Abstract

Transmission measurements have been used to investigate the optical properties of polyvinylpyrrolidone (PVP)/ZrO2 films synthesized by the solgel route. The optical constants of PVP/ZrO2 films deposited on quartz substrates were determined by fitting transmission spectra in the wavelength range of 200–800 nm with the Tauc–Lorentz and Cody–Lorentz physical models. Combined with Urbach tail, both models give a good description of transmission data and reveal that refractive index of film slightly decreases with increasing PVP mass fraction. X-ray reflectivity (XRR) measurements were also performed on PVP/ZrO2 films to complement the thicknesses. The value of film thickness, including interface information from transmission spectra, is consistent with that result obtained from XRR, indicating that fitting transmission spectrum is a high reliable optical characterization.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Belleville, C. Bonnin, and J. J. Priotton, “Room-temperature mirror preparation using sol-gel chemistry and laminar-flow coating technique,” J. Sol-Gel Sci. Technol. 19, 223–226 (2000).
    [CrossRef]
  2. J. Shen, Q. Y. Zhang, J. Wang, T. H. Yang, Z. S. Deng, B. Zhou, and L. Y. Chen, “Sol-gel processing of zirconia coating for HR mirrors with high laser damage threshold,” J. Sol-Gel. Sci. Technol. 19, 271–274 (2000).
    [CrossRef]
  3. L. Liang, Y. Xu, L. Zhang, D. Wu, and Y. Sun, “Polyvinylpyrrolidone/ZrO2-based sol-gel films applied in highly reflective mirrors for inertial confinement fusion,” J. Sol-Gel. Sci. Technol. 47, 173–181 (2008).
    [CrossRef]
  4. R. Swanepoel, “Determination of the thickness and optical-constants of amorphous-silicon,” J. Phys. E: Sci. Instrum. 16, 1214–1222 (1983).
    [CrossRef]
  5. I. Chambouleyron, J. M. Martínez, A. C. Moretti, and M. Mulato, “Retrieval of optical constants and thickness of thin films from transmission spectra,” Appl. Opt. 36, 8238–8247 (1997).
    [CrossRef]
  6. M. Mosaddeq-ur-Rahman, G. Yu, K. M. Krishna, T. Soga, J. Watanabe, T. Jimbo, and M. Umeno, “Determination of optical constants of solgel-derived inhomogeneous TiO2 thin films by spectroscopic ellipsometry and transmission spectroscopy,” Appl. Opt. 37, 691–697 (1998).
    [CrossRef]
  7. T. Giannakopoulou, N. Todorova, P. Osiceanu, A. Lagoyannis, T. Vaimakis, and C. Trapalis, “Description of TiO2 thin films treated in NH3 atmosphere by optical dispersion models,” Thin Solid Films 517, 6694–6699 (2009).
    [CrossRef]
  8. Y. C. Liu, J. H. Hsieh, and S. K. Tung, “Extraction of optical constants of zinc oxide thin films by ellipsometry with various models,” Thin Solid Films 510, 32–38 (2006).
    [CrossRef]
  9. B. von Blanckenhagen, D. Tonova, and J. Ullmann, “Application of the Tauc-Lorentz formulation to the interband absorption of optical coating materials,” Appl. Opt. 41, 3137–3141 (2002).
    [CrossRef]
  10. A. Emeline, G. V. Kataeva, A. S. Litke, A. V. Rudakova, V. K. Ryabchuk, and N. Serpone, “Spectroscopic and photoluminescence studies of a wide band gap insulating material:  powdered and colloidal ZrO2 sols,” Langmuir 14, 5011–5022 (1998).
    [CrossRef]
  11. L. P. Liang, Y. Xu, L. Zhang, Y. G. Sheng, D. Wu, and Y. H. Sun, “Annealing effect on the optical properties and laser-induced damage resistance of solgel-derived ZrO2 films,” J. Opt. Soc. Am. B 24, 1066–1074 (2007).
    [CrossRef]
  12. G. E. Jellison, and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996).
    [CrossRef]
  13. G. E. Jellison, and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region (vol 69, pg 371, 1996),” Appl. Phys. Lett. 69, 2137–2137 (1996).
    [CrossRef]
  14. A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. M. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
    [CrossRef]
  15. F. Wooten, Optical Properties of Solids (Academic, 1972).
  16. S. R. Elliott, Physics of Amorphous Materials (Longman Scientific & Technical, 1990).
  17. F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev. 92, 1324–1324 (1953).
    [CrossRef]
  18. G. D. Cody, “The optical absorption edge of a-Si:H,” in Semiconductors and Semimetals, I. P. Jacques, ed. (Elsevier, 1984), pp. 11–82.
  19. Y. M. Wang, E. Watkins, J. Ilavsky, T. L. Metroke, P. Wang, B. Lee, and D. W. Schaefer, “Water-barrier properties of mixed bis trimethoxysilylpropyl amine and vinyltriacetoxysilane films,” J. Phys. Chem. B 111, 7041–7051 (2007).
    [CrossRef]
  20. L. G. Parratt, “Surface studies of solids by total refelction of x-rays,” Phys. Rev. 95, 359–369 (1954).
    [CrossRef]
  21. N. M. Kamble, R. B. Tokas, A. Biswas, S. Thakur, D. Bhattacharyya, and N. K. Sahoo, “Determination of the optical constants of HfO2–SiO2 composite thin films through reverse fitting of transmission spectra,” Vacuum 86, 422–428 (2011).
    [CrossRef]
  22. S. T. Sundari, N. C. Raut, T. Mathews, P. K. Ajikumar, S. Dash, A. K. Tyagi, and B. Raj, “Ellipsometric studies on TiO2 thin films synthesized by spray pyrolysis technique,” Appl. Surf. Sci. 257, 7399–7404 (2011).
    [CrossRef]
  23. G. A. F. Seber and C. J. Wild, Nonlinear Regression (Wiley-Interscience, 2003).
  24. J. Sancho-Parramon, M. Modreanu, S. Bosch, and M. Stchakovsky, “Optical characterization of HfO2 by spectroscopic ellipsometry: Dispersion models and direct data inversion,” Thin Solid Films 516, 7990–7995 (2008).
    [CrossRef]
  25. J. Stettner, L. Schwalowsky, O. H. Seeck, M. Tolan, W. Press, C. Schwarz, and H. V. Kanel, “Interface structure of MBE-grown CoSi2/Si/CoSi2 layers on Si(111): partially correlated roughness and diffuse x-ray scattering,” Phys. Rev. B 53, 1398–1412 (1996).
    [CrossRef]
  26. L. Nevot and P. Croce, “Characterization of surfaces by grazing x-ray reflection—application to study of polishing of some silicate-glasses,” Rev. Phys. Appl. 15, 761–779 (1980).
    [CrossRef]
  27. J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Mater. Res. Bull. 3, 37–46 (1968).
    [CrossRef]
  28. D. Davazoglou, “Optical absorption threshold of low pressure chemically vapor deposited silicon oxynitride films from SiCl2H2-NH3-N2O mixtures,” Thin Solid Films 437, 266–271(2003).
    [CrossRef]

