Abstract

Pt films with mass thicknesses ranging from 0.6 to 3.9 nm were evaporated onto quartz-glass substrates under vacuum conditions (p104Pa) with evaporation rate 0.01 to 0.2mm/s. The transmittance spectra were measured in the wavelength range from 220 to 2500 nm. The microstructures were examined by a transmission electron microscope. The statistical distributions of island areas and the histograms of the fixed ratios of the semiaxes for ellipsoids were determined. It has been found that the transmittance spectra for the films with coverage coefficient 0.2p0.6 exhibit minima that shift with an increase in the coverage coefficient. To interpret the transmittance spectra of the films, the Maxwell-Garnett theory, which takes into account the island shapes, was used. Measured and calculated spectra were compared. For low coverage coefficients there is a quantitative agreement between the experimental and the calculated results.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 of Springer Series in Materials Science (Springer, 1995).
  2. V. M. Shalaev, ed., Optical Properties of Nanostructured Random Media (Springer-Verlag, 2002).
  3. L. Ward, ed., The Optical Constants of Bulk Materials and Film (Institute of Physics, 1994).
  4. D. Bedeaux and J. Vlieger, “A statistical theory for the dielectric properties of thin island films—application and comparison with experimental results,” Thin Solid Films 102, 265–281 (1983).
    [CrossRef]
  5. P. Sheng, “Theory for the dielectric function of granular composite media,” Phys. Rev. Lett. 45, 60–63 (1980).
    [CrossRef]
  6. R. Doremus, “Optical absorption of island films of noble metals: wavelength of the plasma absorption band,” Thin Solid Films 326, 205–210 (1998).
    [CrossRef]
  7. E. Dobierzewska-Mozrzymas and P. Biegański, “Optical properties of discontinuous copper films,” Appl. Opt. 32, 2345–2350 (1993).
    [CrossRef]
  8. R. Ruppin, “Evaluation of extended Maxwell-Garnett theories,” Opt. Commun. 182, 273–279 (2000).
    [CrossRef]
  9. S. Berthier and J. Lafait, “Compared optical properties of noble and transition metal-dielectric granular films,” J. Physique 47, 249–257 (1986).
    [CrossRef]
  10. J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Phil. Trans. R. Soc. A 203, 385–420 (1904).
    [CrossRef]
  11. J. C. Maxwell Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions. II,” Phil. Trans. R. Soc. A 205, 237–288 (1906).
    [CrossRef]
  12. S. Norrman, T. Andersson, C. G. Granqvist, and O. Hunderi, “Optical properties of discontinuous gold films,” Phys. Rev. B 18, 674–695 (1978).
    [CrossRef]
  13. R. R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, “Optical properties of granular silver and gold films,” Phys. Rev. B 8, 3689–3701 (1973).
    [CrossRef]
  14. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 416, 636–664 (1935).
    [CrossRef]
  15. O. Hunderi, “Influence of grain boundaries and lattice defects on the optical properties of some metals,” Phys. Rev. B 7, 3419–3429 (1973).
    [CrossRef]
  16. E. Dobierzewska-Mozrzymas, J. Peisert, and P. Biegański, “Optical properties of gold and aluminum island films with regard to grain size and interisland spacing distributions,” Appl. Opt. 27, 181–185 (1988).
    [CrossRef]
  17. L. D. Landau and E. M. Lifschitz, Electromdynamique des milieux continues (Mir, 1969), p. 35.
  18. C. G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513–3534 (1977).
    [CrossRef]
  19. J. P. Bouchaud, “More Lévy distributions in physics,” in Proceedings of the International Workshop on Lévy Flights and Related Topics in Physics, M. F. Shlesinger, G. M. Zaslavsky, and U. Frisch, eds., Vol. 450 of Lecture Notes in Physics (Springer, 1995), pp. 237–250.
  20. E. Dobierzewska-Mozrzymas, P. Biegański, E. Pieciul, and J. Wójcik, “Statistical description of systems on the basis of the Mandelbrot law: discontinuous metal films on dielectric substrates,” J. Phys: Condens. Matter 11, 5561–5568 (1999).
    [CrossRef]
  21. E. Dobierzewska-Mozrzymas, G. Szymczak, P. Biegański, and E. Pieciul, “Lévy’s distributions for statistical description of fractal structures; discontinuous metal films on dielectric substrates,” Physica B 337, 79–86 (2003).
    [CrossRef]
  22. S. H. Kim, K. C. Kim, Y. S. Kim, and H. J. Kim, “Abnormal optical changes with the formation of Pt nanoclusters,” Curr. App. Phys. 6, 1036–1039 (2006).
    [CrossRef]
  23. E. Dobierzewska-Mozrzymas, P. Biegański, and E. Pieciul, “The optical properties of Pt discontinuous films,” Proc. SPIE 7141, 71411U (2008).
    [CrossRef]
  24. O. S. Heavens, Optical Properties of Thin Solid Films (Butterworth, 1955), p. 77.
  25. C. Bertoni, D. E. Gallardo, and S. Dunn, “Electroforming processes for platinum nanoisland thin films,” Thin Solid Films 495, 29–35 (2006).
    [CrossRef]
  26. F. J. W-M. Leong, M. Brady, and J. O. McGee, “Correction of uneven illumination (vignetting) in digital microscopy images,” J. Clin. Pathol. 56, 619–621 (2003).
    [CrossRef]
  27. C. A. Neugebauer, “Condensation, nucleation and growth of thin films,” in Handbook of Thin Film Technology, L. I. Maissel and R. Glang, eds. (McGraw-Hill, 1983), Chap. 8.
  28. M. Kawamura, T. Mashima, Y. Abe, and K. Sasaki, “Formation of ultra-thin continuous Pt and Al films by RF sputtering,” Thin Solid Films 377–388, 537–542 (2000).
    [CrossRef]
  29. E. Dobierzewska-Mozrzymas, E. Pieciul, P. Biegański, and G. Szymczak, “Conduction mechanisms in discontinuous Pt films,” Cryst. Res. Technol. 36, 1137–1144 (2001).
    [CrossRef]
  30. A. I. Rahachou and I. V. Zozulenko, “Light propagation in nanorod arrays,” J. Opt. A 9, 265–270 (2007).
    [CrossRef]
  31. M. Meier, and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Opt. Lett. 8, 581–583 (1983).
    [CrossRef]
  32. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Comm. 220, 137–141 (2003).
    [CrossRef]
  33. S. G. Moiseev, “Active Maxwell-Garnett composite with the unit refractive index,” Physica B 405, 3042 (2010).
    [CrossRef]
  34. Y. Yagil, P. Gadenne, Ch. Yulien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 μm,” Phys. Rev. B 46, 2503–2511 (1992).
    [CrossRef]

