Abstract

A spectral imaging system consisting of a Fourier transform-infrared spectrometer, a high-speed infrared camera, and a bundle of hollow-optical fibers transmitting infrared radiation images was constructed. Infrared transmission spectra were obtained by carefully processing multiple interferograms taken by high-speed photography. Infrared spectral images of a variety of samples captured by the system were measured. We successfully detected existence maps of the oil and fat of biological samples by mapping the transmission of specific wavelengths in the spectrum.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Wong, R. Wong, T. Caputo, T. Godwin, and B. Rigas, “Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis,” Proc. Natl. Acad. Sci. USA 88, 10988–10992 (1991).
    [CrossRef]
  2. L. McIntosh, M. Jackson, H. Mantsch, M. Stranc, D. Pilavdzic, and A. Crowson, “Infrared spectra of basal cell carcinomas are distinct from non-tumor-bearing skin components,” J. Invest. Dermatol. 112, 951–956 (1999).
    [CrossRef]
  3. Y. Xu, L. Yang, Z. Xu, Y. Zhao, X. Ling, Q. Li, J. Wang, N. Zhang, Y. Zhang, and J. Wu, “Distinguishing malignant from normal stomach tissues and its in vivo, in situ measurement in operating process using FTIR fiber-optic techniques,” Sci. China Ser. B 48, 167–175 (2005).
    [CrossRef]
  4. D. Maziak, M. Do, F. Shamji, S. Sundaresan, D. Perkins, and P. Wong, “Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: an exploratory study,” Cancer Detect. Prev. 31, 244–253 (2007).
    [CrossRef]
  5. S. Kazarian, and K. Chan, “Applications of ATR-FTIR spectroscopic imaging to biomedical samples,” Biochim. Biophys. Acta 1758, 858–867 (2006).
    [CrossRef]
  6. P. Garidel, and M. Boese, “Mid infrared microspectroscopic mapping and imaging: a bio-analytical tool for spatially and chemically resolved tissue characterization and evaluation of drug permeation within tissues,” Microsc. Res. Tech. 70, 336–349 (2007).
    [CrossRef]
  7. R. Mendelsohn, M. Rerek, and D. Moore, “Infrared spectroscopy and microscopic imaging of stratum corneum models and skin,” Phys. Chem. Chem. Phys. 2, 4651–4657 (2000).
    [CrossRef]
  8. J. Anastassopoulou, E. Boukaki, C. Conti, P. Ferraris, E. Giorgini, C. Rubini, S. Sabbatini, T. Theophanides, and G. Tosi, “Microimaging FT-IR spectroscopy on pathological breast tissues,” Vib. Spectrosc. 51, 270–275 (2009).
    [CrossRef]
  9. R. Mendelsohn, E. Paschalis, P. Sherman, and A. Boskey, “IR microscopic imaging of pathological states and fracture healing of bone,” Appl. Sectrosc. 54, 1183–1191 (2000).
    [CrossRef]
  10. L. B. Mostaço-Guidolin, L. S. Murakami, A. Nomizo, and L. Bachmann, “Fourier transform infrared spectroscopy of skin cancer cells and tissues,” Appl. Spectosc. Rev. 44, 438–455 (2009).
    [CrossRef]
  11. J. Nishii, T. Yamashita, and T. Yamagishi, “Coherent infrared fiber image bundle,” Appl. Phys. Lett. 59, 2639–2641 (1991).
    [CrossRef]
  12. I. Paiss, and A. Katzir, “Thermal imaging by ordered bundles of silver halide crystalline fibers,” Appl. Phys. Lett. 61, 1384–1386 (1992).
    [CrossRef]
  13. Y. Lavi, A. Millo, and A. Katzir, “Thin ordered bundles of infrared-transmitting silver halide fibers,” Appl. Phys. Lett. 87, 241122 (2005).
    [CrossRef]
  14. Y. Matsuura, M. Saito, M. Miyagi, and A. Hongo, “Loss characteristics of circular hollow wave guide for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427(1989).
    [CrossRef]
  15. Y. Matsuura, S. Kino, and T. Katagiri, “Hollow-fiber-based flexible probe for remote measurement of infrared attenuated total refection,” Appl. Opt. 48, 5396–5400 (2009).
    [CrossRef]
  16. Y. Matsuura, and K. Naito, “Flexible hollow optical fiber bundle for infrared thermal image,” Biomed. Opt. Express 2, 65–70 (2011).
    [CrossRef]
  17. Y. Abe, Y. Shi, Y. Matsuura, and Miyagi, “Flexible small-core hollow fibers with an inner polymer coating,” Opt. Lett. 25, 150–152 (2000).
    [CrossRef]
  18. J. F. Rabolt, and R. Bellar, “The nature of apodization in Fourier transform spectroscopy,” Appl. Spectosc. 35, 132–135 (1981).
    [CrossRef]
  19. F. Benabid, “Hollow-core photonic bandgap fibre: new light guidance for new science and technology,” Phil. Trans. R. Soc. A 364, 3439–3462 (2006).
    [CrossRef]

