Abstract

Photonic crystal fiber (PCF) with a double-cladded coaxial core (CC) is proposed and analyzed to obtain propagation characteristics such as chromatic dispersion, field distribution, and effective area. Only by doubling the number of air holes to 12 in the inner hexagonal cladding layer with one pitch (Λ) value can the chromatic dispersion shift close to zero be achieved at 1.55 μm operation wavelength. The fundamental mode field for the double-cladded CCPCF is tightly confined to the central core region. Therefore, the effective area is normally very small, while it tends to be larger rather rapidly as the operating wavelength is longer than around 1.7 μm.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
    [CrossRef]
  2. Y. Ni, L. Zhang, L. An, J. Peng, and C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photon. Technol. Lett. 16, 1516–1518 (2004).
    [CrossRef]
  3. Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, and D. N. Wang, “Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion,” Opt. Commun. 242, 327–332(2004).
    [CrossRef]
  4. K. Saitoh, N. Florous, and M. Koshiba, “Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses,” Opt. Express 13, 8365–8371 (2005).
    [CrossRef]
  5. R. Sharma, V. Janyani, and S. K. Bhatnagar, “Improved single mode property in elliptical air hole photonic crystal fiber,” J. Mod. Opt. 58, 604–610 (2011).
    [CrossRef]
  6. R. A. Herrera, “Influence of acoustic waves on supercontinuum generation in photonic crystal fibers,” Appl. Opt. 51, 2223–2229 (2012).
    [CrossRef]
  7. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  8. A. Camerlingo, X. Feng, F. Poletti, G. M. Ponzo, F. Parmigiani, P. Horak, M. N. Petrovich, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Near-zero dispersion, highly nonlinear lead-silicate W-type fiber for applications at 1.5 μm,” Opt. Express 18, 15747–15756 (2010).
    [CrossRef]
  9. P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
    [CrossRef]
  10. G. Pickrell, D. Kominsky, R. Stolen, F. Ellis, J. Kim, A. Safaai-Jazi, and A. Wang, “Microstructural analysis of random hole optical fibers,” IEEE Photon. Technol. Lett. 16, 491–493 (2004).
    [CrossRef]
  11. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).
  12. J. I. Kim, “Investigation of cladding effects on optical guidance of microstructured holey fibres based on FDM and FDTD methods,” J. Mod. Opt. 56, 1091–1095 (2009).
    [CrossRef]
  13. G. Keiser, Optical Fiber Communications, 4th ed. (McGraw-Hill, 2010).

2012 (1)

2011 (1)

R. Sharma, V. Janyani, and S. K. Bhatnagar, “Improved single mode property in elliptical air hole photonic crystal fiber,” J. Mod. Opt. 58, 604–610 (2011).
[CrossRef]

2010 (1)

2009 (1)

J. I. Kim, “Investigation of cladding effects on optical guidance of microstructured holey fibres based on FDM and FDTD methods,” J. Mod. Opt. 56, 1091–1095 (2009).
[CrossRef]

2005 (1)

2004 (3)

Y. Ni, L. Zhang, L. An, J. Peng, and C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photon. Technol. Lett. 16, 1516–1518 (2004).
[CrossRef]

Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, and D. N. Wang, “Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion,” Opt. Commun. 242, 327–332(2004).
[CrossRef]

G. Pickrell, D. Kominsky, R. Stolen, F. Ellis, J. Kim, A. Safaai-Jazi, and A. Wang, “Microstructural analysis of random hole optical fibers,” IEEE Photon. Technol. Lett. 16, 491–493 (2004).
[CrossRef]

2003 (1)

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef]

2000 (1)

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

An, L.

Y. Ni, L. Zhang, L. An, J. Peng, and C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photon. Technol. Lett. 16, 1516–1518 (2004).
[CrossRef]

Arriaga, J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

Bhatnagar, S. K.

R. Sharma, V. Janyani, and S. K. Bhatnagar, “Improved single mode property in elliptical air hole photonic crystal fiber,” J. Mod. Opt. 58, 604–610 (2011).
[CrossRef]

Birks, T. A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

Camerlingo, A.

Ellis, F.

