Abstract

Porous nickel–phosphorus (NiP) black surfaces exhibit excellent low reflectance in the visible and near-IR regions. Through use of a model of the surface morphology and composition, the reflectance was numerically simulated by a three-dimensional finite-difference time-domain method to determine the origin of the low reflectance. In agreement with experimental results, the simulations showed a spectrally flat, quite low reflectance of <0.1% over the entire visible–near-IR region under certain conditions. The reflectance depended strongly on the thickness of the black nickel oxide layer and the aspect ratio of the three-dimensional surface morphology. A method of validating the reflectance of porous NiP black surfaces is suggested.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. N. Kumar, L. K. Malhotra, and K. L. Chopra, “Low-cost electroless nickel black coatings for photothermal conversion,” Sol. Energy Mater. 3, 519–532 (1980).
    [CrossRef]
  2. V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Ultralow reflectance metal surfaces by ultrafast laser texturing,” Appl. Opt. 49, 5983–5988 (2010).
    [CrossRef]
  3. T. Hwang, A. Vorobyev, and C. Guo, “Formation of solar absorber surface on nickel with femtosecond laser irradiation,” Appl. Phys. A Mater. Sci. Process. 108, 299–303 (2012).
    [CrossRef]
  4. M. Lira-Cantu, A. M. Sabio, A. Brustenga, and P. Gomez-Romero, “Electrochemical deposition of black nickel solar absorber coatings on stainless steel AISI316L for thermal solar cells,” Sol. Energy Mater. Sol. Cells 87, 685–694 (2005).
    [CrossRef]
  5. M. Endo and T. Inoue, “A double calorimeter for 10 W level laser power measurements,” IEEE Trans. Instrum. Meas. 54, 688–691 (2005).
    [CrossRef]
  6. K. Amemiya, S. Mukai, Y. Ichino, T. Zama, S. Kück, B. Hartree, and A. Deadman, “Final report on APMP.PR-S4: comparison of fiber optic power meter responsivity,” Metrologia 48, 02004 (2011).
    [CrossRef]
  7. J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannell, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14, 916–922 (2003).
    [CrossRef]
  8. J. H. Lehman, C. Engtrakul, T. Gennett, and A. C. Dillon, “Single-wall carbon nanotube coating on a pyroelectric detector,” Appl. Opt. 44, 483–488 (2005).
    [CrossRef]
  9. J. H. Lehman, R. Deshpande, P. Rice, B. To, and A. C. Dillon, “Carbon multi-walled nanotubes grown by HWCVD on a pyroelectric detector,” Infrared Phys. Technol. 47, 246–250 (2006).
    [CrossRef]
  10. Z. P. Yang, L. J. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
    [CrossRef]
  11. E. Lidorikis and A. C. Ferrari, “Photonics with multiwall carbon nanotube arrays,” ACS Nano 3, 1238–1248 (2009).
    [CrossRef]
  12. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106, 6044–6047 (2009).
    [CrossRef]
  13. H. Bao, X. Ruan, and T. S. Fisher, “Optical properties of ordered vertical arrays of multi-walled carbon nanotubes from FDTD simulations,” Opt. Express 18, 6347–6359 (2010).
    [CrossRef]
  14. Y. Liu, D. Beckett, and D. Hawthorne, “Effect of heat treatment, top coatings and conversion coatings on the corrosion properties of black electroless Ni-P films,” Appl. Surf. Sci. 257, 4486–4494 (2011).
    [CrossRef]
  15. R. J. C. Brown, P. J. Brewer, and M. J. T. Milton, “The physical and chemical properties of electroless nickel–phosphorus alloys and low reflectance nickel–phosphorus black surfaces,” J. Mater. Chem. 12, 2749–2754 (2002).
    [CrossRef]
  16. S. Kodama, M. Horiuchi, T. Kunii, and K. Kuroda, “Ultra-black nickel–phosphorus alloy optical absorber,” IEEE Trans. Instrum. Meas. 39, 230–232 (1990).
    [CrossRef]
  17. G. Cui, N. Li, D. Li, J. Zheng, and Q. Wu, “The physical and electrochemical properties of electroless deposited nickelnickel–phosphorusphosphorus black coatings,” Surf. Coat. Technol. 200, 6808–6814 (2006).
    [CrossRef]
  18. V. Saxena, R. U. Rani, and A. K. Sharma, “Studies on ultra high solar absorber black electroless nickel coatings on aluminum alloys for space application,” Surf. Coat. Technol. 201, 855–862 (2006).
    [CrossRef]
  19. Y. F. Wang, W. G. Fu, M. Feng, and X. W. Cao, “Investigation of the structure and the physical properties of nickel–phosphorus ultra-black surfaces,” Appl. Phys. A Mater. Sci. Process. 90, 549–553 (2008).
    [CrossRef]
  20. C. Johnson, “Black electroless nickel surface morphologies with extremely high light absorption capacity,” Metal Finish. 78, 21–24 (1980).
  21. P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
    [CrossRef]
  22. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24, 1422–1424 (1999).
    [CrossRef]
  23. A. Deinega, I. Valuev, B. Potapkin, and Y. Lozovik, “Minimizing light reflection from dielectric textured surfaces,” J. Opt. Soc. Am. A 28, 770–777 (2011).
    [CrossRef]
  24. R. N. Duncan, “The metallurgical structure of electroless nickel deposits: effect on coating properties,” Plating Surf. Finish. 83, 65–69 (1996).
  25. M. Wierzbicka and A. Malecki, “The detailed mechanism of oxidation of Ni–P alloys,” Therm. J. Anal. Calorim. 55, 981–987 (1999).
    [CrossRef]
  26. H. Bao and X. Ruan, “Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications,” Opt. Lett. 35, 3378–3380 (2010).
    [CrossRef]
  27. L. Yang, Q. Feng, B. Ng, X. Luo, and M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3, 102602 (2010).
    [CrossRef]
  28. A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech House, 1995).
  29. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [CrossRef]
  30. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [CrossRef]
  31. T. D. Kang, H. S. Lee, and H. Lee, “Optical properties of black NiO and CoO single crystals studied with spectroscopic ellipsometry,” Korean J. Phys. Soc. 50, 632–637 (2007).
    [CrossRef]
  32. E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998), Vol. 3.
  33. E. B. Grann, M. G. Moharam, and D. A. Pommet, “Optimal design for antireflective tapered two-dimensional subwavelength grating structures,” J. Opt. Soc. Am. A 12, 333–339 (1995).
    [CrossRef]