2011

2009

L. B. Mostaço-Guidolin, L. S. Murakami, A. Nomizo, and L. Bachmann, “Fourier transform infrared spectroscopy of skin cancer cells and tissues,” Appl. Spectosc. Rev. 44, 438–455 (2009).
[CrossRef]

J. Anastassopoulou, E. Boukaki, C. Conti, P. Ferraris, E. Giorgini, C. Rubini, S. Sabbatini, T. Theophanides, and G. Tosi, “Microimaging FT-IR spectroscopy on pathological breast tissues,” Vib. Spectrosc. 51, 270–275 (2009).
[CrossRef]

Y. Matsuura, S. Kino, and T. Katagiri, “Hollow-fiber-based flexible probe for remote measurement of infrared attenuated total refection,” Appl. Opt. 48, 5396–5400 (2009).
[CrossRef]

2007

P. Garidel, and M. Boese, “Mid infrared microspectroscopic mapping and imaging: a bio-analytical tool for spatially and chemically resolved tissue characterization and evaluation of drug permeation within tissues,” Microsc. Res. Tech. 70, 336–349 (2007).
[CrossRef]

D. Maziak, M. Do, F. Shamji, S. Sundaresan, D. Perkins, and P. Wong, “Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: an exploratory study,” Cancer Detect. Prev. 31, 244–253 (2007).
[CrossRef]

2006

S. Kazarian, and K. Chan, “Applications of ATR-FTIR spectroscopic imaging to biomedical samples,” Biochim. Biophys. Acta 1758, 858–867 (2006).
[CrossRef]

F. Benabid, “Hollow-core photonic bandgap fibre: new light guidance for new science and technology,” Phil. Trans. R. Soc. A 364, 3439–3462 (2006).
[CrossRef]

2005

Y. Xu, L. Yang, Z. Xu, Y. Zhao, X. Ling, Q. Li, J. Wang, N. Zhang, Y. Zhang, and J. Wu, “Distinguishing malignant from normal stomach tissues and its in vivo, in situ measurement in operating process using FTIR fiber-optic techniques,” Sci. China Ser. B 48, 167–175 (2005).
[CrossRef]

Y. Lavi, A. Millo, and A. Katzir, “Thin ordered bundles of infrared-transmitting silver halide fibers,” Appl. Phys. Lett. 87, 241122 (2005).
[CrossRef]

2000

Y. Abe, Y. Shi, Y. Matsuura, and Miyagi, “Flexible small-core hollow fibers with an inner polymer coating,” Opt. Lett. 25, 150–152 (2000).
[CrossRef]

R. Mendelsohn, M. Rerek, and D. Moore, “Infrared spectroscopy and microscopic imaging of stratum corneum models and skin,” Phys. Chem. Chem. Phys. 2, 4651–4657 (2000).
[CrossRef]

R. Mendelsohn, E. Paschalis, P. Sherman, and A. Boskey, “IR microscopic imaging of pathological states and fracture healing of bone,” Appl. Sectrosc. 54, 1183–1191 (2000).
[CrossRef]