2011 (2)

N. M. Kamble, R. B. Tokas, A. Biswas, S. Thakur, D. Bhattacharyya, and N. K. Sahoo, “Determination of the optical constants of HfO2–SiO2 composite thin films through reverse fitting of transmission spectra,” Vacuum 86, 422–428 (2011).
[CrossRef]

S. T. Sundari, N. C. Raut, T. Mathews, P. K. Ajikumar, S. Dash, A. K. Tyagi, and B. Raj, “Ellipsometric studies on TiO2 thin films synthesized by spray pyrolysis technique,” Appl. Surf. Sci. 257, 7399–7404 (2011).
[CrossRef]

2009 (1)

T. Giannakopoulou, N. Todorova, P. Osiceanu, A. Lagoyannis, T. Vaimakis, and C. Trapalis, “Description of TiO2 thin films treated in NH3 atmosphere by optical dispersion models,” Thin Solid Films 517, 6694–6699 (2009).
[CrossRef]

2008 (2)

L. Liang, Y. Xu, L. Zhang, D. Wu, and Y. Sun, “Polyvinylpyrrolidone/ZrO2-based sol-gel films applied in highly reflective mirrors for inertial confinement fusion,” J. Sol-Gel. Sci. Technol. 47, 173–181 (2008).
[CrossRef]

J. Sancho-Parramon, M. Modreanu, S. Bosch, and M. Stchakovsky, “Optical characterization of HfO2 by spectroscopic ellipsometry: Dispersion models and direct data inversion,” Thin Solid Films 516, 7990–7995 (2008).
[CrossRef]

2007 (2)

L. P. Liang, Y. Xu, L. Zhang, Y. G. Sheng, D. Wu, and Y. H. Sun, “Annealing effect on the optical properties and laser-induced damage resistance of solgel-derived ZrO2 films,” J. Opt. Soc. Am. B 24, 1066–1074 (2007).
[CrossRef]

Y. M. Wang, E. Watkins, J. Ilavsky, T. L. Metroke, P. Wang, B. Lee, and D. W. Schaefer, “Water-barrier properties of mixed bis trimethoxysilylpropyl amine and vinyltriacetoxysilane films,” J. Phys. Chem. B 111, 7041–7051 (2007).
[CrossRef]

2006 (1)

Y. C. Liu, J. H. Hsieh, and S. K. Tung, “Extraction of optical constants of zinc oxide thin films by ellipsometry with various models,” Thin Solid Films 510, 32–38 (2006).
[CrossRef]

2003 (1)

D. Davazoglou, “Optical absorption threshold of low pressure chemically vapor deposited silicon oxynitride films from SiCl2H2-NH3-N2O mixtures,” Thin Solid Films 437, 266–271(2003).
[CrossRef]

2002 (2)

B. von Blanckenhagen, D. Tonova, and J. Ullmann, “Application of the Tauc-Lorentz formulation to the interband absorption of optical coating materials,” Appl. Opt. 41, 3137–3141 (2002).
[CrossRef]

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. M. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[CrossRef]

2000 (2)

P. Belleville, C. Bonnin, and J. J. Priotton, “Room-temperature mirror preparation using sol-gel chemistry and laminar-flow coating technique,” J. Sol-Gel Sci. Technol. 19, 223–226 (2000).
[CrossRef]

J. Shen, Q. Y. Zhang, J. Wang, T. H. Yang, Z. S. Deng, B. Zhou, and L. Y. Chen, “Sol-gel processing of zirconia coating for HR mirrors with high laser damage threshold,” J. Sol-Gel. Sci. Technol. 19, 271–274 (2000).
[CrossRef]

1998 (2)

A. Emeline, G. V. Kataeva, A. S. Litke, A. V. Rudakova, V. K. Ryabchuk, and N. Serpone, “Spectroscopic and photoluminescence studies of a wide band gap insulating material:  powdered and colloidal ZrO2 sols,” Langmuir 14, 5011–5022 (1998).
[CrossRef]

M. Mosaddeq-ur-Rahman, G. Yu, K. M. Krishna, T. Soga, J. Watanabe, T. Jimbo, and M. Umeno, “Determination of optical constants of solgel-derived inhomogeneous TiO2 thin films by spectroscopic ellipsometry and transmission spectroscopy,” Appl. Opt. 37, 691–697 (1998).
[CrossRef]