2012

T. Hwang, A. Vorobyev, and C. Guo, “Formation of solar absorber surface on nickel with femtosecond laser irradiation,” Appl. Phys. A Mater. Sci. Process. 108, 299–303 (2012).
[CrossRef]

2011

K. Amemiya, S. Mukai, Y. Ichino, T. Zama, S. Kück, B. Hartree, and A. Deadman, “Final report on APMP.PR-S4: comparison of fiber optic power meter responsivity,” Metrologia 48, 02004 (2011).
[CrossRef]

Y. Liu, D. Beckett, and D. Hawthorne, “Effect of heat treatment, top coatings and conversion coatings on the corrosion properties of black electroless Ni-P films,” Appl. Surf. Sci. 257, 4486–4494 (2011).
[CrossRef]

A. Deinega, I. Valuev, B. Potapkin, and Y. Lozovik, “Minimizing light reflection from dielectric textured surfaces,” J. Opt. Soc. Am. A 28, 770–777 (2011).
[CrossRef]

2010

H. Bao, X. Ruan, and T. S. Fisher, “Optical properties of ordered vertical arrays of multi-walled carbon nanotubes from FDTD simulations,” Opt. Express 18, 6347–6359 (2010).
[CrossRef]

H. Bao and X. Ruan, “Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications,” Opt. Lett. 35, 3378–3380 (2010).
[CrossRef]

V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Ultralow reflectance metal surfaces by ultrafast laser texturing,” Appl. Opt. 49, 5983–5988 (2010).
[CrossRef]

L. Yang, Q. Feng, B. Ng, X. Luo, and M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3, 102602 (2010).
[CrossRef]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

2009

E. Lidorikis and A. C. Ferrari, “Photonics with multiwall carbon nanotube arrays,” ACS Nano 3, 1238–1248 (2009).
[CrossRef]

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106, 6044–6047 (2009).
[CrossRef]

2008

Z. P. Yang, L. J. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[CrossRef]

Y. F. Wang, W. G. Fu, M. Feng, and X. W. Cao, “Investigation of the structure and the physical properties of nickel–phosphorus ultra-black surfaces,” Appl. Phys. A Mater. Sci. Process. 90, 549–553 (2008).
[CrossRef]

2007

T. D. Kang, H. S. Lee, and H. Lee, “Optical properties of black NiO and CoO single crystals studied with spectroscopic ellipsometry,” Korean J. Phys. Soc. 50, 632–637 (2007).
[CrossRef]

2006

G. Cui, N. Li, D. Li, J. Zheng, and Q. Wu, “The physical and electrochemical properties of electroless deposited nickelnickel–phosphorusphosphorus black coatings,” Surf. Coat. Technol. 200, 6808–6814 (2006).
[CrossRef]

V. Saxena, R. U. Rani, and A. K. Sharma, “Studies on ultra high solar absorber black electroless nickel coatings on aluminum alloys for space application,” Surf. Coat. Technol. 201, 855–862 (2006).
[CrossRef]

J. H. Lehman, R. Deshpande, P. Rice, B. To, and A. C. Dillon, “Carbon multi-walled nanotubes grown by HWCVD on a pyroelectric detector,” Infrared Phys. Technol. 47, 246–250 (2006).
[CrossRef]

