chain reaction,” J. Forensic Sci. 44, 837–840 (1999).

Hogenkamp, M.

M. M. Lana, M. Hogenkamp, and R. B. M. Koehorst, “Application of Kubelka–Munk analysis to the study of translucency in fresh-cut tomato,” Innov. Food Sci. Emerg. Technol. 7, 302–308 (2006).
[CrossRef]

Hsieh, H. M.

A. C. Lin, H. M. Hsieh, L. C. Tsai, A. Linacre, and J. C. Lee, “Forensic applications of infrared imaging for the detection and recording of latent evidence,” J. Forensic Sci. 52, 1148–1150 (2007).
[CrossRef]

Intaravanne, Y.

Jacques, S. L.

M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef]

Janchaysang, S.

S. Janchaysang, S. Sumriddetchkajorn, and P. Buranasiri, “Tunable filter-based multispectral imaging for detection of blood stains on construction material substrates. Part 2. Realization of rapid blood stain detection,” Appl. Opt. 51, xx–xx (2012).

Javed, M. Y.

Kaldun, G. L.

A. M. Gross, K. A. Harris, and G. L. Kaldun, “The effect of luminol on presumptive tests and DNA analysis using the polymerase chain reaction,” J. Forensic Sci. 44, 837–840 (1999).

Khoo, B. E.

W. C. Lee and B. E. Khoo, “Forensic light sources for detection of biological evidences in crime scene investigation: a review,” Malays. J. Forensic Sci. 1, 17–28 (2010).

Kitamura, Y.

Koehorst, R. B. M.

M. M. Lana, M. Hogenkamp, and R. B. M. Koehorst, “Application of Kubelka–Munk analysis to the study of translucency in fresh-cut tomato,” Innov. Food Sci. Emerg. Technol. 7, 302–308 (2006).
[CrossRef]

Kreuger, J.

R. Berns, J. Kreuger, and M. Swicklik, “Multiple pigment selection for in painting using visible reflectance spectrophotometry,” Stud. Conserv. 47, 46 (2002).
[CrossRef]

Kubelka, P.

Lana, M. M.

M. M. Lana, M. Hogenkamp, and R. B. M. Koehorst, “Application of Kubelka–Munk analysis to the study of translucency in fresh-cut tomato,” Innov. Food Sci. Emerg. Technol. 7, 302–308 (2006).
[CrossRef]

Lee, J. C.

A. C. Lin, H. M. Hsieh, L. C. Tsai, A. Linacre, and J. C. Lee, “Forensic applications of infrared imaging for the detection and recording of latent evidence,” J. Forensic Sci. 52, 1148–1150 (2007).
[CrossRef]

Lee, W. C.

W. C. Lee and B. E. Khoo, “Forensic light sources for detection of biological evidences in crime scene investigation: a review,” Malays. J. Forensic Sci. 1, 17–28 (2010).

Leonard, I.

Lin, A. C.

A. C. Lin, H. M. Hsieh, L. C. Tsai, A. Linacre, and J. C. Lee, “Forensic applications of infrared imaging for the detection and recording of latent evidence,” J. Forensic Sci. 52, 1148–1150 (2007).
[CrossRef]

Linacre, A.

A. C. Lin, H. M. Hsieh, L. C. Tsai, A. Linacre, and J. C. Lee, “Forensic applications of infrared imaging for the detection and recording of latent evidence,” J. Forensic Sci. 52, 1148–1150 (2007).
[CrossRef]

McCutcheon, J. N.

H. Brooke, M. R. Baranowski, J. N. McCutcheon, S. L. Morgan, and M. L. Myrick, “Multimode imaging in the thermal infrared for chemical contrast enhancement. Part 3: visualizing blood on fabrics,” Anal. Chem. 82, 8427–8431 (2010).
[CrossRef]

H. Brooke, M. R. Baranowski, J. N. McCutcheon, S. L. Morgan, and M. L. Myrick, “Multimode imaging in the thermal infrared for chemical contrast enhancement. Part 2: simulation driven design,” Anal. Chem. 82, 8421–8426 (2010).
[CrossRef]

H. Brooke, M. R. Baranowski, J. N. McCutcheon, S. L. Morgan, and M. L. Myrick, “Multimode imaging in the thermal infrared for chemical contrast enhancement. Part 1: methodology,” Anal. Chem. 82, 8412–8420 (2010).
[CrossRef]

Medina, J. M.