1999

L. McIntosh, M. Jackson, H. Mantsch, M. Stranc, D. Pilavdzic, and A. Crowson, “Infrared spectra of basal cell carcinomas are distinct from non-tumor-bearing skin components,” J. Invest. Dermatol. 112, 951–956 (1999).
[CrossRef]

1992

I. Paiss, and A. Katzir, “Thermal imaging by ordered bundles of silver halide crystalline fibers,” Appl. Phys. Lett. 61, 1384–1386 (1992).
[CrossRef]

1991

J. Nishii, T. Yamashita, and T. Yamagishi, “Coherent infrared fiber image bundle,” Appl. Phys. Lett. 59, 2639–2641 (1991).
[CrossRef]

P. Wong, R. Wong, T. Caputo, T. Godwin, and B. Rigas, “Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis,” Proc. Natl. Acad. Sci. USA 88, 10988–10992 (1991).
[CrossRef]

1989

1981

J. F. Rabolt, and R. Bellar, “The nature of apodization in Fourier transform spectroscopy,” Appl. Spectosc. 35, 132–135 (1981).
[CrossRef]

Abe, Y.

Anastassopoulou, J.

J. Anastassopoulou, E. Boukaki, C. Conti, P. Ferraris, E. Giorgini, C. Rubini, S. Sabbatini, T. Theophanides, and G. Tosi, “Microimaging FT-IR spectroscopy on pathological breast tissues,” Vib. Spectrosc. 51, 270–275 (2009).
[CrossRef]

Bachmann, L.

L. B. Mostaço-Guidolin, L. S. Murakami, A. Nomizo, and L. Bachmann, “Fourier transform infrared spectroscopy of skin cancer cells and tissues,” Appl. Spectosc. Rev. 44, 438–455 (2009).
[CrossRef]

Bellar, R.

J. F. Rabolt, and R. Bellar, “The nature of apodization in Fourier transform spectroscopy,” Appl. Spectosc. 35, 132–135 (1981).
[CrossRef]

Benabid, F.

F. Benabid, “Hollow-core photonic bandgap fibre: new light guidance for new science and technology,” Phil. Trans. R. Soc. A 364, 3439–3462 (2006).
[CrossRef]

Boese, M.

P. Garidel, and M. Boese, “Mid infrared microspectroscopic mapping and imaging: a bio-analytical tool for spatially and chemically resolved tissue characterization and evaluation of drug permeation within tissues,” Microsc. Res. Tech. 70, 336–349 (2007).
[CrossRef]

Boskey, A.

R. Mendelsohn, E. Paschalis, P. Sherman, and A. Boskey, “IR microscopic imaging of pathological states and fracture healing of bone,” Appl. Sectrosc. 54, 1183–1191 (2000).
[CrossRef]

Boukaki, E.

J. Anastassopoulou, E. Boukaki, C. Conti, P. Ferraris, E. Giorgini, C. Rubini, S. Sabbatini, T. Theophanides, and G. Tosi, “Microimaging FT-IR spectroscopy on pathological breast tissues,” Vib. Spectrosc. 51, 270–275 (2009).
[CrossRef]

Caputo, T.

P. Wong, R. Wong, T. Caputo, T. Godwin, and B. Rigas, “Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis,” Proc. Natl. Acad. Sci. USA 88, 10988–10992 (1991).
[CrossRef]

Chan, K.

S. Kazarian, and K. Chan, “Applications of ATR-FTIR spectroscopic imaging to biomedical samples,” Biochim. Biophys. Acta 1758, 858–867 (2006).
[CrossRef]

Conti, C.

J. Anastassopoulou, E. Boukaki, C. Conti, P. Ferraris, E. Giorgini, C. Rubini, S. Sabbatini, T. Theophanides, and G. Tosi, “Microimaging FT-IR spectroscopy on pathological breast tissues,” Vib. Spectrosc. 51, 270–275 (2009).
[CrossRef]

Crowson, A.

L. McIntosh, M. Jackson, H. Mantsch, M. Stranc, D. Pilavdzic, and A. Crowson, “Infrared spectra of basal cell carcinomas are distinct from non-tumor-bearing skin components,” J. Invest. Dermatol. 112, 951–956 (1999).
[CrossRef]

Do, M.