2005

M. Lira-Cantu, A. M. Sabio, A. Brustenga, and P. Gomez-Romero, “Electrochemical deposition of black nickel solar absorber coatings on stainless steel AISI316L for thermal solar cells,” Sol. Energy Mater. Sol. Cells 87, 685–694 (2005).
[CrossRef]

M. Endo and T. Inoue, “A double calorimeter for 10 W level laser power measurements,” IEEE Trans. Instrum. Meas. 54, 688–691 (2005).
[CrossRef]

J. H. Lehman, C. Engtrakul, T. Gennett, and A. C. Dillon, “Single-wall carbon nanotube coating on a pyroelectric detector,” Appl. Opt. 44, 483–488 (2005).
[CrossRef]

2003

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannell, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14, 916–922 (2003).
[CrossRef]

2002

R. J. C. Brown, P. J. Brewer, and M. J. T. Milton, “The physical and chemical properties of electroless nickel–phosphorus alloys and low reflectance nickel–phosphorus black surfaces,” J. Mater. Chem. 12, 2749–2754 (2002).
[CrossRef]

1999

M. Wierzbicka and A. Malecki, “The detailed mechanism of oxidation of Ni–P alloys,” Therm. J. Anal. Calorim. 55, 981–987 (1999).
[CrossRef]

Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24, 1422–1424 (1999).
[CrossRef]

1998

1996

R. N. Duncan, “The metallurgical structure of electroless nickel deposits: effect on coating properties,” Plating Surf. Finish. 83, 65–69 (1996).

1995

1990

S. Kodama, M. Horiuchi, T. Kunii, and K. Kuroda, “Ultra-black nickel–phosphorus alloy optical absorber,” IEEE Trans. Instrum. Meas. 39, 230–232 (1990).
[CrossRef]

1987

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[CrossRef]

1980

S. N. Kumar, L. K. Malhotra, and K. L. Chopra, “Low-cost electroless nickel black coatings for photothermal conversion,” Sol. Energy Mater. 3, 519–532 (1980).
[CrossRef]

C. Johnson, “Black electroless nickel surface morphologies with extremely high light absorption capacity,” Metal Finish. 78, 21–24 (1980).

Ajayan, P. M.

Z. P. Yang, L. J. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[CrossRef]

Amemiya, K.

K. Amemiya, S. Mukai, Y. Ichino, T. Zama, S. Kück, B. Hartree, and A. Deadman, “Final report on APMP.PR-S4: comparison of fiber optic power meter responsivity,” Metrologia 48, 02004 (2011).
[CrossRef]

Bao, H.

Beckett, D.

Y. Liu, D. Beckett, and D. Hawthorne, “Effect of heat treatment, top coatings and conversion coatings on the corrosion properties of black electroless Ni-P films,” Appl. Surf. Sci. 257, 4486–4494 (2011).
[CrossRef]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Brewer, P. J.

R. J. C. Brown, P. J. Brewer, and M. J. T. Milton, “The physical and chemical properties of electroless nickel–phosphorus alloys and low reflectance nickel–phosphorus black surfaces,” J. Mater. Chem. 12, 2749–2754 (2002).
[CrossRef]

Brown, R. J. C.

R. J. C. Brown, P. J. Brewer, and M. J. T. Milton, “The physical and chemical properties of electroless nickel–phosphorus alloys and low reflectance nickel–phosphorus black surfaces,” J. Mater. Chem. 12, 2749–2754 (2002).
[CrossRef]

Brustenga, A.

M. Lira-Cantu, A. M. Sabio, A. Brustenga, and P. Gomez-Romero, “Electrochemical deposition of black nickel solar absorber coatings on stainless steel AISI316L for thermal solar cells,” Sol. Energy Mater. Sol. Cells 87, 685–694 (2005).
[CrossRef]

Bur, J. A.

Z. P. Yang, L. J. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[CrossRef]

Campbell, P.

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[CrossRef]

Cao, X. W.

Y. F. Wang, W. G. Fu, M. Feng, and X. W. Cao, “Investigation of the structure and the physical properties of nickel–phosphorus ultra-black surfaces,” Appl. Phys. A Mater. Sci. Process. 90, 549–553 (2008).
[CrossRef]

Chopra, K. L.

S. N. Kumar, L. K. Malhotra, and K. L. Chopra, “Low-cost electroless nickel black coatings for photothermal conversion,” Sol. Energy Mater. 3, 519–532 (1980).
[CrossRef]

Ci, L. J.

Z. P. Yang, L. J. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[CrossRef]

Cui, G.

G. Cui, N. Li, D. Li, J. Zheng, and Q. Wu, “The physical and electrochemical properties of electroless deposited nickelnickel–phosphorusphosphorus black coatings,” Surf. Coat. Technol. 200, 6808–6814 (2006).
[CrossRef]

Deadman, A.