J. M. Medina, L. M. Pereira, H. T. Correia, and S. Nascimento, “Hyperspectral optical imaging of human iris in vivo: characteristics of reflectance spectra,” J. Biomed. Opt. 16, 076001 (2011).
[CrossRef]

Meeuwsen-Van der Roest, W. P.

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-Van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633–1638 (1991).

Mies, C.

D. R. Busch, W. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37, 1840–1849 (2010).
[CrossRef]

Minakata, K.

T. Asakura, K. Minakata, K. Adachi, M. O. Russell, and E. Schwartz, “Denatured hemo-globin in sickle erythrocytes,” J. Clin. Invest. 59, 633–640 (1977).
[CrossRef]

Miskelly, G. M.

G. M. Miskelly and J. H. Wagner, “Using spectral information in forensic imaging,” Forensic Sci. Int. 155, 112–118 (2005).
[CrossRef]

Miyatake, S.

Morgan, S. L.

H. Brooke, M. R. Baranowski, J. N. McCutcheon, S. L. Morgan, and M. L. Myrick, “Multimode imaging in the thermal infrared for chemical contrast enhancement. Part 1: methodology,” Anal. Chem. 82, 8412–8420 (2010).
[CrossRef]

H. Brooke, M. R. Baranowski, J. N. McCutcheon, S. L. Morgan, and M. L. Myrick, “Multimode imaging in the thermal infrared for chemical contrast enhancement. Part 2: simulation driven design,” Anal. Chem. 82, 8421–8426 (2010).
[CrossRef]

H. Brooke, M. R. Baranowski, J. N. McCutcheon, S. L. Morgan, and M. L. Myrick, “Multimode imaging in the thermal infrared for chemical contrast enhancement. Part 3: visualizing blood on fabrics,” Anal. Chem. 82, 8427–8431 (2010).
[CrossRef]

Myrick, M. L.

H. Brooke, M. R. Baranowski, J. N. McCutcheon, S. L. Morgan, and M. L. Myrick, “Multimode imaging in the thermal infrared for chemical contrast enhancement. Part 3: visualizing blood on fabrics,” Anal. Chem. 82, 8427–8431 (2010).
[CrossRef]

H. Brooke, M. R. Baranowski, J. N. McCutcheon, S. L. Morgan, and M. L. Myrick, “Multimode imaging in the thermal infrared for chemical contrast enhancement. Part 2: simulation driven design,” Anal. Chem. 82, 8421–8426 (2010).
[CrossRef]

H. Brooke, M. R. Baranowski, J. N. McCutcheon, S. L. Morgan, and M. L. Myrick, “Multimode imaging in the thermal infrared for chemical contrast enhancement. Part 1: methodology,” Anal. Chem. 82, 8412–8420 (2010).
[CrossRef]

Nadort, A.

R. H. Bremmer, A. Nadort, T. G. van Leeuwen, M. J. van Gemert, and M. C. Aalders, “Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy,” Forensic Sci. Int. 206, 166–171(2011).
[CrossRef]

Nascimento, S.

J. M. Medina, L. M. Pereira, H. T. Correia, and S. Nascimento, “Hyperspectral optical imaging of human iris in vivo: characteristics of reflectance spectra,” J. Biomed. Opt. 16, 076001 (2011).
[CrossRef]

Nukeaw, J.

Y. Intaravanne, S. Sumriddetchkajorn, and J. Nukeaw, “Cell phone-based two-dimensional spectral analysis for banana ripeness estimation,” Sens. Actuators B 168, 390–394 (2012).
[CrossRef]

Pascual, A. C.

A. C. Ponce and A. C. Pascual, “Critical revision of presumptive tests bloodstains,” Forensic Sci. Commun. 1, 1–15 (1999).

Pereira, L. M.

J. M. Medina, L. M. Pereira, H. T. Correia, and S. Nascimento, “Hyperspectral optical imaging of human iris in vivo: characteristics of reflectance spectra,” J. Biomed. Opt. 16, 076001 (2011).
[CrossRef]

Perkins, M.

M. Perkins, “The application of infrared photography in bloodstain pattern documentation of clothing,” J. Forensic Sci. 55, 1–9 (2005).

Pirard, E.