1997 (1)

1996 (3)

G. E. Jellison, and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996).
[CrossRef]

G. E. Jellison, and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region (vol 69, pg 371, 1996),” Appl. Phys. Lett. 69, 2137–2137 (1996).
[CrossRef]

J. Stettner, L. Schwalowsky, O. H. Seeck, M. Tolan, W. Press, C. Schwarz, and H. V. Kanel, “Interface structure of MBE-grown CoSi2/Si/CoSi2 layers on Si(111): partially correlated roughness and diffuse x-ray scattering,” Phys. Rev. B 53, 1398–1412 (1996).
[CrossRef]

1983 (1)

R. Swanepoel, “Determination of the thickness and optical-constants of amorphous-silicon,” J. Phys. E: Sci. Instrum. 16, 1214–1222 (1983).
[CrossRef]

1980 (1)

L. Nevot and P. Croce, “Characterization of surfaces by grazing x-ray reflection—application to study of polishing of some silicate-glasses,” Rev. Phys. Appl. 15, 761–779 (1980).
[CrossRef]

1968 (1)

J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Mater. Res. Bull. 3, 37–46 (1968).
[CrossRef]

1954 (1)

L. G. Parratt, “Surface studies of solids by total refelction of x-rays,” Phys. Rev. 95, 359–369 (1954).
[CrossRef]

1953 (1)

F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev. 92, 1324–1324 (1953).
[CrossRef]

Ajikumar, P. K.

S. T. Sundari, N. C. Raut, T. Mathews, P. K. Ajikumar, S. Dash, A. K. Tyagi, and B. Raj, “Ellipsometric studies on TiO2 thin films synthesized by spray pyrolysis technique,” Appl. Surf. Sci. 257, 7399–7404 (2011).
[CrossRef]

Belleville, P.

P. Belleville, C. Bonnin, and J. J. Priotton, “Room-temperature mirror preparation using sol-gel chemistry and laminar-flow coating technique,” J. Sol-Gel Sci. Technol. 19, 223–226 (2000).
[CrossRef]

Bhattacharyya, D.

N. M. Kamble, R. B. Tokas, A. Biswas, S. Thakur, D. Bhattacharyya, and N. K. Sahoo, “Determination of the optical constants of HfO2–SiO2 composite thin films through reverse fitting of transmission spectra,” Vacuum 86, 422–428 (2011).
[CrossRef]

Biswas, A.

N. M. Kamble, R. B. Tokas, A. Biswas, S. Thakur, D. Bhattacharyya, and N. K. Sahoo, “Determination of the optical constants of HfO2–SiO2 composite thin films through reverse fitting of transmission spectra,” Vacuum 86, 422–428 (2011).
[CrossRef]

Bonnin, C.

P. Belleville, C. Bonnin, and J. J. Priotton, “Room-temperature mirror preparation using sol-gel chemistry and laminar-flow coating technique,” J. Sol-Gel Sci. Technol. 19, 223–226 (2000).
[CrossRef]

Bosch, S.

J. Sancho-Parramon, M. Modreanu, S. Bosch, and M. Stchakovsky, “Optical characterization of HfO2 by spectroscopic ellipsometry: Dispersion models and direct data inversion,” Thin Solid Films 516, 7990–7995 (2008).
[CrossRef]

Chambouleyron, I.

Chen, L. Y.

J. Shen, Q. Y. Zhang, J. Wang, T. H. Yang, Z. S. Deng, B. Zhou, and L. Y. Chen, “Sol-gel processing of zirconia coating for HR mirrors with high laser damage threshold,” J. Sol-Gel. Sci. Technol. 19, 271–274 (2000).
[CrossRef]

Cody, G. D.

G. D. Cody, “The optical absorption edge of a-Si:H,” in Semiconductors and Semimetals, I. P. Jacques, ed. (Elsevier, 1984), pp. 11–82.

Collins, R. W.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. M. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[CrossRef]

Croce, P.

L. Nevot and P. Croce, “Characterization of surfaces by grazing x-ray reflection—application to study of polishing of some silicate-glasses,” Rev. Phys. Appl. 15, 761–779 (1980).
[CrossRef]

Dash, S.

S. T. Sundari, N. C. Raut, T. Mathews, P. K. Ajikumar, S. Dash, A. K. Tyagi, and B. Raj, “Ellipsometric studies on TiO2 thin films synthesized by spray pyrolysis technique,” Appl. Surf. Sci. 257, 7399–7404 (2011).
[CrossRef]

Davazoglou, D.

D. Davazoglou, “Optical absorption threshold of low pressure chemically vapor deposited silicon oxynitride films from SiCl2H2-NH3-N2O mixtures,” Thin Solid Films 437, 266–271(2003).
[CrossRef]

Deng, X. M.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. M. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[CrossRef]

Deng, Z. S.

J. Shen, Q. Y. Zhang, J. Wang, T. H. Yang, Z. S. Deng, B. Zhou, and L. Y. Chen, “Sol-gel processing of zirconia coating for HR mirrors with high laser damage threshold,” J. Sol-Gel. Sci. Technol. 19, 271–274 (2000).
[CrossRef]

Elliott, S. R.

S. R. Elliott, Physics of Amorphous Materials (Longman Scientific & Technical, 1990).

Emeline, A.

A. Emeline, G. V. Kataeva, A. S. Litke, A. V. Rudakova, V. K. Ryabchuk, and N. Serpone, “Spectroscopic and photoluminescence studies of a wide band gap insulating material:  powdered and colloidal ZrO2 sols,” Langmuir 14, 5011–5022 (1998).
[CrossRef]

Ferlauto, A. S.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. M. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[CrossRef]

Ferreira, G. M.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. M. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[CrossRef]

Ganguly, G.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. M. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[CrossRef]

Giannakopoulou, T.

