Abstract

The aim of this paper is to propose a method for designing aspheric spectacles capable of realizing good optical performance at both far and near vision for presbyopia. We have experimentally measured wavefront aberrations and axial lengths for eight myopic eyes. In consideration of the field of view (FOV), the rotation of the eyeball, and a small amount of accommodation retained for presbyopia, we constructed individual eye models and optimized all the spectacle-eye systems for visible wavelengths by Zemax’s simulation. Finally, we evaluated the image quality by the modulation transfer function (MTF) and visual acuity (VA) with different pupil sizes (2, 2.8, 4 mm). Results show that when the pupil size is 2 mm or 2.8 mm, the spectacles designed for the full FOV (0° and ±4° FOV) provide a strong ability to transfer low contrast at both far and near vision, and the VA for all reaches 0.8, and up to 1.1 for eyes NO. 1, NO. 5, NO. 6, and NO. 8 for the 0° FOV. As the pupil size increases to 4 mm, the VA for all comes to 0.6 for the full FOV, indicating that presbyopia is able to acquire a good visual resolution at both far and near vision by the designed aspheric spectacles. Furthermore, we verified the visual continuity of the spectacle-eye systems by studying intermediate vision, which demonstrates that the method used in our design is accurate and practicable.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Hui, Ophthalmology (People’s Hygiene Press, 2005), Chap. 16.
  2. G. Xu, Ophthalmology Refractive (Military Medicine Press, 2002), Chaps. 10 and 18.
  3. D. Meister, “Fundamentals of progressive lens design,” VisionCare Product News 6(9), 5–9 (2006).
  4. Z. Zalevsky, S. Ben Yaish, O. Yehezkel, and M. Belkine, “Thin spectacles for myopia, presbyopia and astigmatism insensitive vision,” Opt. Express 15, 10790–10803 (2007).
    [CrossRef]
  5. Z. Zalevsky, A. Shemer, A. Zlotnik, E. Ben Eliezer, and E. Marom, “All-optical axial super resolving imaging using a low-frequency binary-phase mask,” Opt. Express 14, 2631–2643 (2006).
    [CrossRef]
  6. A. Zlotnik, S. Ben Yaish, O. Yehezkel, K. Lahav-Yacouel, M. Belkine, and Z. Zalevsky, “Extended depth of focus contact lenses for presbyopia,” Opt. Lett. 34, 2219–2221 (2009).
    [CrossRef]
  7. J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
    [CrossRef]
  8. J. W. Blaker, “Toward an adaptive model of the human eye,” J. Opt. Soc. Am. 70, 220–223 (1980).
    [CrossRef]
  9. R. Li, Z. Wang, Y. Liu, and G. Mu, “A method to design aspheric spectacles for correction of high-order aberrations of human eye,” Sci. China E 55, 1391–1401 (2012).
    [CrossRef]
  10. W. Wang, Z. Wang, Y. Wang, T. Zuo, and H. Fan, “Wave-front aberrations of cornea and crystalline lens,” Chin. Phys. Lett. 23, 607–609 (2006).
    [CrossRef]
  11. Zemax Optical Design Program User’s Guide (ZEMAX Development Corporation, 2005), Chap. 11, pp. 229–230.
  12. J. Qu and J. Yao, Spectacle Lens (People’s Hygiene Press, 2004), Chap. 3.
  13. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999), Chap. 4.
  14. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
    [CrossRef]
  15. Y. Zhang, Applied Optics (Publishing House of Electronics Industry, 2008), Chap. 21.
  16. W. Wang, Z. Wang, Y. Wang, T. Zuo, and K. Zhao, “Measurements of AIM for visible wavelength based on individual eye model,” Chin. Phys. Lett. 23, 3263–3266 (2006).
    [CrossRef]
  17. J. Ge, Z. Wang, Y. Wang, and K. Zhao, “Characteristics and new measurement method of NCSFs of individual color mechanisms of human vision,” Chin. Phys. Lett. 27, 054201 (2010).
    [CrossRef]

2012 (1)

R. Li, Z. Wang, Y. Liu, and G. Mu, “A method to design aspheric spectacles for correction of high-order aberrations of human eye,” Sci. China E 55, 1391–1401 (2012).
[CrossRef]

2010 (1)

J. Ge, Z. Wang, Y. Wang, and K. Zhao, “Characteristics and new measurement method of NCSFs of individual color mechanisms of human vision,” Chin. Phys. Lett. 27, 054201 (2010).
[CrossRef]

2009 (1)

2007 (1)

2006 (4)

Z. Zalevsky, A. Shemer, A. Zlotnik, E. Ben Eliezer, and E. Marom, “All-optical axial super resolving imaging using a low-frequency binary-phase mask,” Opt. Express 14, 2631–2643 (2006).
[CrossRef]

W. Wang, Z. Wang, Y. Wang, T. Zuo, and H. Fan, “Wave-front aberrations of cornea and crystalline lens,” Chin. Phys. Lett. 23, 607–609 (2006).
[CrossRef]

D. Meister, “Fundamentals of progressive lens design,” VisionCare Product News 6(9), 5–9 (2006).

W. Wang, Z. Wang, Y. Wang, T. Zuo, and K. Zhao, “Measurements of AIM for visible wavelength based on individual eye model,” Chin. Phys. Lett. 23, 3263–3266 (2006).
[CrossRef]

1997 (1)

1990 (1)

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef]

1980 (1)

Belkine, M.