D. Maziak, M. Do, F. Shamji, S. Sundaresan, D. Perkins, and P. Wong, “Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: an exploratory study,” Cancer Detect. Prev. 31, 244–253 (2007).
[CrossRef]

Ferraris, P.

J. Anastassopoulou, E. Boukaki, C. Conti, P. Ferraris, E. Giorgini, C. Rubini, S. Sabbatini, T. Theophanides, and G. Tosi, “Microimaging FT-IR spectroscopy on pathological breast tissues,” Vib. Spectrosc. 51, 270–275 (2009).
[CrossRef]

Garidel, P.

P. Garidel, and M. Boese, “Mid infrared microspectroscopic mapping and imaging: a bio-analytical tool for spatially and chemically resolved tissue characterization and evaluation of drug permeation within tissues,” Microsc. Res. Tech. 70, 336–349 (2007).
[CrossRef]

Giorgini, E.

J. Anastassopoulou, E. Boukaki, C. Conti, P. Ferraris, E. Giorgini, C. Rubini, S. Sabbatini, T. Theophanides, and G. Tosi, “Microimaging FT-IR spectroscopy on pathological breast tissues,” Vib. Spectrosc. 51, 270–275 (2009).
[CrossRef]

Godwin, T.

P. Wong, R. Wong, T. Caputo, T. Godwin, and B. Rigas, “Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis,” Proc. Natl. Acad. Sci. USA 88, 10988–10992 (1991).
[CrossRef]

Hongo, A.

Jackson, M.

L. McIntosh, M. Jackson, H. Mantsch, M. Stranc, D. Pilavdzic, and A. Crowson, “Infrared spectra of basal cell carcinomas are distinct from non-tumor-bearing skin components,” J. Invest. Dermatol. 112, 951–956 (1999).
[CrossRef]

Katagiri, T.

Katzir, A.

Y. Lavi, A. Millo, and A. Katzir, “Thin ordered bundles of infrared-transmitting silver halide fibers,” Appl. Phys. Lett. 87, 241122 (2005).
[CrossRef]

I. Paiss, and A. Katzir, “Thermal imaging by ordered bundles of silver halide crystalline fibers,” Appl. Phys. Lett. 61, 1384–1386 (1992).
[CrossRef]

Kazarian, S.

S. Kazarian, and K. Chan, “Applications of ATR-FTIR spectroscopic imaging to biomedical samples,” Biochim. Biophys. Acta 1758, 858–867 (2006).
[CrossRef]

Kino, S.

Lavi, Y.

Y. Lavi, A. Millo, and A. Katzir, “Thin ordered bundles of infrared-transmitting silver halide fibers,” Appl. Phys. Lett. 87, 241122 (2005).
[CrossRef]

Li, Q.

Y. Xu, L. Yang, Z. Xu, Y. Zhao, X. Ling, Q. Li, J. Wang, N. Zhang, Y. Zhang, and J. Wu, “Distinguishing malignant from normal stomach tissues and its in vivo, in situ measurement in operating process using FTIR fiber-optic techniques,” Sci. China Ser. B 48, 167–175 (2005).
[CrossRef]

Ling, X.

Y. Xu, L. Yang, Z. Xu, Y. Zhao, X. Ling, Q. Li, J. Wang, N. Zhang, Y. Zhang, and J. Wu, “Distinguishing malignant from normal stomach tissues and its in vivo, in situ measurement in operating process using FTIR fiber-optic techniques,” Sci. China Ser. B 48, 167–175 (2005).
[CrossRef]

Mantsch, H.

L. McIntosh, M. Jackson, H. Mantsch, M. Stranc, D. Pilavdzic, and A. Crowson, “Infrared spectra of basal cell carcinomas are distinct from non-tumor-bearing skin components,” J. Invest. Dermatol. 112, 951–956 (1999).
[CrossRef]

Matsuura, Y.

Maziak, D.