2010 (1)

S. G. Moiseev, “Active Maxwell-Garnett composite with the unit refractive index,” Physica B 405, 3042 (2010).
[CrossRef]

2008 (1)

E. Dobierzewska-Mozrzymas, P. Biegański, and E. Pieciul, “The optical properties of Pt discontinuous films,” Proc. SPIE 7141, 71411U (2008).
[CrossRef]

2007 (1)

A. I. Rahachou and I. V. Zozulenko, “Light propagation in nanorod arrays,” J. Opt. A 9, 265–270 (2007).
[CrossRef]

2006 (2)

S. H. Kim, K. C. Kim, Y. S. Kim, and H. J. Kim, “Abnormal optical changes with the formation of Pt nanoclusters,” Curr. App. Phys. 6, 1036–1039 (2006).
[CrossRef]

C. Bertoni, D. E. Gallardo, and S. Dunn, “Electroforming processes for platinum nanoisland thin films,” Thin Solid Films 495, 29–35 (2006).
[CrossRef]

2003 (3)

F. J. W-M. Leong, M. Brady, and J. O. McGee, “Correction of uneven illumination (vignetting) in digital microscopy images,” J. Clin. Pathol. 56, 619–621 (2003).
[CrossRef]

E. Dobierzewska-Mozrzymas, G. Szymczak, P. Biegański, and E. Pieciul, “Lévy’s distributions for statistical description of fractal structures; discontinuous metal films on dielectric substrates,” Physica B 337, 79–86 (2003).
[CrossRef]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Comm. 220, 137–141 (2003).
[CrossRef]

2001 (1)

E. Dobierzewska-Mozrzymas, E. Pieciul, P. Biegański, and G. Szymczak, “Conduction mechanisms in discontinuous Pt films,” Cryst. Res. Technol. 36, 1137–1144 (2001).
[CrossRef]