E. Pirard, “Multispectral imaging of ore minerals in optical microscopy,” Mineral. Mag. 68, 323–333 (2004).
[CrossRef]

Ponce, A. C.

A. C. Ponce and A. C. Pascual, “Critical revision of presumptive tests bloodstains,” Forensic Sci. Commun. 1, 1–15 (1999).

Prahl, S. A.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Putt, M. E.

D. R. Busch, W. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37, 1840–1849 (2010).
[CrossRef]

Rajaram, N.

N. Rajaram, A. Gopal, X. J. Zhang, and J. W. Tunnell, “Experimental validation of the effects of microvasculature pigment packaging on in vivo diffuse reflectance spectroscopy,” Lasers Surg Med. 42, 680–688 (2010).
[CrossRef]

Rehse, S. J.

Rosen, M. A.

D. R. Busch, W. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37, 1840–1849 (2010).
[CrossRef]

Russell, M. O.

T. Asakura, K. Minakata, K. Adachi, M. O. Russell, and E. Schwartz, “Denatured hemo-globin in sickle erythrocytes,” J. Clin. Invest. 59, 633–640 (1977).
[CrossRef]

Schabbach, L. M.

L. M. Schabbach, F. Bondioli, and M. C. Fredel, “Colouring of opaque ceramic glaze with zircon pigments: formulation with simplified Kubelka–Munk model,” J. Eur. Ceram. Soc. 31, 659–664 (2011).
[CrossRef]

Schnall, M. D.

D. R. Busch, W. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37, 1840–1849 (2010).
[CrossRef]

Schwartz, E.

T. Asakura, K. Minakata, K. Adachi, M. O. Russell, and E. Schwartz, “Denatured hemo-globin in sickle erythrocytes,” J. Clin. Invest. 59, 633–640 (1977).
[CrossRef]

Shibusawa, S.

S. Shibusawa, “On-line real time soil sensor,” in Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (2003), pp. 1061–1066.

Shogenji, R.

Star, W. M.

M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef]

Sterenborg, H. J. C. M.

M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef]

Sumriddetchkajorn, S.

S. Janchaysang, S. Sumriddetchkajorn, and P. Buranasiri, “Tunable filter-based multispectral imaging for detection of blood stains on construction material substrates. Part 2. Realization of rapid blood stain detection,” Appl. Opt. 51, xx–xx (2012).

Y. Intaravanne, S. Sumriddetchkajorn, and J. Nukeaw, “Cell phone-based two-dimensional spectral analysis for banana ripeness estimation,” Sens. Actuators B 168, 390–394 (2012).
[CrossRef]

K. Suwansukho, S. Sumriddetchkajorn, and P. Buranasiri, “Demonstration of a single-wavelength spectral-imaging-based Thai jasmine rice identification,” Appl. Opt. 50, 4024–4030 (2011).
[CrossRef]

S. Sumriddetchkajorn, K. Suwansukho, and P. Buranasiri, “Two-wavelength spectral image-based Thai rice breed identification,” Proc. SPIE 7715, 77150I (2010).
[CrossRef]

S. Sumriddetchkajorn and Y. Intaravanne, “Data-nonintrusive photonics-based credit card verifier with a low noise rejection rate,” Appl. Opt. 49, 764–771 (2010).
[CrossRef]

S. Sumriddetchkajorn and Y. Intaravanne, “A hyperspectral imaging-based credit card verifier structure with adaptive learning,” Appl. Opt. 47, 6594–6600 (2008).
[CrossRef]

Suwansukho, K.

K. Suwansukho, S. Sumriddetchkajorn, and P. Buranasiri, “Demonstration of a single-wavelength spectral-imaging-based Thai jasmine rice identification,” Appl. Opt. 50, 4024–4030 (2011).
[CrossRef]

S. Sumriddetchkajorn, K. Suwansukho, and P. Buranasiri, “Two-wavelength spectral image-based Thai rice breed identification,” Proc. SPIE 7715, 77150I (2010).
[CrossRef]

Swicklik, M.

R. Berns, J. Kreuger, and M. Swicklik, “Multiple pigment selection for in painting using visible reflectance spectrophotometry,” Stud. Conserv. 47, 46 (2002).
[CrossRef]

Tanida, J.

Tariq, A.

Tchou, J.

D. R. Busch, W. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37, 1840–1849 (2010).
[CrossRef]

Tsai, L. C.