K. Amemiya, S. Mukai, Y. Ichino, T. Zama, S. Kück, B. Hartree, and A. Deadman, “Final report on APMP.PR-S4: comparison of fiber optic power meter responsivity,” Metrologia 48, 02004 (2011).
[CrossRef]

Deinega, A.

Deshpande, R.

J. H. Lehman, R. Deshpande, P. Rice, B. To, and A. C. Dillon, “Carbon multi-walled nanotubes grown by HWCVD on a pyroelectric detector,” Infrared Phys. Technol. 47, 246–250 (2006).
[CrossRef]

Dillon, A. C.

J. H. Lehman, R. Deshpande, P. Rice, B. To, and A. C. Dillon, “Carbon multi-walled nanotubes grown by HWCVD on a pyroelectric detector,” Infrared Phys. Technol. 47, 246–250 (2006).
[CrossRef]

J. H. Lehman, C. Engtrakul, T. Gennett, and A. C. Dillon, “Single-wall carbon nanotube coating on a pyroelectric detector,” Appl. Opt. 44, 483–488 (2005).
[CrossRef]

Djurisic, A. B.

Duncan, R. N.

R. N. Duncan, “The metallurgical structure of electroless nickel deposits: effect on coating properties,” Plating Surf. Finish. 83, 65–69 (1996).

Elazar, J. M.

Endo, M.

M. Endo and T. Inoue, “A double calorimeter for 10 W level laser power measurements,” IEEE Trans. Instrum. Meas. 54, 688–691 (2005).
[CrossRef]

Engtrakul, C.

Eppeldauer, G.

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannell, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14, 916–922 (2003).
[CrossRef]

Feng, M.

Y. F. Wang, W. G. Fu, M. Feng, and X. W. Cao, “Investigation of the structure and the physical properties of nickel–phosphorus ultra-black surfaces,” Appl. Phys. A Mater. Sci. Process. 90, 549–553 (2008).
[CrossRef]

Feng, Q.

L. Yang, Q. Feng, B. Ng, X. Luo, and M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3, 102602 (2010).
[CrossRef]

Ferrari, A. C.

E. Lidorikis and A. C. Ferrari, “Photonics with multiwall carbon nanotube arrays,” ACS Nano 3, 1238–1248 (2009).
[CrossRef]

Fisher, T. S.

Fu, W. G.

Y. F. Wang, W. G. Fu, M. Feng, and X. W. Cao, “Investigation of the structure and the physical properties of nickel–phosphorus ultra-black surfaces,” Appl. Phys. A Mater. Sci. Process. 90, 549–553 (2008).
[CrossRef]

Futaba, D. N.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106, 6044–6047 (2009).
[CrossRef]

Gennett, T.

Ghosh, G.

E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998), Vol. 3.

Gomez-Romero, P.

M. Lira-Cantu, A. M. Sabio, A. Brustenga, and P. Gomez-Romero, “Electrochemical deposition of black nickel solar absorber coatings on stainless steel AISI316L for thermal solar cells,” Sol. Energy Mater. Sol. Cells 87, 685–694 (2005).
[CrossRef]

Grann, E. B.

Green, M. A.

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[CrossRef]

Guo, C.

T. Hwang, A. Vorobyev, and C. Guo, “Formation of solar absorber surface on nickel with femtosecond laser irradiation,” Appl. Phys. A Mater. Sci. Process. 108, 299–303 (2012).
[CrossRef]

Gupta, M. C.

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech House, 1995).

Hane, K.

Hartree, B.

K. Amemiya, S. Mukai, Y. Ichino, T. Zama, S. Kück, B. Hartree, and A. Deadman, “Final report on APMP.PR-S4: comparison of fiber optic power meter responsivity,” Metrologia 48, 02004 (2011).
[CrossRef]

Hata, K.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106, 6044–6047 (2009).
[CrossRef]

Hawthorne, D.

Y. Liu, D. Beckett, and D. Hawthorne, “Effect of heat treatment, top coatings and conversion coatings on the corrosion properties of black electroless Ni-P films,” Appl. Surf. Sci. 257, 4486–4494 (2011).
[CrossRef]

Hayamizu, Y.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106, 6044–6047 (2009).
[CrossRef]

Hong, M.

L. Yang, Q. Feng, B. Ng, X. Luo, and M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3, 102602 (2010).
[CrossRef]

Horiuchi, M.

S. Kodama, M. Horiuchi, T. Kunii, and K. Kuroda, “Ultra-black nickel–phosphorus alloy optical absorber,” IEEE Trans. Instrum. Meas. 39, 230–232 (1990).
[CrossRef]

Hwang, T.

T. Hwang, A. Vorobyev, and C. Guo, “Formation of solar absorber surface on nickel with femtosecond laser irradiation,” Appl. Phys. A Mater. Sci. Process. 108, 299–303 (2012).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Ichino, Y.

K. Amemiya, S. Mukai, Y. Ichino, T. Zama, S. Kück, B. Hartree, and A. Deadman, “Final report on APMP.PR-S4: comparison of fiber optic power meter responsivity,” Metrologia 48, 02004 (2011).
[CrossRef]

Inoue, T.