2000 (2)

M. Kawamura, T. Mashima, Y. Abe, and K. Sasaki, “Formation of ultra-thin continuous Pt and Al films by RF sputtering,” Thin Solid Films 377–388, 537–542 (2000).
[CrossRef]

R. Ruppin, “Evaluation of extended Maxwell-Garnett theories,” Opt. Commun. 182, 273–279 (2000).
[CrossRef]

1999 (1)

E. Dobierzewska-Mozrzymas, P. Biegański, E. Pieciul, and J. Wójcik, “Statistical description of systems on the basis of the Mandelbrot law: discontinuous metal films on dielectric substrates,” J. Phys: Condens. Matter 11, 5561–5568 (1999).
[CrossRef]

1998 (1)

R. Doremus, “Optical absorption of island films of noble metals: wavelength of the plasma absorption band,” Thin Solid Films 326, 205–210 (1998).
[CrossRef]

1993 (1)

1992 (1)

Y. Yagil, P. Gadenne, Ch. Yulien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 μm,” Phys. Rev. B 46, 2503–2511 (1992).
[CrossRef]

1988 (1)

1986 (1)

S. Berthier and J. Lafait, “Compared optical properties of noble and transition metal-dielectric granular films,” J. Physique 47, 249–257 (1986).
[CrossRef]

1983 (2)

D. Bedeaux and J. Vlieger, “A statistical theory for the dielectric properties of thin island films—application and comparison with experimental results,” Thin Solid Films 102, 265–281 (1983).
[CrossRef]

M. Meier, and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Opt. Lett. 8, 581–583 (1983).
[CrossRef]

1980 (1)

P. Sheng, “Theory for the dielectric function of granular composite media,” Phys. Rev. Lett. 45, 60–63 (1980).
[CrossRef]

1978 (1)

S. Norrman, T. Andersson, C. G. Granqvist, and O. Hunderi, “Optical properties of discontinuous gold films,” Phys. Rev. B 18, 674–695 (1978).
[CrossRef]

1977 (1)

C. G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513–3534 (1977).
[CrossRef]

1973 (2)

O. Hunderi, “Influence of grain boundaries and lattice defects on the optical properties of some metals,” Phys. Rev. B 7, 3419–3429 (1973).
[CrossRef]

R. R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, “Optical properties of granular silver and gold films,” Phys. Rev. B 8, 3689–3701 (1973).
[CrossRef]

1935 (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 416, 636–664 (1935).
[CrossRef]

1906 (1)

J. C. Maxwell Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions. II,” Phil. Trans. R. Soc. A 205, 237–288 (1906).
[CrossRef]

1904 (1)

J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Phil. Trans. R. Soc. A 203, 385–420 (1904).
[CrossRef]

Abe, Y.

M. Kawamura, T. Mashima, Y. Abe, and K. Sasaki, “Formation of ultra-thin continuous Pt and Al films by RF sputtering,” Thin Solid Films 377–388, 537–542 (2000).
[CrossRef]

Abeles, B.

R. R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, “Optical properties of granular silver and gold films,” Phys. Rev. B 8, 3689–3701 (1973).
[CrossRef]

Andersson, T.

S. Norrman, T. Andersson, C. G. Granqvist, and O. Hunderi, “Optical properties of discontinuous gold films,” Phys. Rev. B 18, 674–695 (1978).
[CrossRef]

Aussenegg, F. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Comm. 220, 137–141 (2003).
[CrossRef]

Bedeaux, D.

D. Bedeaux and J. Vlieger, “A statistical theory for the dielectric properties of thin island films—application and comparison with experimental results,” Thin Solid Films 102, 265–281 (1983).
[CrossRef]

Berthier, S.

S. Berthier and J. Lafait, “Compared optical properties of noble and transition metal-dielectric granular films,” J. Physique 47, 249–257 (1986).
[CrossRef]

Bertoni, C.

C. Bertoni, D. E. Gallardo, and S. Dunn, “Electroforming processes for platinum nanoisland thin films,” Thin Solid Films 495, 29–35 (2006).
[CrossRef]

Bieganski, P.