A. C. Lin, H. M. Hsieh, L. C. Tsai, A. Linacre, and J. C. Lee, “Forensic applications of infrared imaging for the detection and recording of latent evidence,” J. Forensic Sci. 52, 1148–1150 (2007).
[CrossRef]

Tunnell, J. W.

N. Rajaram, A. Gopal, X. J. Zhang, and J. W. Tunnell, “Experimental validation of the effects of microvasculature pigment packaging on in vivo diffuse reflectance spectroscopy,” Lasers Surg Med. 42, 680–688 (2010).
[CrossRef]

van Gemert, M. J.

R. H. Bremmer, A. Nadort, T. G. van Leeuwen, M. J. van Gemert, and M. C. Aalders, “Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy,” Forensic Sci. Int. 206, 166–171(2011).
[CrossRef]

van Gemert, M. J. C.

M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef]

van Leeuwen, T. G.

R. H. Bremmer, A. Nadort, T. G. van Leeuwen, M. J. van Gemert, and M. C. Aalders, “Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy,” Forensic Sci. Int. 206, 166–171(2011).
[CrossRef]

van Oorschot, R. A.

N. Vandenberg and R. A. van Oorschot, “The use of Polilight in the detection of seminal fluid, saliva, and bloodstains and comparison with conventional chemical-based screening tests,” J. Forensic Sci. 51, 361–370 (2006).
[CrossRef]

Vandenberg, N.

N. Vandenberg and R. A. van Oorschot, “The use of Polilight in the detection of seminal fluid, saliva, and bloodstains and comparison with conventional chemical-based screening tests,” J. Forensic Sci. 51, 361–370 (2006).
[CrossRef]

Wagner, J. H.

G. M. Miskelly and J. H. Wagner, “Using spectral information in forensic imaging,” Forensic Sci. Int. 155, 112–118 (2005).
[CrossRef]

J. H. Wagner, “Applications of UV-visible spectral imaging in forensic science,” Ph.D. dissertation (University Of Auckland, 2008).

Welch, A. J.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Yamada, K.

Yang, L.

L. Yang, “Characterization of inks and ink application for ink-jet printing: model and simulation,” J. Opt. Soc Am. A 20, 1149–1154 (2003).
[CrossRef]

Yodh, A. G.

D. R. Busch, W. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37, 1840–1849 (2010).
[CrossRef]

Zhang, X. J.

N. Rajaram, A. Gopal, X. J. Zhang, and J. W. Tunnell, “Experimental validation of the effects of microvasculature pigment packaging on in vivo diffuse reflectance spectroscopy,” Lasers Surg Med. 42, 680–688 (2010).
[CrossRef]

Zijlstra, W. G.

W. G. Zijlstra and A. Buursma, “Spectrophotometry of hemoglobin: absorption spectra of bovine oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Comp. Biochem. Physiol. B 118, 743–749 (1997).
[CrossRef]

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-Van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633–1638 (1991).

Anal. Chem.

H. Brooke, M. R. Baranowski, J. N. McCutcheon, S. L. Morgan, and M. L. Myrick, “Multimode imaging in the thermal infrared for chemical contrast enhancement. Part 1: methodology,” Anal. Chem. 82, 8412–8420 (2010).
[CrossRef]

H. Brooke, M. R. Baranowski, J. N. McCutcheon, S. L. Morgan, and M. L. Myrick, “Multimode imaging in the thermal infrared for chemical contrast enhancement. Part 2: simulation driven design,” Anal. Chem. 82, 8421–8426 (2010).
[CrossRef]

H. Brooke, M. R. Baranowski, J. N. McCutcheon, S. L. Morgan, and M. L. Myrick, “Multimode imaging in the thermal infrared for chemical contrast enhancement. Part 3: visualizing blood on fabrics,” Anal. Chem. 82, 8427–8431 (2010).
[CrossRef]

Appl. Opt.

Clin. Chem.

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-Van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633–1638 (1991).

Comp. Biochem. Physiol. B

W. G. Zijlstra and A. Buursma, “Spectrophotometry of hemoglobin: absorption spectra of bovine oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Comp. Biochem. Physiol. B 118, 743–749 (1997).
[CrossRef]

Forensic Sci. Commun.

A. C. Ponce and A. C. Pascual, “Critical revision of presumptive tests bloodstains,” Forensic Sci. Commun. 1, 1–15 (1999).