M. Endo and T. Inoue, “A double calorimeter for 10 W level laser power measurements,” IEEE Trans. Instrum. Meas. 54, 688–691 (2005).
[CrossRef]

Ishii, J.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106, 6044–6047 (2009).
[CrossRef]

Iyengar, V. V.

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Johnson, C.

C. Johnson, “Black electroless nickel surface morphologies with extremely high light absorption capacity,” Metal Finish. 78, 21–24 (1980).

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Kanamori, Y.

Kang, T. D.

T. D. Kang, H. S. Lee, and H. Lee, “Optical properties of black NiO and CoO single crystals studied with spectroscopic ellipsometry,” Korean J. Phys. Soc. 50, 632–637 (2007).
[CrossRef]

Kishida, H.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106, 6044–6047 (2009).
[CrossRef]

Kodama, S.

S. Kodama, M. Horiuchi, T. Kunii, and K. Kuroda, “Ultra-black nickel–phosphorus alloy optical absorber,” IEEE Trans. Instrum. Meas. 39, 230–232 (1990).
[CrossRef]

Kück, S.

K. Amemiya, S. Mukai, Y. Ichino, T. Zama, S. Kück, B. Hartree, and A. Deadman, “Final report on APMP.PR-S4: comparison of fiber optic power meter responsivity,” Metrologia 48, 02004 (2011).
[CrossRef]

Kumar, S. N.

S. N. Kumar, L. K. Malhotra, and K. L. Chopra, “Low-cost electroless nickel black coatings for photothermal conversion,” Sol. Energy Mater. 3, 519–532 (1980).
[CrossRef]

Kunii, T.

S. Kodama, M. Horiuchi, T. Kunii, and K. Kuroda, “Ultra-black nickel–phosphorus alloy optical absorber,” IEEE Trans. Instrum. Meas. 39, 230–232 (1990).
[CrossRef]

Kuroda, K.

S. Kodama, M. Horiuchi, T. Kunii, and K. Kuroda, “Ultra-black nickel–phosphorus alloy optical absorber,” IEEE Trans. Instrum. Meas. 39, 230–232 (1990).
[CrossRef]

Lee, H.

T. D. Kang, H. S. Lee, and H. Lee, “Optical properties of black NiO and CoO single crystals studied with spectroscopic ellipsometry,” Korean J. Phys. Soc. 50, 632–637 (2007).
[CrossRef]

Lee, H. S.

T. D. Kang, H. S. Lee, and H. Lee, “Optical properties of black NiO and CoO single crystals studied with spectroscopic ellipsometry,” Korean J. Phys. Soc. 50, 632–637 (2007).
[CrossRef]

Lehman, J.

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannell, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14, 916–922 (2003).
[CrossRef]

Lehman, J. H.

J. H. Lehman, R. Deshpande, P. Rice, B. To, and A. C. Dillon, “Carbon multi-walled nanotubes grown by HWCVD on a pyroelectric detector,” Infrared Phys. Technol. 47, 246–250 (2006).
[CrossRef]

J. H. Lehman, C. Engtrakul, T. Gennett, and A. C. Dillon, “Single-wall carbon nanotube coating on a pyroelectric detector,” Appl. Opt. 44, 483–488 (2005).
[CrossRef]

Li, D.

G. Cui, N. Li, D. Li, J. Zheng, and Q. Wu, “The physical and electrochemical properties of electroless deposited nickelnickel–phosphorusphosphorus black coatings,” Surf. Coat. Technol. 200, 6808–6814 (2006).
[CrossRef]

Li, N.

G. Cui, N. Li, D. Li, J. Zheng, and Q. Wu, “The physical and electrochemical properties of electroless deposited nickelnickel–phosphorusphosphorus black coatings,” Surf. Coat. Technol. 200, 6808–6814 (2006).
[CrossRef]

Lidorikis, E.

E. Lidorikis and A. C. Ferrari, “Photonics with multiwall carbon nanotube arrays,” ACS Nano 3, 1238–1248 (2009).
[CrossRef]

Lin, S. Y.

Z. P. Yang, L. J. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[CrossRef]

Lira-Cantu, M.

M. Lira-Cantu, A. M. Sabio, A. Brustenga, and P. Gomez-Romero, “Electrochemical deposition of black nickel solar absorber coatings on stainless steel AISI316L for thermal solar cells,” Sol. Energy Mater. Sol. Cells 87, 685–694 (2005).
[CrossRef]

Liu, Y.

Y. Liu, D. Beckett, and D. Hawthorne, “Effect of heat treatment, top coatings and conversion coatings on the corrosion properties of black electroless Ni-P films,” Appl. Surf. Sci. 257, 4486–4494 (2011).
[CrossRef]

Lozovik, Y.

Luo, X.

L. Yang, Q. Feng, B. Ng, X. Luo, and M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3, 102602 (2010).
[CrossRef]

Majewski, M. L.