D. Maziak, M. Do, F. Shamji, S. Sundaresan, D. Perkins, and P. Wong, “Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: an exploratory study,” Cancer Detect. Prev. 31, 244–253 (2007).
[CrossRef]

McIntosh, L.

L. McIntosh, M. Jackson, H. Mantsch, M. Stranc, D. Pilavdzic, and A. Crowson, “Infrared spectra of basal cell carcinomas are distinct from non-tumor-bearing skin components,” J. Invest. Dermatol. 112, 951–956 (1999).
[CrossRef]

Mendelsohn, R.

R. Mendelsohn, E. Paschalis, P. Sherman, and A. Boskey, “IR microscopic imaging of pathological states and fracture healing of bone,” Appl. Sectrosc. 54, 1183–1191 (2000).
[CrossRef]

R. Mendelsohn, M. Rerek, and D. Moore, “Infrared spectroscopy and microscopic imaging of stratum corneum models and skin,” Phys. Chem. Chem. Phys. 2, 4651–4657 (2000).
[CrossRef]

Millo, A.

Y. Lavi, A. Millo, and A. Katzir, “Thin ordered bundles of infrared-transmitting silver halide fibers,” Appl. Phys. Lett. 87, 241122 (2005).
[CrossRef]

Miyagi,

Miyagi, M.

Moore, D.

R. Mendelsohn, M. Rerek, and D. Moore, “Infrared spectroscopy and microscopic imaging of stratum corneum models and skin,” Phys. Chem. Chem. Phys. 2, 4651–4657 (2000).
[CrossRef]

Mostaço-Guidolin, L. B.

L. B. Mostaço-Guidolin, L. S. Murakami, A. Nomizo, and L. Bachmann, “Fourier transform infrared spectroscopy of skin cancer cells and tissues,” Appl. Spectosc. Rev. 44, 438–455 (2009).
[CrossRef]

Murakami, L. S.

L. B. Mostaço-Guidolin, L. S. Murakami, A. Nomizo, and L. Bachmann, “Fourier transform infrared spectroscopy of skin cancer cells and tissues,” Appl. Spectosc. Rev. 44, 438–455 (2009).
[CrossRef]

Naito, K.

Nishii, J.

J. Nishii, T. Yamashita, and T. Yamagishi, “Coherent infrared fiber image bundle,” Appl. Phys. Lett. 59, 2639–2641 (1991).
[CrossRef]

Nomizo, A.

L. B. Mostaço-Guidolin, L. S. Murakami, A. Nomizo, and L. Bachmann, “Fourier transform infrared spectroscopy of skin cancer cells and tissues,” Appl. Spectosc. Rev. 44, 438–455 (2009).
[CrossRef]

Paiss, I.

I. Paiss, and A. Katzir, “Thermal imaging by ordered bundles of silver halide crystalline fibers,” Appl. Phys. Lett. 61, 1384–1386 (1992).
[CrossRef]

Paschalis, E.

R. Mendelsohn, E. Paschalis, P. Sherman, and A. Boskey, “IR microscopic imaging of pathological states and fracture healing of bone,” Appl. Sectrosc. 54, 1183–1191 (2000).
[CrossRef]

Perkins, D.

D. Maziak, M. Do, F. Shamji, S. Sundaresan, D. Perkins, and P. Wong, “Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: an exploratory study,” Cancer Detect. Prev. 31, 244–253 (2007).
[CrossRef]

Pilavdzic, D.

L. McIntosh, M. Jackson, H. Mantsch, M. Stranc, D. Pilavdzic, and A. Crowson, “Infrared spectra of basal cell carcinomas are distinct from non-tumor-bearing skin components,” J. Invest. Dermatol. 112, 951–956 (1999).
[CrossRef]

Rabolt, J. F.

J. F. Rabolt, and R. Bellar, “The nature of apodization in Fourier transform spectroscopy,” Appl. Spectosc. 35, 132–135 (1981).
[CrossRef]

Rerek, M.

R. Mendelsohn, M. Rerek, and D. Moore, “Infrared spectroscopy and microscopic imaging of stratum corneum models and skin,” Phys. Chem. Chem. Phys. 2, 4651–4657 (2000).
[CrossRef]

Rigas, B.