E. Dobierzewska-Mozrzymas, P. Biegański, and E. Pieciul, “The optical properties of Pt discontinuous films,” Proc. SPIE 7141, 71411U (2008).
[CrossRef]

E. Dobierzewska-Mozrzymas, G. Szymczak, P. Biegański, and E. Pieciul, “Lévy’s distributions for statistical description of fractal structures; discontinuous metal films on dielectric substrates,” Physica B 337, 79–86 (2003).
[CrossRef]

E. Dobierzewska-Mozrzymas, E. Pieciul, P. Biegański, and G. Szymczak, “Conduction mechanisms in discontinuous Pt films,” Cryst. Res. Technol. 36, 1137–1144 (2001).
[CrossRef]

E. Dobierzewska-Mozrzymas, P. Biegański, E. Pieciul, and J. Wójcik, “Statistical description of systems on the basis of the Mandelbrot law: discontinuous metal films on dielectric substrates,” J. Phys: Condens. Matter 11, 5561–5568 (1999).
[CrossRef]

E. Dobierzewska-Mozrzymas and P. Biegański, “Optical properties of discontinuous copper films,” Appl. Opt. 32, 2345–2350 (1993).
[CrossRef]

E. Dobierzewska-Mozrzymas, J. Peisert, and P. Biegański, “Optical properties of gold and aluminum island films with regard to grain size and interisland spacing distributions,” Appl. Opt. 27, 181–185 (1988).
[CrossRef]

Bouchaud, J. P.

J. P. Bouchaud, “More Lévy distributions in physics,” in Proceedings of the International Workshop on Lévy Flights and Related Topics in Physics, M. F. Shlesinger, G. M. Zaslavsky, and U. Frisch, eds., Vol. 450 of Lecture Notes in Physics (Springer, 1995), pp. 237–250.

Brady, M.

F. J. W-M. Leong, M. Brady, and J. O. McGee, “Correction of uneven illumination (vignetting) in digital microscopy images,” J. Clin. Pathol. 56, 619–621 (2003).
[CrossRef]

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 416, 636–664 (1935).
[CrossRef]

Cody, G. D.

R. R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, “Optical properties of granular silver and gold films,” Phys. Rev. B 8, 3689–3701 (1973).
[CrossRef]

Cohen, R. R. W.

R. R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, “Optical properties of granular silver and gold films,” Phys. Rev. B 8, 3689–3701 (1973).
[CrossRef]

Coutts, M. D.

R. R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, “Optical properties of granular silver and gold films,” Phys. Rev. B 8, 3689–3701 (1973).
[CrossRef]

Deutscher, G.

Y. Yagil, P. Gadenne, Ch. Yulien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 μm,” Phys. Rev. B 46, 2503–2511 (1992).
[CrossRef]

Dobierzewska-Mozrzymas, E.

E. Dobierzewska-Mozrzymas, P. Biegański, and E. Pieciul, “The optical properties of Pt discontinuous films,” Proc. SPIE 7141, 71411U (2008).
[CrossRef]

E. Dobierzewska-Mozrzymas, G. Szymczak, P. Biegański, and E. Pieciul, “Lévy’s distributions for statistical description of fractal structures; discontinuous metal films on dielectric substrates,” Physica B 337, 79–86 (2003).
[CrossRef]

E. Dobierzewska-Mozrzymas, E. Pieciul, P. Biegański, and G. Szymczak, “Conduction mechanisms in discontinuous Pt films,” Cryst. Res. Technol. 36, 1137–1144 (2001).
[CrossRef]

E. Dobierzewska-Mozrzymas, P. Biegański, E. Pieciul, and J. Wójcik, “Statistical description of systems on the basis of the Mandelbrot law: discontinuous metal films on dielectric substrates,” J. Phys: Condens. Matter 11, 5561–5568 (1999).
[CrossRef]

E. Dobierzewska-Mozrzymas and P. Biegański, “Optical properties of discontinuous copper films,” Appl. Opt. 32, 2345–2350 (1993).
[CrossRef]

E. Dobierzewska-Mozrzymas, J. Peisert, and P. Biegański, “Optical properties of gold and aluminum island films with regard to grain size and interisland spacing distributions,” Appl. Opt. 27, 181–185 (1988).
[CrossRef]

Doremus, R.