Malecki, A.

M. Wierzbicka and A. Malecki, “The detailed mechanism of oxidation of Ni–P alloys,” Therm. J. Anal. Calorim. 55, 981–987 (1999).
[CrossRef]

Malhotra, L. K.

S. N. Kumar, L. K. Malhotra, and K. L. Chopra, “Low-cost electroless nickel black coatings for photothermal conversion,” Sol. Energy Mater. 3, 519–532 (1980).
[CrossRef]

Milton, M. J. T.

R. J. C. Brown, P. J. Brewer, and M. J. T. Milton, “The physical and chemical properties of electroless nickel–phosphorus alloys and low reflectance nickel–phosphorus black surfaces,” J. Mater. Chem. 12, 2749–2754 (2002).
[CrossRef]

Mizuno, K.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106, 6044–6047 (2009).
[CrossRef]

Moharam, M. G.

Mukai, S.

K. Amemiya, S. Mukai, Y. Ichino, T. Zama, S. Kück, B. Hartree, and A. Deadman, “Final report on APMP.PR-S4: comparison of fiber optic power meter responsivity,” Metrologia 48, 02004 (2011).
[CrossRef]

Nayak, B. K.

Ng, B.

L. Yang, Q. Feng, B. Ng, X. Luo, and M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3, 102602 (2010).
[CrossRef]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Palik, E. D.

E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998), Vol. 3.

Pannell, C.

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannell, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14, 916–922 (2003).
[CrossRef]

Pommet, D. A.

Potapkin, B.

Rakic, A. D.

Rani, R. U.

V. Saxena, R. U. Rani, and A. K. Sharma, “Studies on ultra high solar absorber black electroless nickel coatings on aluminum alloys for space application,” Surf. Coat. Technol. 201, 855–862 (2006).
[CrossRef]

Rice, P.

J. H. Lehman, R. Deshpande, P. Rice, B. To, and A. C. Dillon, “Carbon multi-walled nanotubes grown by HWCVD on a pyroelectric detector,” Infrared Phys. Technol. 47, 246–250 (2006).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Ruan, X.

Sabio, A. M.

M. Lira-Cantu, A. M. Sabio, A. Brustenga, and P. Gomez-Romero, “Electrochemical deposition of black nickel solar absorber coatings on stainless steel AISI316L for thermal solar cells,” Sol. Energy Mater. Sol. Cells 87, 685–694 (2005).
[CrossRef]

Sasaki, M.

Saxena, V.

V. Saxena, R. U. Rani, and A. K. Sharma, “Studies on ultra high solar absorber black electroless nickel coatings on aluminum alloys for space application,” Surf. Coat. Technol. 201, 855–862 (2006).
[CrossRef]

Sharma, A. K.

V. Saxena, R. U. Rani, and A. K. Sharma, “Studies on ultra high solar absorber black electroless nickel coatings on aluminum alloys for space application,” Surf. Coat. Technol. 201, 855–862 (2006).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech House, 1995).

Theocharous, E.

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannell, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14, 916–922 (2003).
[CrossRef]

To, B.

J. H. Lehman, R. Deshpande, P. Rice, B. To, and A. C. Dillon, “Carbon multi-walled nanotubes grown by HWCVD on a pyroelectric detector,” Infrared Phys. Technol. 47, 246–250 (2006).
[CrossRef]

Valuev, I.

Vorobyev, A.

T. Hwang, A. Vorobyev, and C. Guo, “Formation of solar absorber surface on nickel with femtosecond laser irradiation,” Appl. Phys. A Mater. Sci. Process. 108, 299–303 (2012).
[CrossRef]

Wang, Y. F.

Y. F. Wang, W. G. Fu, M. Feng, and X. W. Cao, “Investigation of the structure and the physical properties of nickel–phosphorus ultra-black surfaces,” Appl. Phys. A Mater. Sci. Process. 90, 549–553 (2008).
[CrossRef]

Wierzbicka, M.

M. Wierzbicka and A. Malecki, “The detailed mechanism of oxidation of Ni–P alloys,” Therm. J. Anal. Calorim. 55, 981–987 (1999).
[CrossRef]

Wu, Q.

G. Cui, N. Li, D. Li, J. Zheng, and Q. Wu, “The physical and electrochemical properties of electroless deposited nickelnickel–phosphorusphosphorus black coatings,” Surf. Coat. Technol. 200, 6808–6814 (2006).
[CrossRef]

Yang, L.

L. Yang, Q. Feng, B. Ng, X. Luo, and M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3, 102602 (2010).
[CrossRef]

Yang, Z. P.

Z. P. Yang, L. J. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[CrossRef]

Yasuda, S.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106, 6044–6047 (2009).
[CrossRef]

Yumura, M.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106, 6044–6047 (2009).
[CrossRef]

Zama, T.