Ben Eliezer, E.

Ben Yaish, S.

Blaker, J. W.

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999), Chap. 4.

Curcio, C. A.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef]

Fan, H.

W. Wang, Z. Wang, Y. Wang, T. Zuo, and H. Fan, “Wave-front aberrations of cornea and crystalline lens,” Chin. Phys. Lett. 23, 607–609 (2006).
[CrossRef]

Ge, J.

J. Ge, Z. Wang, Y. Wang, and K. Zhao, “Characteristics and new measurement method of NCSFs of individual color mechanisms of human vision,” Chin. Phys. Lett. 27, 054201 (2010).
[CrossRef]

Hendrickson, A. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef]

Hui, Y.

Y. Hui, Ophthalmology (People’s Hygiene Press, 2005), Chap. 16.

Kalina, R. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef]

Lahav-Yacouel, K.

Li, R.

R. Li, Z. Wang, Y. Liu, and G. Mu, “A method to design aspheric spectacles for correction of high-order aberrations of human eye,” Sci. China E 55, 1391–1401 (2012).
[CrossRef]

Liang, J.

Liu, Y.

R. Li, Z. Wang, Y. Liu, and G. Mu, “A method to design aspheric spectacles for correction of high-order aberrations of human eye,” Sci. China E 55, 1391–1401 (2012).
[CrossRef]

Marom, E.

Meister, D.

D. Meister, “Fundamentals of progressive lens design,” VisionCare Product News 6(9), 5–9 (2006).

Mu, G.

R. Li, Z. Wang, Y. Liu, and G. Mu, “A method to design aspheric spectacles for correction of high-order aberrations of human eye,” Sci. China E 55, 1391–1401 (2012).
[CrossRef]

Qu, J.

J. Qu and J. Yao, Spectacle Lens (People’s Hygiene Press, 2004), Chap. 3.

Shemer, A.

Sloan, K. R.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef]

Wang, W.

W. Wang, Z. Wang, Y. Wang, T. Zuo, and H. Fan, “Wave-front aberrations of cornea and crystalline lens,” Chin. Phys. Lett. 23, 607–609 (2006).
[CrossRef]

W. Wang, Z. Wang, Y. Wang, T. Zuo, and K. Zhao, “Measurements of AIM for visible wavelength based on individual eye model,” Chin. Phys. Lett. 23, 3263–3266 (2006).
[CrossRef]

Wang, Y.

J. Ge, Z. Wang, Y. Wang, and K. Zhao, “Characteristics and new measurement method of NCSFs of individual color mechanisms of human vision,” Chin. Phys. Lett. 27, 054201 (2010).
[CrossRef]

W. Wang, Z. Wang, Y. Wang, T. Zuo, and K. Zhao, “Measurements of AIM for visible wavelength based on individual eye model,” Chin. Phys. Lett. 23, 3263–3266 (2006).
[CrossRef]

W. Wang, Z. Wang, Y. Wang, T. Zuo, and H. Fan, “Wave-front aberrations of cornea and crystalline lens,” Chin. Phys. Lett. 23, 607–609 (2006).
[CrossRef]

Wang, Z.

R. Li, Z. Wang, Y. Liu, and G. Mu, “A method to design aspheric spectacles for correction of high-order aberrations of human eye,” Sci. China E 55, 1391–1401 (2012).
[CrossRef]

J. Ge, Z. Wang, Y. Wang, and K. Zhao, “Characteristics and new measurement method of NCSFs of individual color mechanisms of human vision,” Chin. Phys. Lett. 27, 054201 (2010).
[CrossRef]

W. Wang, Z. Wang, Y. Wang, T. Zuo, and K. Zhao, “Measurements of AIM for visible wavelength based on individual eye model,” Chin. Phys. Lett. 23, 3263–3266 (2006).
[CrossRef]

W. Wang, Z. Wang, Y. Wang, T. Zuo, and H. Fan, “Wave-front aberrations of cornea and crystalline lens,” Chin. Phys. Lett. 23, 607–609 (2006).
[CrossRef]

Williams, D. R.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999), Chap. 4.

Xu, G.

G. Xu, Ophthalmology Refractive (Military Medicine Press, 2002), Chaps. 10 and 18.

Yao, J.

J. Qu and J. Yao, Spectacle Lens (People’s Hygiene Press, 2004), Chap. 3.

Yehezkel, O.

Zalevsky, Z.

Zhang, Y.

Y. Zhang, Applied Optics (Publishing House of Electronics Industry, 2008), Chap. 21.

Zhao, K.