T. Giannakopoulou, N. Todorova, P. Osiceanu, A. Lagoyannis, T. Vaimakis, and C. Trapalis, “Description of TiO2 thin films treated in NH3 atmosphere by optical dispersion models,” Thin Solid Films 517, 6694–6699 (2009).
[CrossRef]

Hsieh, J. H.

Y. C. Liu, J. H. Hsieh, and S. K. Tung, “Extraction of optical constants of zinc oxide thin films by ellipsometry with various models,” Thin Solid Films 510, 32–38 (2006).
[CrossRef]

Ilavsky, J.

Y. M. Wang, E. Watkins, J. Ilavsky, T. L. Metroke, P. Wang, B. Lee, and D. W. Schaefer, “Water-barrier properties of mixed bis trimethoxysilylpropyl amine and vinyltriacetoxysilane films,” J. Phys. Chem. B 111, 7041–7051 (2007).
[CrossRef]

Jellison, G. E.

G. E. Jellison, and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996).
[CrossRef]

G. E. Jellison, and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region (vol 69, pg 371, 1996),” Appl. Phys. Lett. 69, 2137–2137 (1996).
[CrossRef]

Jimbo, T.

Kamble, N. M.

N. M. Kamble, R. B. Tokas, A. Biswas, S. Thakur, D. Bhattacharyya, and N. K. Sahoo, “Determination of the optical constants of HfO2–SiO2 composite thin films through reverse fitting of transmission spectra,” Vacuum 86, 422–428 (2011).
[CrossRef]

Kanel, H. V.

J. Stettner, L. Schwalowsky, O. H. Seeck, M. Tolan, W. Press, C. Schwarz, and H. V. Kanel, “Interface structure of MBE-grown CoSi2/Si/CoSi2 layers on Si(111): partially correlated roughness and diffuse x-ray scattering,” Phys. Rev. B 53, 1398–1412 (1996).
[CrossRef]

Kataeva, G. V.

A. Emeline, G. V. Kataeva, A. S. Litke, A. V. Rudakova, V. K. Ryabchuk, and N. Serpone, “Spectroscopic and photoluminescence studies of a wide band gap insulating material:  powdered and colloidal ZrO2 sols,” Langmuir 14, 5011–5022 (1998).
[CrossRef]

Krishna, K. M.

Lagoyannis, A.

T. Giannakopoulou, N. Todorova, P. Osiceanu, A. Lagoyannis, T. Vaimakis, and C. Trapalis, “Description of TiO2 thin films treated in NH3 atmosphere by optical dispersion models,” Thin Solid Films 517, 6694–6699 (2009).
[CrossRef]

Lee, B.

Y. M. Wang, E. Watkins, J. Ilavsky, T. L. Metroke, P. Wang, B. Lee, and D. W. Schaefer, “Water-barrier properties of mixed bis trimethoxysilylpropyl amine and vinyltriacetoxysilane films,” J. Phys. Chem. B 111, 7041–7051 (2007).
[CrossRef]

Liang, L.

L. Liang, Y. Xu, L. Zhang, D. Wu, and Y. Sun, “Polyvinylpyrrolidone/ZrO2-based sol-gel films applied in highly reflective mirrors for inertial confinement fusion,” J. Sol-Gel. Sci. Technol. 47, 173–181 (2008).
[CrossRef]

Liang, L. P.

Litke, A. S.

A. Emeline, G. V. Kataeva, A. S. Litke, A. V. Rudakova, V. K. Ryabchuk, and N. Serpone, “Spectroscopic and photoluminescence studies of a wide band gap insulating material:  powdered and colloidal ZrO2 sols,” Langmuir 14, 5011–5022 (1998).
[CrossRef]

Liu, Y. C.

Y. C. Liu, J. H. Hsieh, and S. K. Tung, “Extraction of optical constants of zinc oxide thin films by ellipsometry with various models,” Thin Solid Films 510, 32–38 (2006).
[CrossRef]

Martínez, J. M.

Mathews, T.

S. T. Sundari, N. C. Raut, T. Mathews, P. K. Ajikumar, S. Dash, A. K. Tyagi, and B. Raj, “Ellipsometric studies on TiO2 thin films synthesized by spray pyrolysis technique,” Appl. Surf. Sci. 257, 7399–7404 (2011).
[CrossRef]

Metroke, T. L.

Y. M. Wang, E. Watkins, J. Ilavsky, T. L. Metroke, P. Wang, B. Lee, and D. W. Schaefer, “Water-barrier properties of mixed bis trimethoxysilylpropyl amine and vinyltriacetoxysilane films,” J. Phys. Chem. B 111, 7041–7051 (2007).
[CrossRef]

Modine, F. A.

G. E. Jellison, and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region (vol 69, pg 371, 1996),” Appl. Phys. Lett. 69, 2137–2137 (1996).
[CrossRef]

G. E. Jellison, and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996).
[CrossRef]

Modreanu, M.

J. Sancho-Parramon, M. Modreanu, S. Bosch, and M. Stchakovsky, “Optical characterization of HfO2 by spectroscopic ellipsometry: Dispersion models and direct data inversion,” Thin Solid Films 516, 7990–7995 (2008).
[CrossRef]

Moretti, A. C.

Mosaddeq-ur-Rahman, M.

Mulato, M.

Nevot, L.

L. Nevot and P. Croce, “Characterization of surfaces by grazing x-ray reflection—application to study of polishing of some silicate-glasses,” Rev. Phys. Appl. 15, 761–779 (1980).
[CrossRef]

Osiceanu, P.