K. Amemiya, S. Mukai, Y. Ichino, T. Zama, S. Kück, B. Hartree, and A. Deadman, “Final report on APMP.PR-S4: comparison of fiber optic power meter responsivity,” Metrologia 48, 02004 (2011).
[CrossRef]

Zheng, J.

G. Cui, N. Li, D. Li, J. Zheng, and Q. Wu, “The physical and electrochemical properties of electroless deposited nickelnickel–phosphorusphosphorus black coatings,” Surf. Coat. Technol. 200, 6808–6814 (2006).
[CrossRef]

ACS Nano

E. Lidorikis and A. C. Ferrari, “Photonics with multiwall carbon nanotube arrays,” ACS Nano 3, 1238–1248 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys. A Mater. Sci. Process.

T. Hwang, A. Vorobyev, and C. Guo, “Formation of solar absorber surface on nickel with femtosecond laser irradiation,” Appl. Phys. A Mater. Sci. Process. 108, 299–303 (2012).
[CrossRef]

Y. F. Wang, W. G. Fu, M. Feng, and X. W. Cao, “Investigation of the structure and the physical properties of nickel–phosphorus ultra-black surfaces,” Appl. Phys. A Mater. Sci. Process. 90, 549–553 (2008).
[CrossRef]

Appl. Phys. Express

L. Yang, Q. Feng, B. Ng, X. Luo, and M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3, 102602 (2010).
[CrossRef]

Appl. Surf. Sci.

Y. Liu, D. Beckett, and D. Hawthorne, “Effect of heat treatment, top coatings and conversion coatings on the corrosion properties of black electroless Ni-P films,” Appl. Surf. Sci. 257, 4486–4494 (2011).
[CrossRef]

Comput. Phys. Commun.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

IEEE Trans. Instrum. Meas.

S. Kodama, M. Horiuchi, T. Kunii, and K. Kuroda, “Ultra-black nickel–phosphorus alloy optical absorber,” IEEE Trans. Instrum. Meas. 39, 230–232 (1990).
[CrossRef]

M. Endo and T. Inoue, “A double calorimeter for 10 W level laser power measurements,” IEEE Trans. Instrum. Meas. 54, 688–691 (2005).
[CrossRef]

Infrared Phys. Technol.

J. H. Lehman, R. Deshpande, P. Rice, B. To, and A. C. Dillon, “Carbon multi-walled nanotubes grown by HWCVD on a pyroelectric detector,” Infrared Phys. Technol. 47, 246–250 (2006).
[CrossRef]

J. Appl. Phys.

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[CrossRef]

J. Mater. Chem.

R. J. C. Brown, P. J. Brewer, and M. J. T. Milton, “The physical and chemical properties of electroless nickel–phosphorus alloys and low reflectance nickel–phosphorus black surfaces,” J. Mater. Chem. 12, 2749–2754 (2002).
[CrossRef]

J. Opt. Soc. Am. A

Korean J. Phys. Soc.

T. D. Kang, H. S. Lee, and H. Lee, “Optical properties of black NiO and CoO single crystals studied with spectroscopic ellipsometry,” Korean J. Phys. Soc. 50, 632–637 (2007).
[CrossRef]

Meas. Sci. Technol.

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannell, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14, 916–922 (2003).
[CrossRef]

Metal Finish.

C. Johnson, “Black electroless nickel surface morphologies with extremely high light absorption capacity,” Metal Finish. 78, 21–24 (1980).

Metrologia

K. Amemiya, S. Mukai, Y. Ichino, T. Zama, S. Kück, B. Hartree, and A. Deadman, “Final report on APMP.PR-S4: comparison of fiber optic power meter responsivity,” Metrologia 48, 02004 (2011).
[CrossRef]

Nano Lett.

Z. P. Yang, L. J. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Plating Surf. Finish.

R. N. Duncan, “The metallurgical structure of electroless nickel deposits: effect on coating properties,” Plating Surf. Finish. 83, 65–69 (1996).

Proc. Natl. Acad. Sci. U.S.A.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106, 6044–6047 (2009).
[CrossRef]

Sol. Energy Mater.

S. N. Kumar, L. K. Malhotra, and K. L. Chopra, “Low-cost electroless nickel black coatings for photothermal conversion,” Sol. Energy Mater. 3, 519–532 (1980).
[CrossRef]

Sol. Energy Mater. Sol. Cells

M. Lira-Cantu, A. M. Sabio, A. Brustenga, and P. Gomez-Romero, “Electrochemical deposition of black nickel solar absorber coatings on stainless steel AISI316L for thermal solar cells,” Sol. Energy Mater. Sol. Cells 87, 685–694 (2005).
[CrossRef]

Surf. Coat. Technol.