P. Wong, R. Wong, T. Caputo, T. Godwin, and B. Rigas, “Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis,” Proc. Natl. Acad. Sci. USA 88, 10988–10992 (1991).
[CrossRef]

Rubini, C.

J. Anastassopoulou, E. Boukaki, C. Conti, P. Ferraris, E. Giorgini, C. Rubini, S. Sabbatini, T. Theophanides, and G. Tosi, “Microimaging FT-IR spectroscopy on pathological breast tissues,” Vib. Spectrosc. 51, 270–275 (2009).
[CrossRef]

Sabbatini, S.

J. Anastassopoulou, E. Boukaki, C. Conti, P. Ferraris, E. Giorgini, C. Rubini, S. Sabbatini, T. Theophanides, and G. Tosi, “Microimaging FT-IR spectroscopy on pathological breast tissues,” Vib. Spectrosc. 51, 270–275 (2009).
[CrossRef]

Saito, M.

Shamji, F.

D. Maziak, M. Do, F. Shamji, S. Sundaresan, D. Perkins, and P. Wong, “Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: an exploratory study,” Cancer Detect. Prev. 31, 244–253 (2007).
[CrossRef]

Sherman, P.

R. Mendelsohn, E. Paschalis, P. Sherman, and A. Boskey, “IR microscopic imaging of pathological states and fracture healing of bone,” Appl. Sectrosc. 54, 1183–1191 (2000).
[CrossRef]

Shi, Y.

Stranc, M.

L. McIntosh, M. Jackson, H. Mantsch, M. Stranc, D. Pilavdzic, and A. Crowson, “Infrared spectra of basal cell carcinomas are distinct from non-tumor-bearing skin components,” J. Invest. Dermatol. 112, 951–956 (1999).
[CrossRef]

Sundaresan, S.

D. Maziak, M. Do, F. Shamji, S. Sundaresan, D. Perkins, and P. Wong, “Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: an exploratory study,” Cancer Detect. Prev. 31, 244–253 (2007).
[CrossRef]

Theophanides, T.

J. Anastassopoulou, E. Boukaki, C. Conti, P. Ferraris, E. Giorgini, C. Rubini, S. Sabbatini, T. Theophanides, and G. Tosi, “Microimaging FT-IR spectroscopy on pathological breast tissues,” Vib. Spectrosc. 51, 270–275 (2009).
[CrossRef]

Tosi, G.

J. Anastassopoulou, E. Boukaki, C. Conti, P. Ferraris, E. Giorgini, C. Rubini, S. Sabbatini, T. Theophanides, and G. Tosi, “Microimaging FT-IR spectroscopy on pathological breast tissues,” Vib. Spectrosc. 51, 270–275 (2009).
[CrossRef]

Wang, J.

Y. Xu, L. Yang, Z. Xu, Y. Zhao, X. Ling, Q. Li, J. Wang, N. Zhang, Y. Zhang, and J. Wu, “Distinguishing malignant from normal stomach tissues and its in vivo, in situ measurement in operating process using FTIR fiber-optic techniques,” Sci. China Ser. B 48, 167–175 (2005).
[CrossRef]

Wong, P.

D. Maziak, M. Do, F. Shamji, S. Sundaresan, D. Perkins, and P. Wong, “Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: an exploratory study,” Cancer Detect. Prev. 31, 244–253 (2007).
[CrossRef]

P. Wong, R. Wong, T. Caputo, T. Godwin, and B. Rigas, “Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis,” Proc. Natl. Acad. Sci. USA 88, 10988–10992 (1991).
[CrossRef]

Wong, R.

P. Wong, R. Wong, T. Caputo, T. Godwin, and B. Rigas, “Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis,” Proc. Natl. Acad. Sci. USA 88, 10988–10992 (1991).
[CrossRef]

Wu, J.

Y. Xu, L. Yang, Z. Xu, Y. Zhao, X. Ling, Q. Li, J. Wang, N. Zhang, Y. Zhang, and J. Wu, “Distinguishing malignant from normal stomach tissues and its in vivo, in situ measurement in operating process using FTIR fiber-optic techniques,” Sci. China Ser. B 48, 167–175 (2005).
[CrossRef]

Xu, Y.