Forensic Sci. Int.

G. M. Miskelly and J. H. Wagner, “Using spectral information in forensic imaging,” Forensic Sci. Int. 155, 112–118 (2005).
[CrossRef]

R. H. Bremmer, A. Nadort, T. G. van Leeuwen, M. J. van Gemert, and M. C. Aalders, “Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy,” Forensic Sci. Int. 206, 166–171(2011).
[CrossRef]

IEEE J. Quantum Electron.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

IEEE Sens. J.

M. Amini, “Novel design of an optical probe for detecting perfusion changes in Buccal tissue,” IEEE Sens. J. 12, 1861–1867 (2012).
[CrossRef]

IEEE Trans Biomed. Eng.

M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef]

Innov. Food Sci. Emerg. Technol.

M. M. Lana, M. Hogenkamp, and R. B. M. Koehorst, “Application of Kubelka–Munk analysis to the study of translucency in fresh-cut tomato,” Innov. Food Sci. Emerg. Technol. 7, 302–308 (2006).
[CrossRef]

J. Biomed. Opt.

J. M. Medina, L. M. Pereira, H. T. Correia, and S. Nascimento, “Hyperspectral optical imaging of human iris in vivo: characteristics of reflectance spectra,” J. Biomed. Opt. 16, 076001 (2011).
[CrossRef]

J. Clin. Invest.

T. Asakura, K. Minakata, K. Adachi, M. O. Russell, and E. Schwartz, “Denatured hemo-globin in sickle erythrocytes,” J. Clin. Invest. 59, 633–640 (1977).
[CrossRef]

J. Electron. Imaging

R. S. Berns, “Spectral modeling of a dye diffusion thermal transfer printer,” J. Electron. Imaging 2, 359–369(1993).
[CrossRef]

J. Eur. Ceram. Soc.

L. M. Schabbach, F. Bondioli, and M. C. Fredel, “Colouring of opaque ceramic glaze with zircon pigments: formulation with simplified Kubelka–Munk model,” J. Eur. Ceram. Soc. 31, 659–664 (2011).
[CrossRef]

J. Forensic Sci.

A. C. Lin, H. M. Hsieh, L. C. Tsai, A. Linacre, and J. C. Lee, “Forensic applications of infrared imaging for the detection and recording of latent evidence,” J. Forensic Sci. 52, 1148–1150 (2007).
[CrossRef]

M. Perkins, “The application of infrared photography in bloodstain pattern documentation of clothing,” J. Forensic Sci. 55, 1–9 (2005).

M. A. Cox, “A study of the sensitivity and specificity of four presumptive tests for blood,” J. Forensic Sci. 36, 1503–1511 (1991).

A. M. Gross, K. A. Harris, and G. L. Kaldun, “The effect of luminol on presumptive tests and DNA analysis using the polymerase chain reaction,” J. Forensic Sci. 44, 837–840 (1999).

N. Vandenberg and R. A. van Oorschot, “The use of Polilight in the detection of seminal fluid, saliva, and bloodstains and comparison with conventional chemical-based screening tests,” J. Forensic Sci. 51, 361–370 (2006).
[CrossRef]

J. Opt. Soc Am. A

L. Yang, “Characterization of inks and ink application for ink-jet printing: model and simulation,” J. Opt. Soc Am. A 20, 1149–1154 (2003).
[CrossRef]

J. Opt. Soc. Am.

Lasers Surg Med.

N. Rajaram, A. Gopal, X. J. Zhang, and J. W. Tunnell, “Experimental validation of the effects of microvasculature pigment packaging on in vivo diffuse reflectance spectroscopy,” Lasers Surg Med. 42, 680–688 (2010).
[CrossRef]

Malays. J. Forensic Sci.

W. C. Lee and B. E. Khoo, “Forensic light sources for detection of biological evidences in crime scene investigation: a review,” Malays. J. Forensic Sci. 1, 17–28 (2010).

Med. Phys.

D. R. Busch, W. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37, 1840–1849 (2010).
[CrossRef]

Mineral. Mag.