T. Giannakopoulou, N. Todorova, P. Osiceanu, A. Lagoyannis, T. Vaimakis, and C. Trapalis, “Description of TiO2 thin films treated in NH3 atmosphere by optical dispersion models,” Thin Solid Films 517, 6694–6699 (2009).
[CrossRef]

Parratt, L. G.

L. G. Parratt, “Surface studies of solids by total refelction of x-rays,” Phys. Rev. 95, 359–369 (1954).
[CrossRef]

Pearce, J. M.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. M. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[CrossRef]

Press, W.

J. Stettner, L. Schwalowsky, O. H. Seeck, M. Tolan, W. Press, C. Schwarz, and H. V. Kanel, “Interface structure of MBE-grown CoSi2/Si/CoSi2 layers on Si(111): partially correlated roughness and diffuse x-ray scattering,” Phys. Rev. B 53, 1398–1412 (1996).
[CrossRef]

Priotton, J. J.

P. Belleville, C. Bonnin, and J. J. Priotton, “Room-temperature mirror preparation using sol-gel chemistry and laminar-flow coating technique,” J. Sol-Gel Sci. Technol. 19, 223–226 (2000).
[CrossRef]

Raj, B.

S. T. Sundari, N. C. Raut, T. Mathews, P. K. Ajikumar, S. Dash, A. K. Tyagi, and B. Raj, “Ellipsometric studies on TiO2 thin films synthesized by spray pyrolysis technique,” Appl. Surf. Sci. 257, 7399–7404 (2011).
[CrossRef]

Raut, N. C.

S. T. Sundari, N. C. Raut, T. Mathews, P. K. Ajikumar, S. Dash, A. K. Tyagi, and B. Raj, “Ellipsometric studies on TiO2 thin films synthesized by spray pyrolysis technique,” Appl. Surf. Sci. 257, 7399–7404 (2011).
[CrossRef]

Rudakova, A. V.

A. Emeline, G. V. Kataeva, A. S. Litke, A. V. Rudakova, V. K. Ryabchuk, and N. Serpone, “Spectroscopic and photoluminescence studies of a wide band gap insulating material:  powdered and colloidal ZrO2 sols,” Langmuir 14, 5011–5022 (1998).
[CrossRef]

Ryabchuk, V. K.

A. Emeline, G. V. Kataeva, A. S. Litke, A. V. Rudakova, V. K. Ryabchuk, and N. Serpone, “Spectroscopic and photoluminescence studies of a wide band gap insulating material:  powdered and colloidal ZrO2 sols,” Langmuir 14, 5011–5022 (1998).
[CrossRef]

Sahoo, N. K.

N. M. Kamble, R. B. Tokas, A. Biswas, S. Thakur, D. Bhattacharyya, and N. K. Sahoo, “Determination of the optical constants of HfO2–SiO2 composite thin films through reverse fitting of transmission spectra,” Vacuum 86, 422–428 (2011).
[CrossRef]

Sancho-Parramon, J.

J. Sancho-Parramon, M. Modreanu, S. Bosch, and M. Stchakovsky, “Optical characterization of HfO2 by spectroscopic ellipsometry: Dispersion models and direct data inversion,” Thin Solid Films 516, 7990–7995 (2008).
[CrossRef]

Schaefer, D. W.

Y. M. Wang, E. Watkins, J. Ilavsky, T. L. Metroke, P. Wang, B. Lee, and D. W. Schaefer, “Water-barrier properties of mixed bis trimethoxysilylpropyl amine and vinyltriacetoxysilane films,” J. Phys. Chem. B 111, 7041–7051 (2007).
[CrossRef]

Schwalowsky, L.

J. Stettner, L. Schwalowsky, O. H. Seeck, M. Tolan, W. Press, C. Schwarz, and H. V. Kanel, “Interface structure of MBE-grown CoSi2/Si/CoSi2 layers on Si(111): partially correlated roughness and diffuse x-ray scattering,” Phys. Rev. B 53, 1398–1412 (1996).
[CrossRef]

Schwarz, C.

J. Stettner, L. Schwalowsky, O. H. Seeck, M. Tolan, W. Press, C. Schwarz, and H. V. Kanel, “Interface structure of MBE-grown CoSi2/Si/CoSi2 layers on Si(111): partially correlated roughness and diffuse x-ray scattering,” Phys. Rev. B 53, 1398–1412 (1996).
[CrossRef]

Seber, G. A. F.

G. A. F. Seber and C. J. Wild, Nonlinear Regression (Wiley-Interscience, 2003).

Seeck, O. H.

J. Stettner, L. Schwalowsky, O. H. Seeck, M. Tolan, W. Press, C. Schwarz, and H. V. Kanel, “Interface structure of MBE-grown CoSi2/Si/CoSi2 layers on Si(111): partially correlated roughness and diffuse x-ray scattering,” Phys. Rev. B 53, 1398–1412 (1996).
[CrossRef]

Serpone, N.

A. Emeline, G. V. Kataeva, A. S. Litke, A. V. Rudakova, V. K. Ryabchuk, and N. Serpone, “Spectroscopic and photoluminescence studies of a wide band gap insulating material:  powdered and colloidal ZrO2 sols,” Langmuir 14, 5011–5022 (1998).
[CrossRef]

Shen, J.

J. Shen, Q. Y. Zhang, J. Wang, T. H. Yang, Z. S. Deng, B. Zhou, and L. Y. Chen, “Sol-gel processing of zirconia coating for HR mirrors with high laser damage threshold,” J. Sol-Gel. Sci. Technol. 19, 271–274 (2000).
[CrossRef]

Sheng, Y. G.

Soga, T.

Stchakovsky, M.