R. Doremus, “Optical absorption of island films of noble metals: wavelength of the plasma absorption band,” Thin Solid Films 326, 205–210 (1998).
[CrossRef]

Dunn, S.

C. Bertoni, D. E. Gallardo, and S. Dunn, “Electroforming processes for platinum nanoisland thin films,” Thin Solid Films 495, 29–35 (2006).
[CrossRef]

Gadenne, P.

Y. Yagil, P. Gadenne, Ch. Yulien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 μm,” Phys. Rev. B 46, 2503–2511 (1992).
[CrossRef]

Gallardo, D. E.

C. Bertoni, D. E. Gallardo, and S. Dunn, “Electroforming processes for platinum nanoisland thin films,” Thin Solid Films 495, 29–35 (2006).
[CrossRef]

Granqvist, C. G.

S. Norrman, T. Andersson, C. G. Granqvist, and O. Hunderi, “Optical properties of discontinuous gold films,” Phys. Rev. B 18, 674–695 (1978).
[CrossRef]

C. G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513–3534 (1977).
[CrossRef]

Heavens, O. S.

O. S. Heavens, Optical Properties of Thin Solid Films (Butterworth, 1955), p. 77.

Hohenau, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Comm. 220, 137–141 (2003).
[CrossRef]

Hunderi, O.

S. Norrman, T. Andersson, C. G. Granqvist, and O. Hunderi, “Optical properties of discontinuous gold films,” Phys. Rev. B 18, 674–695 (1978).
[CrossRef]

C. G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513–3534 (1977).
[CrossRef]

O. Hunderi, “Influence of grain boundaries and lattice defects on the optical properties of some metals,” Phys. Rev. B 7, 3419–3429 (1973).
[CrossRef]

Kawamura, M.

M. Kawamura, T. Mashima, Y. Abe, and K. Sasaki, “Formation of ultra-thin continuous Pt and Al films by RF sputtering,” Thin Solid Films 377–388, 537–542 (2000).
[CrossRef]

Kim, H. J.

S. H. Kim, K. C. Kim, Y. S. Kim, and H. J. Kim, “Abnormal optical changes with the formation of Pt nanoclusters,” Curr. App. Phys. 6, 1036–1039 (2006).
[CrossRef]

Kim, K. C.

S. H. Kim, K. C. Kim, Y. S. Kim, and H. J. Kim, “Abnormal optical changes with the formation of Pt nanoclusters,” Curr. App. Phys. 6, 1036–1039 (2006).
[CrossRef]

Kim, S. H.

S. H. Kim, K. C. Kim, Y. S. Kim, and H. J. Kim, “Abnormal optical changes with the formation of Pt nanoclusters,” Curr. App. Phys. 6, 1036–1039 (2006).
[CrossRef]

Kim, Y. S.

S. H. Kim, K. C. Kim, Y. S. Kim, and H. J. Kim, “Abnormal optical changes with the formation of Pt nanoclusters,” Curr. App. Phys. 6, 1036–1039 (2006).
[CrossRef]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 of Springer Series in Materials Science (Springer, 1995).

Krenn, J. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Comm. 220, 137–141 (2003).
[CrossRef]

Lafait, J.

S. Berthier and J. Lafait, “Compared optical properties of noble and transition metal-dielectric granular films,” J. Physique 47, 249–257 (1986).
[CrossRef]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Comm. 220, 137–141 (2003).
[CrossRef]

Landau, L. D.

L. D. Landau and E. M. Lifschitz, Electromdynamique des milieux continues (Mir, 1969), p. 35.

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Comm. 220, 137–141 (2003).
[CrossRef]

Leong, F. J. W-M.

F. J. W-M. Leong, M. Brady, and J. O. McGee, “Correction of uneven illumination (vignetting) in digital microscopy images,” J. Clin. Pathol. 56, 619–621 (2003).
[CrossRef]

Lifschitz, E. M.

L. D. Landau and E. M. Lifschitz, Electromdynamique des milieux continues (Mir, 1969), p. 35.

Mashima, T.

M. Kawamura, T. Mashima, Y. Abe, and K. Sasaki, “Formation of ultra-thin continuous Pt and Al films by RF sputtering,” Thin Solid Films 377–388, 537–542 (2000).
[CrossRef]

Maxwell Garnett, J. C.