Y. Xu, L. Yang, Z. Xu, Y. Zhao, X. Ling, Q. Li, J. Wang, N. Zhang, Y. Zhang, and J. Wu, “Distinguishing malignant from normal stomach tissues and its in vivo, in situ measurement in operating process using FTIR fiber-optic techniques,” Sci. China Ser. B 48, 167–175 (2005).
[CrossRef]

Xu, Z.

Y. Xu, L. Yang, Z. Xu, Y. Zhao, X. Ling, Q. Li, J. Wang, N. Zhang, Y. Zhang, and J. Wu, “Distinguishing malignant from normal stomach tissues and its in vivo, in situ measurement in operating process using FTIR fiber-optic techniques,” Sci. China Ser. B 48, 167–175 (2005).
[CrossRef]

Yamagishi, T.

J. Nishii, T. Yamashita, and T. Yamagishi, “Coherent infrared fiber image bundle,” Appl. Phys. Lett. 59, 2639–2641 (1991).
[CrossRef]

Yamashita, T.

J. Nishii, T. Yamashita, and T. Yamagishi, “Coherent infrared fiber image bundle,” Appl. Phys. Lett. 59, 2639–2641 (1991).
[CrossRef]

Yang, L.

Y. Xu, L. Yang, Z. Xu, Y. Zhao, X. Ling, Q. Li, J. Wang, N. Zhang, Y. Zhang, and J. Wu, “Distinguishing malignant from normal stomach tissues and its in vivo, in situ measurement in operating process using FTIR fiber-optic techniques,” Sci. China Ser. B 48, 167–175 (2005).
[CrossRef]

Zhang, N.

Y. Xu, L. Yang, Z. Xu, Y. Zhao, X. Ling, Q. Li, J. Wang, N. Zhang, Y. Zhang, and J. Wu, “Distinguishing malignant from normal stomach tissues and its in vivo, in situ measurement in operating process using FTIR fiber-optic techniques,” Sci. China Ser. B 48, 167–175 (2005).
[CrossRef]

Zhang, Y.

Y. Xu, L. Yang, Z. Xu, Y. Zhao, X. Ling, Q. Li, J. Wang, N. Zhang, Y. Zhang, and J. Wu, “Distinguishing malignant from normal stomach tissues and its in vivo, in situ measurement in operating process using FTIR fiber-optic techniques,” Sci. China Ser. B 48, 167–175 (2005).
[CrossRef]

Zhao, Y.

Y. Xu, L. Yang, Z. Xu, Y. Zhao, X. Ling, Q. Li, J. Wang, N. Zhang, Y. Zhang, and J. Wu, “Distinguishing malignant from normal stomach tissues and its in vivo, in situ measurement in operating process using FTIR fiber-optic techniques,” Sci. China Ser. B 48, 167–175 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. Nishii, T. Yamashita, and T. Yamagishi, “Coherent infrared fiber image bundle,” Appl. Phys. Lett. 59, 2639–2641 (1991).
[CrossRef]

I. Paiss, and A. Katzir, “Thermal imaging by ordered bundles of silver halide crystalline fibers,” Appl. Phys. Lett. 61, 1384–1386 (1992).
[CrossRef]

Y. Lavi, A. Millo, and A. Katzir, “Thin ordered bundles of infrared-transmitting silver halide fibers,” Appl. Phys. Lett. 87, 241122 (2005).
[CrossRef]

Appl. Sectrosc.

R. Mendelsohn, E. Paschalis, P. Sherman, and A. Boskey, “IR microscopic imaging of pathological states and fracture healing of bone,” Appl. Sectrosc. 54, 1183–1191 (2000).
[CrossRef]

Appl. Spectosc.

J. F. Rabolt, and R. Bellar, “The nature of apodization in Fourier transform spectroscopy,” Appl. Spectosc. 35, 132–135 (1981).
[CrossRef]

Appl. Spectosc. Rev.