J. Sancho-Parramon, M. Modreanu, S. Bosch, and M. Stchakovsky, “Optical characterization of HfO2 by spectroscopic ellipsometry: Dispersion models and direct data inversion,” Thin Solid Films 516, 7990–7995 (2008).
[CrossRef]

Stettner, J.

J. Stettner, L. Schwalowsky, O. H. Seeck, M. Tolan, W. Press, C. Schwarz, and H. V. Kanel, “Interface structure of MBE-grown CoSi2/Si/CoSi2 layers on Si(111): partially correlated roughness and diffuse x-ray scattering,” Phys. Rev. B 53, 1398–1412 (1996).
[CrossRef]

Sun, Y.

L. Liang, Y. Xu, L. Zhang, D. Wu, and Y. Sun, “Polyvinylpyrrolidone/ZrO2-based sol-gel films applied in highly reflective mirrors for inertial confinement fusion,” J. Sol-Gel. Sci. Technol. 47, 173–181 (2008).
[CrossRef]

Sun, Y. H.

Sundari, S. T.

S. T. Sundari, N. C. Raut, T. Mathews, P. K. Ajikumar, S. Dash, A. K. Tyagi, and B. Raj, “Ellipsometric studies on TiO2 thin films synthesized by spray pyrolysis technique,” Appl. Surf. Sci. 257, 7399–7404 (2011).
[CrossRef]

Swanepoel, R.

R. Swanepoel, “Determination of the thickness and optical-constants of amorphous-silicon,” J. Phys. E: Sci. Instrum. 16, 1214–1222 (1983).
[CrossRef]

Tauc, J.

J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Mater. Res. Bull. 3, 37–46 (1968).
[CrossRef]

Thakur, S.

N. M. Kamble, R. B. Tokas, A. Biswas, S. Thakur, D. Bhattacharyya, and N. K. Sahoo, “Determination of the optical constants of HfO2–SiO2 composite thin films through reverse fitting of transmission spectra,” Vacuum 86, 422–428 (2011).
[CrossRef]

Todorova, N.

T. Giannakopoulou, N. Todorova, P. Osiceanu, A. Lagoyannis, T. Vaimakis, and C. Trapalis, “Description of TiO2 thin films treated in NH3 atmosphere by optical dispersion models,” Thin Solid Films 517, 6694–6699 (2009).
[CrossRef]

Tokas, R. B.

N. M. Kamble, R. B. Tokas, A. Biswas, S. Thakur, D. Bhattacharyya, and N. K. Sahoo, “Determination of the optical constants of HfO2–SiO2 composite thin films through reverse fitting of transmission spectra,” Vacuum 86, 422–428 (2011).
[CrossRef]

Tolan, M.

J. Stettner, L. Schwalowsky, O. H. Seeck, M. Tolan, W. Press, C. Schwarz, and H. V. Kanel, “Interface structure of MBE-grown CoSi2/Si/CoSi2 layers on Si(111): partially correlated roughness and diffuse x-ray scattering,” Phys. Rev. B 53, 1398–1412 (1996).
[CrossRef]

Tonova, D.

Trapalis, C.

T. Giannakopoulou, N. Todorova, P. Osiceanu, A. Lagoyannis, T. Vaimakis, and C. Trapalis, “Description of TiO2 thin films treated in NH3 atmosphere by optical dispersion models,” Thin Solid Films 517, 6694–6699 (2009).
[CrossRef]

Tung, S. K.

Y. C. Liu, J. H. Hsieh, and S. K. Tung, “Extraction of optical constants of zinc oxide thin films by ellipsometry with various models,” Thin Solid Films 510, 32–38 (2006).
[CrossRef]

Tyagi, A. K.

S. T. Sundari, N. C. Raut, T. Mathews, P. K. Ajikumar, S. Dash, A. K. Tyagi, and B. Raj, “Ellipsometric studies on TiO2 thin films synthesized by spray pyrolysis technique,” Appl. Surf. Sci. 257, 7399–7404 (2011).
[CrossRef]

Ullmann, J.

Umeno, M.

Urbach, F.

F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev. 92, 1324–1324 (1953).
[CrossRef]

Vaimakis, T.

T. Giannakopoulou, N. Todorova, P. Osiceanu, A. Lagoyannis, T. Vaimakis, and C. Trapalis, “Description of TiO2 thin films treated in NH3 atmosphere by optical dispersion models,” Thin Solid Films 517, 6694–6699 (2009).
[CrossRef]

von Blanckenhagen, B.

Wang, J.

J. Shen, Q. Y. Zhang, J. Wang, T. H. Yang, Z. S. Deng, B. Zhou, and L. Y. Chen, “Sol-gel processing of zirconia coating for HR mirrors with high laser damage threshold,” J. Sol-Gel. Sci. Technol. 19, 271–274 (2000).
[CrossRef]

Wang, P.

Y. M. Wang, E. Watkins, J. Ilavsky, T. L. Metroke, P. Wang, B. Lee, and D. W. Schaefer, “Water-barrier properties of mixed bis trimethoxysilylpropyl amine and vinyltriacetoxysilane films,” J. Phys. Chem. B 111, 7041–7051 (2007).
[CrossRef]

Wang, Y. M.

Y. M. Wang, E. Watkins, J. Ilavsky, T. L. Metroke, P. Wang, B. Lee, and D. W. Schaefer, “Water-barrier properties of mixed bis trimethoxysilylpropyl amine and vinyltriacetoxysilane films,” J. Phys. Chem. B 111, 7041–7051 (2007).
[CrossRef]

Watanabe, J.

Watkins, E.