J. C. Maxwell Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions. II,” Phil. Trans. R. Soc. A 205, 237–288 (1906).
[CrossRef]

J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Phil. Trans. R. Soc. A 203, 385–420 (1904).
[CrossRef]

McGee, J. O.

F. J. W-M. Leong, M. Brady, and J. O. McGee, “Correction of uneven illumination (vignetting) in digital microscopy images,” J. Clin. Pathol. 56, 619–621 (2003).
[CrossRef]

Meier, M.

Moiseev, S. G.

S. G. Moiseev, “Active Maxwell-Garnett composite with the unit refractive index,” Physica B 405, 3042 (2010).
[CrossRef]

Neugebauer, C. A.

C. A. Neugebauer, “Condensation, nucleation and growth of thin films,” in Handbook of Thin Film Technology, L. I. Maissel and R. Glang, eds. (McGraw-Hill, 1983), Chap. 8.

Norrman, S.

S. Norrman, T. Andersson, C. G. Granqvist, and O. Hunderi, “Optical properties of discontinuous gold films,” Phys. Rev. B 18, 674–695 (1978).
[CrossRef]

Peisert, J.

Pieciul, E.

E. Dobierzewska-Mozrzymas, P. Biegański, and E. Pieciul, “The optical properties of Pt discontinuous films,” Proc. SPIE 7141, 71411U (2008).
[CrossRef]

E. Dobierzewska-Mozrzymas, G. Szymczak, P. Biegański, and E. Pieciul, “Lévy’s distributions for statistical description of fractal structures; discontinuous metal films on dielectric substrates,” Physica B 337, 79–86 (2003).
[CrossRef]

E. Dobierzewska-Mozrzymas, E. Pieciul, P. Biegański, and G. Szymczak, “Conduction mechanisms in discontinuous Pt films,” Cryst. Res. Technol. 36, 1137–1144 (2001).
[CrossRef]

E. Dobierzewska-Mozrzymas, P. Biegański, E. Pieciul, and J. Wójcik, “Statistical description of systems on the basis of the Mandelbrot law: discontinuous metal films on dielectric substrates,” J. Phys: Condens. Matter 11, 5561–5568 (1999).
[CrossRef]

Rahachou, A. I.

A. I. Rahachou and I. V. Zozulenko, “Light propagation in nanorod arrays,” J. Opt. A 9, 265–270 (2007).
[CrossRef]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Comm. 220, 137–141 (2003).
[CrossRef]

Ruppin, R.

R. Ruppin, “Evaluation of extended Maxwell-Garnett theories,” Opt. Commun. 182, 273–279 (2000).
[CrossRef]

Sasaki, K.

M. Kawamura, T. Mashima, Y. Abe, and K. Sasaki, “Formation of ultra-thin continuous Pt and Al films by RF sputtering,” Thin Solid Films 377–388, 537–542 (2000).
[CrossRef]

Sheng, P.

P. Sheng, “Theory for the dielectric function of granular composite media,” Phys. Rev. Lett. 45, 60–63 (1980).
[CrossRef]

Szymczak, G.

E. Dobierzewska-Mozrzymas, G. Szymczak, P. Biegański, and E. Pieciul, “Lévy’s distributions for statistical description of fractal structures; discontinuous metal films on dielectric substrates,” Physica B 337, 79–86 (2003).
[CrossRef]

E. Dobierzewska-Mozrzymas, E. Pieciul, P. Biegański, and G. Szymczak, “Conduction mechanisms in discontinuous Pt films,” Cryst. Res. Technol. 36, 1137–1144 (2001).
[CrossRef]

Vlieger, J.

D. Bedeaux and J. Vlieger, “A statistical theory for the dielectric properties of thin island films—application and comparison with experimental results,” Thin Solid Films 102, 265–281 (1983).
[CrossRef]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 of Springer Series in Materials Science (Springer, 1995).

Wójcik, J.

E. Dobierzewska-Mozrzymas, P. Biegański, E. Pieciul, and J. Wójcik, “Statistical description of systems on the basis of the Mandelbrot law: discontinuous metal films on dielectric substrates,” J. Phys: Condens. Matter 11, 5561–5568 (1999).
[CrossRef]

Wokaun, A.

Yagil, Y.

Y. Yagil, P. Gadenne, Ch. Yulien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 μm,” Phys. Rev. B 46, 2503–2511 (1992).
[CrossRef]

Yulien, Ch.