E. Pirard, “Multispectral imaging of ore minerals in optical microscopy,” Mineral. Mag. 68, 323–333 (2004).
[CrossRef]

Opt. Express

Proc. SPIE

S. Sumriddetchkajorn, K. Suwansukho, and P. Buranasiri, “Two-wavelength spectral image-based Thai rice breed identification,” Proc. SPIE 7715, 77150I (2010).
[CrossRef]

Sens. Actuators B

Y. Intaravanne, S. Sumriddetchkajorn, and J. Nukeaw, “Cell phone-based two-dimensional spectral analysis for banana ripeness estimation,” Sens. Actuators B 168, 390–394 (2012).
[CrossRef]

Stud. Conserv.

R. Berns, J. Kreuger, and M. Swicklik, “Multiple pigment selection for in painting using visible reflectance spectrophotometry,” Stud. Conserv. 47, 46 (2002).
[CrossRef]

Other

http://en.wikipedia.org/wiki/Sensitivity_and_specificity (March 2012).

S. Shibusawa, “On-line real time soil sensor,” in Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (2003), pp. 1061–1066.

J. H. Wagner, “Applications of UV-visible spectral imaging in forensic science,” Ph.D. dissertation (University Of Auckland, 2008).

http://www.chemimage.com/docs/product.../CI-productsheet-CONDOR.pdf , “Condor Wide-field hyperspectral imaging system,” ChemImage product sheet PSREV005 (2010).

https://www.chemimage.com/docs/application-notes/forensics/CI-appnote-Visualization-of-Bloodstains.pdf , “Hyperspectral imaging enables straightforward visualization of bloodstains,” ChemImage Application note, ANREV002 (2010).

http://www.chemimage.com/news/newsletter/forensic_focus/november2010.aspx , “Hypserspectral imaging: a high-contrast alternative to visualizing blood spatter and stains,” Forensic Focus E-Newsletter 11 (2010).

http://www.chemimage.com/products/instrumentation/examiner/ , “HSI Examiner 1000,” ChemImage product sheet PSREV001 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Our multispectral imaging setup used in this experiment. LCTF, liquid crystal tunable filter.

Fig. 2.
Fig. 2.

Proposed procedure in development of blood detection criteria. The section numbers in this figure correspond to the section numbers of this article.

Fig. 3.
Fig. 3.

Examples of our stain samples on a variety of substrate surfaces including (a) gypsum, (b) wood, (c) green tile, (d) white tile, (e) concrete, and (f) orange-painted concrete. Each substrate has different concentrations of blood and other stains deposited on them.

Fig. 4.
Fig. 4.

Recovered reflectance spectra of (a) blood and other stains on gypsum and wood substrates and (b) blood stains on different substrates. Bold lines are reflectance spectra of substrate while solid lines are those of stains.

Fig. 5.
Fig. 5.

Recovered KM absorbance spectra of (a) blood and other stains on gypsum and wood substrates [compare with Fig. 4(a)] and (b) blood stains on different substrates [compare with Fig. 4(b)].

Fig. 6.
Fig. 6.

Absorbance spectra of hemichrome (solid curve) and oxyhemoglobin (dotted curve) are in good agreement with our obtained KM absorbance spectra in Fig. 5.

Fig. 7.
Fig. 7.

Six examples of our established blood detection criteria (figure continued on next page). (a)–(c) are preliminary criteria, and (d)–(f) are more complex criteria with different order of polynomial coefficients on different curve segments versus KM absorbance values at selected wavelengths. Charts on the left side show data points from all stains, while those on the right side show only those from blood stains. Criterion boundaries are drawn with red straight line segments to cover the blood stain region.

Fig. 8.
Fig. 8.

Examples result images for blood stain detection on (a) gypsum, (b) wood, (c) green tile, (d) white tile, (e) concrete, and (f) orange-painted concrete. Spatial points identified as blood are masked with 2 × 2 -pixel pseudo-red color on the original 530 nm spectral images.

Fig. 9.
Fig. 9.

System performance of our blood stain detection described in (a) true positive rate (sensitivity) and (b) and true negative rate (specificity).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R T ( λ k ) = [ ( T ( λ k ) - D ) / τ T ( λ k ) ] [ ( W ( λ k ) - D ) / τ W ( λ k ) ] · R W ( λ k ) ,
R ST ( λ ) R S ( λ ) = 1 - K ( λ ) S ( λ ) ( 1 + 2 K ( λ ) S ( λ ) + 1 ) ,
S ( λ ) = S 0 ( λ λ 0 ) - 0.4 .

Metrics