J. Ge, Z. Wang, Y. Wang, and K. Zhao, “Characteristics and new measurement method of NCSFs of individual color mechanisms of human vision,” Chin. Phys. Lett. 27, 054201 (2010).
[CrossRef]

W. Wang, Z. Wang, Y. Wang, T. Zuo, and K. Zhao, “Measurements of AIM for visible wavelength based on individual eye model,” Chin. Phys. Lett. 23, 3263–3266 (2006).
[CrossRef]

Zlotnik, A.

Zuo, T.

W. Wang, Z. Wang, Y. Wang, T. Zuo, and H. Fan, “Wave-front aberrations of cornea and crystalline lens,” Chin. Phys. Lett. 23, 607–609 (2006).
[CrossRef]

W. Wang, Z. Wang, Y. Wang, T. Zuo, and K. Zhao, “Measurements of AIM for visible wavelength based on individual eye model,” Chin. Phys. Lett. 23, 3263–3266 (2006).
[CrossRef]

Chin. Phys. Lett. (3)

W. Wang, Z. Wang, Y. Wang, T. Zuo, and H. Fan, “Wave-front aberrations of cornea and crystalline lens,” Chin. Phys. Lett. 23, 607–609 (2006).
[CrossRef]

W. Wang, Z. Wang, Y. Wang, T. Zuo, and K. Zhao, “Measurements of AIM for visible wavelength based on individual eye model,” Chin. Phys. Lett. 23, 3263–3266 (2006).
[CrossRef]

J. Ge, Z. Wang, Y. Wang, and K. Zhao, “Characteristics and new measurement method of NCSFs of individual color mechanisms of human vision,” Chin. Phys. Lett. 27, 054201 (2010).
[CrossRef]

J. Comp. Neurol. (1)

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Express (2)

Opt. Lett. (1)

Sci. China E (1)

R. Li, Z. Wang, Y. Liu, and G. Mu, “A method to design aspheric spectacles for correction of high-order aberrations of human eye,” Sci. China E 55, 1391–1401 (2012).
[CrossRef]

VisionCare Product News (1)

D. Meister, “Fundamentals of progressive lens design,” VisionCare Product News 6(9), 5–9 (2006).

Other (6)

Y. Hui, Ophthalmology (People’s Hygiene Press, 2005), Chap. 16.

G. Xu, Ophthalmology Refractive (Military Medicine Press, 2002), Chaps. 10 and 18.

Y. Zhang, Applied Optics (Publishing House of Electronics Industry, 2008), Chap. 21.

Zemax Optical Design Program User’s Guide (ZEMAX Development Corporation, 2005), Chap. 11, pp. 229–230.

J. Qu and J. Yao, Spectacle Lens (People’s Hygiene Press, 2004), Chap. 3.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Focal position of individual eye model NO. 5 before and after accommodation.

Fig. 2.
Fig. 2.

Layout of the spectacle-eye system after optimization in a 0° and ±4° FOV at far and near vision.

Fig. 3.
Fig. 3.

MTF of NO. 5 spectacle-eye system after optimization in a 0° and ±4° FOV at far and near vision.

Fig. 4.
Fig. 4.

MTF curves of the NO. 5 spectacle-eye system with a rotation of 6°.

Tables (11)

Tables Icon

Table 1. Thicknesses (in mm) of the Anterior Chamber and the Vitreous Body Measured from Eight Eyes

Tables Icon

Table 2. Parameters of Individual Eye Model NO. 5

Tables Icon

Table 3. Curvature Radius (in mm) of the Anterior Surface of the Lens before and after Accommodation

Tables Icon

Table 4. Multiconfiguration Parameters of the NO. 5 Eye Model

Tables Icon

Table 5. AIMs for Different Spatial Frequencies

Tables Icon

Table 6. MTF Values of the Eight Eyes after Optimization with a 0° and ±4° FOV for Far and Near Vision

Tables Icon

Table 7. Visual Acuity Values of the Eight Eyes for a 0° FOV at Far and Near Vision

Tables Icon

Table 8. Visual Acuity Values of the Eight Eyes for a ±4° FOV at Far and Near Vision

Tables Icon

Table 9. Curve Radii of the Anterior Surfaces of the Lenses and the Object Distances for the Eight Eyes with 6° Rotation

Tables Icon

Table 10. Visual Acuity Values of the Eight Eyes with a 4 mm Pupil Size for Full FOV

Tables Icon

Table 11. Visual Acuity Values of the Eight Eyes with a 2 mm Pupil Size for Full FOV

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

z=z0+c(x2+y2)1+[1c2(x2+y2)]12+i=1NAiZi(x,y),
ΔP=Δxff,
z=cr21+[1(1+k)c2r2]12+a1r2+a2r4+a3r6+a4r8+a5r10+a6r12+a7r14+a8r16,
z=cxx2+cyy21+[1(1+kx)cx2x2(1+ky)cy2y2]12,
P=(n1)(1rfront1rrear),

Metrics