Y. Yagil, P. Gadenne, Ch. Yulien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 μm,” Phys. Rev. B 46, 2503–2511 (1992).
[CrossRef]

Zozulenko, I. V.

A. I. Rahachou and I. V. Zozulenko, “Light propagation in nanorod arrays,” J. Opt. A 9, 265–270 (2007).
[CrossRef]

Ann. Phys. (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 416, 636–664 (1935).
[CrossRef]

Appl. Opt. (2)

Cryst. Res. Technol. (1)

E. Dobierzewska-Mozrzymas, E. Pieciul, P. Biegański, and G. Szymczak, “Conduction mechanisms in discontinuous Pt films,” Cryst. Res. Technol. 36, 1137–1144 (2001).
[CrossRef]

Curr. App. Phys. (1)

S. H. Kim, K. C. Kim, Y. S. Kim, and H. J. Kim, “Abnormal optical changes with the formation of Pt nanoclusters,” Curr. App. Phys. 6, 1036–1039 (2006).
[CrossRef]

J. Clin. Pathol. (1)

F. J. W-M. Leong, M. Brady, and J. O. McGee, “Correction of uneven illumination (vignetting) in digital microscopy images,” J. Clin. Pathol. 56, 619–621 (2003).
[CrossRef]

J. Opt. A (1)

A. I. Rahachou and I. V. Zozulenko, “Light propagation in nanorod arrays,” J. Opt. A 9, 265–270 (2007).
[CrossRef]

J. Phys: Condens. Matter (1)

E. Dobierzewska-Mozrzymas, P. Biegański, E. Pieciul, and J. Wójcik, “Statistical description of systems on the basis of the Mandelbrot law: discontinuous metal films on dielectric substrates,” J. Phys: Condens. Matter 11, 5561–5568 (1999).
[CrossRef]

J. Physique (1)

S. Berthier and J. Lafait, “Compared optical properties of noble and transition metal-dielectric granular films,” J. Physique 47, 249–257 (1986).
[CrossRef]

Opt. Comm. (1)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Comm. 220, 137–141 (2003).
[CrossRef]

Opt. Commun. (1)

R. Ruppin, “Evaluation of extended Maxwell-Garnett theories,” Opt. Commun. 182, 273–279 (2000).
[CrossRef]

Opt. Lett. (1)

Phil. Trans. R. Soc. A (2)

J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Phil. Trans. R. Soc. A 203, 385–420 (1904).
[CrossRef]

J. C. Maxwell Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions. II,” Phil. Trans. R. Soc. A 205, 237–288 (1906).
[CrossRef]

Phys. Rev. B (5)

S. Norrman, T. Andersson, C. G. Granqvist, and O. Hunderi, “Optical properties of discontinuous gold films,” Phys. Rev. B 18, 674–695 (1978).
[CrossRef]

R. R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, “Optical properties of granular silver and gold films,” Phys. Rev. B 8, 3689–3701 (1973).
[CrossRef]

O. Hunderi, “Influence of grain boundaries and lattice defects on the optical properties of some metals,” Phys. Rev. B 7, 3419–3429 (1973).
[CrossRef]

C. G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513–3534 (1977).
[CrossRef]

Y. Yagil, P. Gadenne, Ch. Yulien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 μm,” Phys. Rev. B 46, 2503–2511 (1992).
[CrossRef]

Phys. Rev. Lett. (1)

P. Sheng, “Theory for the dielectric function of granular composite media,” Phys. Rev. Lett. 45, 60–63 (1980).
[CrossRef]

Physica B (2)

S. G. Moiseev, “Active Maxwell-Garnett composite with the unit refractive index,” Physica B 405, 3042 (2010).
[CrossRef]

E. Dobierzewska-Mozrzymas, G. Szymczak, P. Biegański, and E. Pieciul, “Lévy’s distributions for statistical description of fractal structures; discontinuous metal films on dielectric substrates,” Physica B 337, 79–86 (2003).
[CrossRef]

Proc. SPIE (1)

E. Dobierzewska-Mozrzymas, P. Biegański, and E. Pieciul, “The optical properties of Pt discontinuous films,” Proc. SPIE 7141, 71411U (2008).
[CrossRef]

Thin Solid Films (4)