Y. M. Wang, E. Watkins, J. Ilavsky, T. L. Metroke, P. Wang, B. Lee, and D. W. Schaefer, “Water-barrier properties of mixed bis trimethoxysilylpropyl amine and vinyltriacetoxysilane films,” J. Phys. Chem. B 111, 7041–7051 (2007).
[CrossRef]

Wild, C. J.

G. A. F. Seber and C. J. Wild, Nonlinear Regression (Wiley-Interscience, 2003).

Wooten, F.

F. Wooten, Optical Properties of Solids (Academic, 1972).

Wronski, C. R.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. M. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[CrossRef]

Wu, D.

L. Liang, Y. Xu, L. Zhang, D. Wu, and Y. Sun, “Polyvinylpyrrolidone/ZrO2-based sol-gel films applied in highly reflective mirrors for inertial confinement fusion,” J. Sol-Gel. Sci. Technol. 47, 173–181 (2008).
[CrossRef]

L. P. Liang, Y. Xu, L. Zhang, Y. G. Sheng, D. Wu, and Y. H. Sun, “Annealing effect on the optical properties and laser-induced damage resistance of solgel-derived ZrO2 films,” J. Opt. Soc. Am. B 24, 1066–1074 (2007).
[CrossRef]

Xu, Y.

L. Liang, Y. Xu, L. Zhang, D. Wu, and Y. Sun, “Polyvinylpyrrolidone/ZrO2-based sol-gel films applied in highly reflective mirrors for inertial confinement fusion,” J. Sol-Gel. Sci. Technol. 47, 173–181 (2008).
[CrossRef]

L. P. Liang, Y. Xu, L. Zhang, Y. G. Sheng, D. Wu, and Y. H. Sun, “Annealing effect on the optical properties and laser-induced damage resistance of solgel-derived ZrO2 films,” J. Opt. Soc. Am. B 24, 1066–1074 (2007).
[CrossRef]

Yang, T. H.

J. Shen, Q. Y. Zhang, J. Wang, T. H. Yang, Z. S. Deng, B. Zhou, and L. Y. Chen, “Sol-gel processing of zirconia coating for HR mirrors with high laser damage threshold,” J. Sol-Gel. Sci. Technol. 19, 271–274 (2000).
[CrossRef]

Yu, G.

Zhang, L.

L. Liang, Y. Xu, L. Zhang, D. Wu, and Y. Sun, “Polyvinylpyrrolidone/ZrO2-based sol-gel films applied in highly reflective mirrors for inertial confinement fusion,” J. Sol-Gel. Sci. Technol. 47, 173–181 (2008).
[CrossRef]

L. P. Liang, Y. Xu, L. Zhang, Y. G. Sheng, D. Wu, and Y. H. Sun, “Annealing effect on the optical properties and laser-induced damage resistance of solgel-derived ZrO2 films,” J. Opt. Soc. Am. B 24, 1066–1074 (2007).
[CrossRef]

Zhang, Q. Y.

J. Shen, Q. Y. Zhang, J. Wang, T. H. Yang, Z. S. Deng, B. Zhou, and L. Y. Chen, “Sol-gel processing of zirconia coating for HR mirrors with high laser damage threshold,” J. Sol-Gel. Sci. Technol. 19, 271–274 (2000).
[CrossRef]

Zhou, B.

J. Shen, Q. Y. Zhang, J. Wang, T. H. Yang, Z. S. Deng, B. Zhou, and L. Y. Chen, “Sol-gel processing of zirconia coating for HR mirrors with high laser damage threshold,” J. Sol-Gel. Sci. Technol. 19, 271–274 (2000).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

G. E. Jellison, and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996).
[CrossRef]

G. E. Jellison, and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region (vol 69, pg 371, 1996),” Appl. Phys. Lett. 69, 2137–2137 (1996).
[CrossRef]

Appl. Surf. Sci. (1)

S. T. Sundari, N. C. Raut, T. Mathews, P. K. Ajikumar, S. Dash, A. K. Tyagi, and B. Raj, “Ellipsometric studies on TiO2 thin films synthesized by spray pyrolysis technique,” Appl. Surf. Sci. 257, 7399–7404 (2011).
[CrossRef]

J. Appl. Phys. (1)

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. M. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

Y. M. Wang, E. Watkins, J. Ilavsky, T. L. Metroke, P. Wang, B. Lee, and D. W. Schaefer, “Water-barrier properties of mixed bis trimethoxysilylpropyl amine and vinyltriacetoxysilane films,” J. Phys. Chem. B 111, 7041–7051 (2007).
[CrossRef]

J. Phys. E: Sci. Instrum. (1)

R. Swanepoel, “Determination of the thickness and optical-constants of amorphous-silicon,” J. Phys. E: Sci. Instrum. 16, 1214–1222 (1983).
[CrossRef]

J. Sol-Gel Sci. Technol. (1)

P. Belleville, C. Bonnin, and J. J. Priotton, “Room-temperature mirror preparation using sol-gel chemistry and laminar-flow coating technique,” J. Sol-Gel Sci. Technol. 19, 223–226 (2000).
[CrossRef]

J. Sol-Gel. Sci. Technol. (2)

J. Shen, Q. Y. Zhang, J. Wang, T. H. Yang, Z. S. Deng, B. Zhou, and L. Y. Chen, “Sol-gel processing of zirconia coating for HR mirrors with high laser damage threshold,” J. Sol-Gel. Sci. Technol. 19, 271–274 (2000).
[CrossRef]

L. Liang, Y. Xu, L. Zhang, D. Wu, and Y. Sun, “Polyvinylpyrrolidone/ZrO2-based sol-gel films applied in highly reflective mirrors for inertial confinement fusion,” J. Sol-Gel. Sci. Technol. 47, 173–181 (2008).
[CrossRef]