G. Cui, N. Li, D. Li, J. Zheng, and Q. Wu, “The physical and electrochemical properties of electroless deposited nickelnickel–phosphorusphosphorus black coatings,” Surf. Coat. Technol. 200, 6808–6814 (2006).
[CrossRef]

V. Saxena, R. U. Rani, and A. K. Sharma, “Studies on ultra high solar absorber black electroless nickel coatings on aluminum alloys for space application,” Surf. Coat. Technol. 201, 855–862 (2006).
[CrossRef]

Therm. J. Anal. Calorim.

M. Wierzbicka and A. Malecki, “The detailed mechanism of oxidation of Ni–P alloys,” Therm. J. Anal. Calorim. 55, 981–987 (1999).
[CrossRef]

Other

A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech House, 1995).

E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998), Vol. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Surface morphologies of conical pores considered in our simulation model of a porous NiP black surface: (a) tiled right-circular conical pores and (b) conical pores also having a stalagmite-like morphology. We used the structure in (b) in our simulations throughout this study because the structure in (a) has a certain amount of flat surface, which produces a large Fresnel reflectance. (c) Cross-sectional view of the structure in (b). The plane wave light source and flux plane to detect the incident/reflected light flux were set just above the target morphology. Perfect matched layers (PMLs) were also placed at the top and bottom of the simulation geometry to avoid undesired light propagation at the boundary. We simulated the spectral reflectance of the model with various geometrical parameters r, l, and h.

Fig. 2.
Fig. 2.

(a) Setup for reflectance measurement by comparison with a standard reference material (SRM) of 2% reflectance. Samples were placed at the port of an integrating sphere, and the relative signals of reflected light were detected by a photodiode (PD) attached to the integrating sphere for comparison. (b) Setup used to obtain the experimental data for the dependence on oblique incidence.

Fig. 3.
Fig. 3.

Typical spectral reflectance simulated on the porous NiP model with the Fresnel surface reflectance for each composition (nickel metal and black nickel oxide). Values of r, h, and l are in units of μm. Experimental data for a commercial porous NiP black product are also plotted. Error bars represent the expanded uncertainty at a level of confidence of approximately 95%, which includes the contributions from the reference material of reflectance and the measurement repeatability.

Fig. 4.
Fig. 4.

Typical spectral reflectance of porous NiP model simulated by 2D and 3D FDTD methods. In 2D FDTD, we assume a geometry resembling an infinite 1D grating having the same cross section as the conical pores in 3D FDTD. The directions of two types of polarization (S and P) applied to the 1D grating are also illustrated schematically. Values of r, h, and l are in units of μm.

Fig. 5.
Fig. 5.

Optical power distribution on a unit cell of the model of porous NiP black surface simulated by 3D FDTD at a wavelength of (a) 633 nm and (b) 1550 nm. The vectors E, H, and k represent the electric field, the magnetic field, and the wave vector of the incident wave, respectively. (c) Absorption coefficient of black nickel oxide derived from the Lorentz parameters in Table 1.

Fig. 6.
Fig. 6.

Dependence of the spectral reflectance of the porous NiP black surface model on the thickness of the absorption layer (black nickel oxide) with fixed values of r=1μm and h=5μm. Values of r, h, and l are in units of μm. A thicker absorption layer yielded a lower total reflectance, especially in the near-IR.

Fig. 7.
Fig. 7.

Dependence of the spectral reflectance of the porous NiP black surface model on the metal substrate material with fixed values of r=1μm and h=5μm. Values of r, h, and l are in units of μm. (a) With a sufficiently thick absorption layer, the total reflectance was not greatly affected by the substrate, whereas (b) a thinner absorption layer caused an increase in the total reflectance when applied to a perfect metal substrate.

Fig. 8.
Fig. 8.

Dependence of the total reflectance of the porous NiP black surface model on the aspect ratio of the conical pores with various values of r and h for (a) l=3μm and (b) l=1.5μm. Values of r, h, and l are in units of μm. Regardless of the absorption layer thickness, the larger aspect ratio yields a lower average total reflectance. (c) Decay of average reflectance plotted against aspect ratio h/r. The fitted exponential function is also plotted.

Fig. 9.
Fig. 9.

Spectral reflectance of the porous NiP black surface model for the mid-IR region with various values of r, h, and l in units of μm.

Fig. 10.
Fig. 10.

Reflectance of the porous NiP black surface model at 850 nm versus incident angle of the oblique plane waves (normal incidence corresponds to an incident angle of 0°) with fixed values of r=1μm, h=4μm, and l=3μm. The responses to transverse electric (s-pol.) and transverse magnetic (p-pol.) polarized plane waves were simulated. Experimental data for a commercial porous NiP black product obtained with a nonpolarized beam are also plotted. The measured relative reflectance values were multiplied by the absolute reflectance measured at normal incidence. Error bars represent the expanded uncertainty with a level of confidence of approximately 95%, which includes the contributions from the reference material and the measurement repeatability.

Tables (1)

Tables Icon

Table 1. Lorentz Parameters of Black Nickel Oxide Used in This Studya

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)=ε+nσnωn2ωn2ω2iωγn,
Rexp(CdL),

Metrics