C. Bertoni, D. E. Gallardo, and S. Dunn, “Electroforming processes for platinum nanoisland thin films,” Thin Solid Films 495, 29–35 (2006).
[CrossRef]

R. Doremus, “Optical absorption of island films of noble metals: wavelength of the plasma absorption band,” Thin Solid Films 326, 205–210 (1998).
[CrossRef]

M. Kawamura, T. Mashima, Y. Abe, and K. Sasaki, “Formation of ultra-thin continuous Pt and Al films by RF sputtering,” Thin Solid Films 377–388, 537–542 (2000).
[CrossRef]

D. Bedeaux and J. Vlieger, “A statistical theory for the dielectric properties of thin island films—application and comparison with experimental results,” Thin Solid Films 102, 265–281 (1983).
[CrossRef]

Other (7)

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 of Springer Series in Materials Science (Springer, 1995).

V. M. Shalaev, ed., Optical Properties of Nanostructured Random Media (Springer-Verlag, 2002).

L. Ward, ed., The Optical Constants of Bulk Materials and Film (Institute of Physics, 1994).

C. A. Neugebauer, “Condensation, nucleation and growth of thin films,” in Handbook of Thin Film Technology, L. I. Maissel and R. Glang, eds. (McGraw-Hill, 1983), Chap. 8.

O. S. Heavens, Optical Properties of Thin Solid Films (Butterworth, 1955), p. 77.

J. P. Bouchaud, “More Lévy distributions in physics,” in Proceedings of the International Workshop on Lévy Flights and Related Topics in Physics, M. F. Shlesinger, G. M. Zaslavsky, and U. Frisch, eds., Vol. 450 of Lecture Notes in Physics (Springer, 1995), pp. 237–250.

L. D. Landau and E. M. Lifschitz, Electromdynamique des milieux continues (Mir, 1969), p. 35.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Dependence of the inverse relaxation time versus the island radius for discontinuous Pt films.

Fig. 2.
Fig. 2.

Structure description of the Pt film with the coverage coefficient p=0.18: (a) microstructure; (b) ln(X) versus ln(k), slopeΔln(X)/Δln(k)=1/μ; (c) Gauss distribution of the island areas with mean value X¯=36.6 pixels and variance σ2=324.

Fig. 3.
Fig. 3.

Structure description of the Pt film with the coverage coefficient p=0.30: (a) microstructure; (b) ln(X) versus ln(k), slopeΔln(X)/Δln(k)=1/μ; (c) ln-normal distribution of the island areas with mean value ln(X)¯=5 and variance σ2=0.85.

Fig. 4.
Fig. 4.

Structure description of the Pt film with the coverage coefficient p=0.41: (a) microstructure; (b) ln(X) versus ln(k), slopeΔln(X)/Δln(k)=1/μ; (c) ln-normal distribution of the island areas with mean value ln(X)¯=5.9 and variance σ2=10.9.

Fig. 5.
Fig. 5.

Structure description of the Pt film with the coverage coefficient p=0.57: (a) microstructure; (b) ln(X) versus ln(k), slopeΔln(X)/Δln(k)=1/μ; (c) ln-normal distribution of the island areas with mean value ln(X)¯=9 and variance σ2=9.

Fig. 6.
Fig. 6.

Results for the Pt film with the coverage coefficient p=0.18: (a) histogram of semiaxes ratio determined from electron micrograph and used in the calculations; (b) measured and calculated transmittances.

Fig. 7.
Fig. 7.

Results for the Pt film with the coverage coefficient p=0.30: (a) histogram of semiaxes ratio determined from electron micrograph used in the calculations; (b) measured and calculated transmittances.

Fig. 8.
Fig. 8.

Results for the Pt film with the coverage coefficient p=0.41: (a) comparison of histogram of semiaxis ratio (a/b) determined from electron micrograph and fitted one used in the calculations; (b) measured and calculated transmittances.

Tables (1)

Tables Icon

Table 1. Structural Parameters for Pt Island Films

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ε=εa(1+23jqjαj)(113jqjαj)=(nik)2,
αj=12i=12εjεaεa+Li(εjεa),
L(x)=1e22e3{ln1+e1e2e},
L(y)=L(z)=12(1L(x)),
1τr=1τ0+vFr.

Metrics