L. B. Mostaço-Guidolin, L. S. Murakami, A. Nomizo, and L. Bachmann, “Fourier transform infrared spectroscopy of skin cancer cells and tissues,” Appl. Spectosc. Rev. 44, 438–455 (2009).
[CrossRef]

Biochim. Biophys. Acta

S. Kazarian, and K. Chan, “Applications of ATR-FTIR spectroscopic imaging to biomedical samples,” Biochim. Biophys. Acta 1758, 858–867 (2006).
[CrossRef]

Biomed. Opt. Express

Cancer Detect. Prev.

D. Maziak, M. Do, F. Shamji, S. Sundaresan, D. Perkins, and P. Wong, “Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: an exploratory study,” Cancer Detect. Prev. 31, 244–253 (2007).
[CrossRef]

J. Invest. Dermatol.

L. McIntosh, M. Jackson, H. Mantsch, M. Stranc, D. Pilavdzic, and A. Crowson, “Infrared spectra of basal cell carcinomas are distinct from non-tumor-bearing skin components,” J. Invest. Dermatol. 112, 951–956 (1999).
[CrossRef]

J. Opt. Soc. Am. A

Microsc. Res. Tech.

P. Garidel, and M. Boese, “Mid infrared microspectroscopic mapping and imaging: a bio-analytical tool for spatially and chemically resolved tissue characterization and evaluation of drug permeation within tissues,” Microsc. Res. Tech. 70, 336–349 (2007).
[CrossRef]

Opt. Lett.

Phil. Trans. R. Soc. A

F. Benabid, “Hollow-core photonic bandgap fibre: new light guidance for new science and technology,” Phil. Trans. R. Soc. A 364, 3439–3462 (2006).
[CrossRef]

Phys. Chem. Chem. Phys.

R. Mendelsohn, M. Rerek, and D. Moore, “Infrared spectroscopy and microscopic imaging of stratum corneum models and skin,” Phys. Chem. Chem. Phys. 2, 4651–4657 (2000).
[CrossRef]

Proc. Natl. Acad. Sci. USA

P. Wong, R. Wong, T. Caputo, T. Godwin, and B. Rigas, “Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis,” Proc. Natl. Acad. Sci. USA 88, 10988–10992 (1991).
[CrossRef]

Sci. China Ser. B

Y. Xu, L. Yang, Z. Xu, Y. Zhao, X. Ling, Q. Li, J. Wang, N. Zhang, Y. Zhang, and J. Wu, “Distinguishing malignant from normal stomach tissues and its in vivo, in situ measurement in operating process using FTIR fiber-optic techniques,” Sci. China Ser. B 48, 167–175 (2005).
[CrossRef]

Vib. Spectrosc.

J. Anastassopoulou, E. Boukaki, C. Conti, P. Ferraris, E. Giorgini, C. Rubini, S. Sabbatini, T. Theophanides, and G. Tosi, “Microimaging FT-IR spectroscopy on pathological breast tissues,” Vib. Spectrosc. 51, 270–275 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Structure of hollow optical fiber.

Fig. 2.
Fig. 2.

Measurement setup.

Fig. 3.
Fig. 3.

Interferogram captured with IR camera.

Fig. 4.
Fig. 4.

Power spectra measured at output end of fiber.

Fig. 5.
Fig. 5.

Transmission spectrum of polyethylene film measured by using single hollow-optical fiber probe.

Fig. 6.
Fig. 6.

(a) Output end of fiber bundle half covered with polyethylene film. (b) Transmittance mapping of film at wavelength of 3.4 μm.

Fig. 7.
Fig. 7.

Transmission spectra of mixture of gelatin and oil.

Fig. 8.
Fig. 8.

(a) Visible images and (b) transmission spectral images of mixture of gelatin and oil.

Fig. 9.
Fig. 9.

Transmission spectra of lean and adipose pork.

Fig. 10.
Fig. 10.

(a) Visible images and (b) transmission spectral images of sliced pork sample.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S ( v ) = 0 L A ( x ) I ( x ) cos 2 π v x d x .
A ( x ) = 0.54 + 0.46 cos ( π x L ) .

Metrics