Langmuir (1)

A. Emeline, G. V. Kataeva, A. S. Litke, A. V. Rudakova, V. K. Ryabchuk, and N. Serpone, “Spectroscopic and photoluminescence studies of a wide band gap insulating material:  powdered and colloidal ZrO2 sols,” Langmuir 14, 5011–5022 (1998).
[CrossRef]

Mater. Res. Bull. (1)

J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Mater. Res. Bull. 3, 37–46 (1968).
[CrossRef]

Phys. Rev. (2)

L. G. Parratt, “Surface studies of solids by total refelction of x-rays,” Phys. Rev. 95, 359–369 (1954).
[CrossRef]

F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev. 92, 1324–1324 (1953).
[CrossRef]

Phys. Rev. B (1)

J. Stettner, L. Schwalowsky, O. H. Seeck, M. Tolan, W. Press, C. Schwarz, and H. V. Kanel, “Interface structure of MBE-grown CoSi2/Si/CoSi2 layers on Si(111): partially correlated roughness and diffuse x-ray scattering,” Phys. Rev. B 53, 1398–1412 (1996).
[CrossRef]

Rev. Phys. Appl. (1)

L. Nevot and P. Croce, “Characterization of surfaces by grazing x-ray reflection—application to study of polishing of some silicate-glasses,” Rev. Phys. Appl. 15, 761–779 (1980).
[CrossRef]

Thin Solid Films (4)

D. Davazoglou, “Optical absorption threshold of low pressure chemically vapor deposited silicon oxynitride films from SiCl2H2-NH3-N2O mixtures,” Thin Solid Films 437, 266–271(2003).
[CrossRef]

J. Sancho-Parramon, M. Modreanu, S. Bosch, and M. Stchakovsky, “Optical characterization of HfO2 by spectroscopic ellipsometry: Dispersion models and direct data inversion,” Thin Solid Films 516, 7990–7995 (2008).
[CrossRef]

T. Giannakopoulou, N. Todorova, P. Osiceanu, A. Lagoyannis, T. Vaimakis, and C. Trapalis, “Description of TiO2 thin films treated in NH3 atmosphere by optical dispersion models,” Thin Solid Films 517, 6694–6699 (2009).
[CrossRef]

Y. C. Liu, J. H. Hsieh, and S. K. Tung, “Extraction of optical constants of zinc oxide thin films by ellipsometry with various models,” Thin Solid Films 510, 32–38 (2006).
[CrossRef]

Vacuum (1)

N. M. Kamble, R. B. Tokas, A. Biswas, S. Thakur, D. Bhattacharyya, and N. K. Sahoo, “Determination of the optical constants of HfO2–SiO2 composite thin films through reverse fitting of transmission spectra,” Vacuum 86, 422–428 (2011).
[CrossRef]

Other (4)

G. A. F. Seber and C. J. Wild, Nonlinear Regression (Wiley-Interscience, 2003).

G. D. Cody, “The optical absorption edge of a-Si:H,” in Semiconductors and Semimetals, I. P. Jacques, ed. (Elsevier, 1984), pp. 11–82.

F. Wooten, Optical Properties of Solids (Academic, 1972).

S. R. Elliott, Physics of Amorphous Materials (Longman Scientific & Technical, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Comparison between experimental spectra and calculated spectra of XRR of PVP/ZrO2 films (a) ZP00, (b) ZP05, (c) ZP10, and (d) ZP15. Curves are arbitrarily shifted vertically for clarity.

Fig. 2.
Fig. 2.

Transmission spectra of the PVP/ZrO2 films (a) ZP00, (b) ZP05, (c) ZP10, and (d) ZP15.

Fig. 3.
Fig. 3.

Schematic diagram of the film structure used in the fitting of transmission spectra.

Fig. 4.
Fig. 4.

(a) Illustration of the experimental and calculated data of film ZP05, (b) magnifications of the fitted data with different models in the spectral range of 210–360 nm.

Fig. 5.
Fig. 5.

Comparison of refractive indices determined from different model fits at (a) 300 nm, (b) 600 nm.

Fig. 6.
Fig. 6.

Dispersion curves of refractive index n and extinction coefficient k of the PVP/ZrO2 films (a) ZP00, (b) ZP05, (c) ZP10, and (d) ZP15 obtained from transmission spectra fits using CLU model.

Tables (2)

Tables Icon

Table 1. Structural Parameters and Optical Constants of the PVP/ZrO2 Films Determined from the Fit of XRR Spectra and Transmission Spectraa

Tables Icon

Table 2. Bandgaps Determined from the Model Fitting and the Tauc Plotsa

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

εim(E)=GT(E)L(E)=(EEg)2E2·AE0ΓE(E2E02)2+Γ2E2,E>Eg,
εim(E)=0,0<EEg,
εim(E)=GT(E)L(E)=(EEg)2E2·AE0ΓE(E2E02)2+Γ2E2,E>Et,
εim(E)=EtGT(Et)L(Et)Eexp[EEtEμ],0<EEt,
εim(E)=GC(E)L(E)=(EEg)2(EEg)2+Ep2·AE0ΓE(E2E02)2+Γ2E2,E>Et,
εim(E)=EtGC(Et)L(Et)Eexp[EEtEμ],0<EEt,
εr(E)=εr+2πP0ξεim(ξ)ξ2E2dξ,
n(E)=12[εr2(E)+εim2(E)+εr(E)],
k(E)=12[εr2(E)+εim2(E)εr(E)].
f1ε1εε1+2ε+f2ε2εε2+2ε=0,f1+f2=1,
χ2=1NMi=1N(TExp(λ)TCal(λ)δ(λ))2,
αE=A(EEg)p,

Metrics