G. Pickrell, D. Kominsky, R. Stolen, F. Ellis, J. Kim, A. Safaai-Jazi, and A. Wang, “Microstructural analysis of random hole optical fibers,” IEEE Photon. Technol. Lett. 16, 491–493 (2004).
[CrossRef]

Fan, C.

Y. Ni, L. Zhang, L. An, J. Peng, and C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photon. Technol. Lett. 16, 1516–1518 (2004).
[CrossRef]

Feng, X.

Florous, N.

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

Herrera, R. A.

Ho, H. L.

Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, and D. N. Wang, “Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion,” Opt. Commun. 242, 327–332(2004).
[CrossRef]

Hoo, Y. L.

Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, and D. N. Wang, “Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion,” Opt. Commun. 242, 327–332(2004).
[CrossRef]

Horak, P.

Janyani, V.

R. Sharma, V. Janyani, and S. K. Bhatnagar, “Improved single mode property in elliptical air hole photonic crystal fiber,” J. Mod. Opt. 58, 604–610 (2011).
[CrossRef]

Jin, W.

Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, and D. N. Wang, “Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion,” Opt. Commun. 242, 327–332(2004).
[CrossRef]

Ju, J.

Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, and D. N. Wang, “Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion,” Opt. Commun. 242, 327–332(2004).
[CrossRef]

Keiser, G.

G. Keiser, Optical Fiber Communications, 4th ed. (McGraw-Hill, 2010).

Kim, J.

G. Pickrell, D. Kominsky, R. Stolen, F. Ellis, J. Kim, A. Safaai-Jazi, and A. Wang, “Microstructural analysis of random hole optical fibers,” IEEE Photon. Technol. Lett. 16, 491–493 (2004).
[CrossRef]

Kim, J. I.

J. I. Kim, “Investigation of cladding effects on optical guidance of microstructured holey fibres based on FDM and FDTD methods,” J. Mod. Opt. 56, 1091–1095 (2009).
[CrossRef]

Knight, J. C.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

Kominsky, D.

G. Pickrell, D. Kominsky, R. Stolen, F. Ellis, J. Kim, A. Safaai-Jazi, and A. Wang, “Microstructural analysis of random hole optical fibers,” IEEE Photon. Technol. Lett. 16, 491–493 (2004).
[CrossRef]

Koshiba, M.

Loh, W. H.

Ni, Y.

Y. Ni, L. Zhang, L. An, J. Peng, and C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photon. Technol. Lett. 16, 1516–1518 (2004).
[CrossRef]

Ortigosa-Blanch, A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

Parmigiani, F.

Peng, J.

Y. Ni, L. Zhang, L. An, J. Peng, and C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photon. Technol. Lett. 16, 1516–1518 (2004).
[CrossRef]

Petropoulos, P.

Petrovich, M. N.

Pickrell, G.

G. Pickrell, D. Kominsky, R. Stolen, F. Ellis, J. Kim, A. Safaai-Jazi, and A. Wang, “Microstructural analysis of random hole optical fibers,” IEEE Photon. Technol. Lett. 16, 491–493 (2004).
[CrossRef]

Poletti, F.

Ponzo, G. M.

Richardson, D. J.

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef]

Russell, P. St. J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

Safaai-Jazi, A.

G. Pickrell, D. Kominsky, R. Stolen, F. Ellis, J. Kim, A. Safaai-Jazi, and A. Wang, “Microstructural analysis of random hole optical fibers,” IEEE Photon. Technol. Lett. 16, 491–493 (2004).
[CrossRef]

Saitoh, K.

Sharma, R.

R. Sharma, V. Janyani, and S. K. Bhatnagar, “Improved single mode property in elliptical air hole photonic crystal fiber,” J. Mod. Opt. 58, 604–610 (2011).
[CrossRef]

Stolen, R.

G. Pickrell, D. Kominsky, R. Stolen, F. Ellis, J. Kim, A. Safaai-Jazi, and A. Wang, “Microstructural analysis of random hole optical fibers,” IEEE Photon. Technol. Lett. 16, 491–493 (2004).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

Wadsworth, W. J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

Wang, A.

G. Pickrell, D. Kominsky, R. Stolen, F. Ellis, J. Kim, A. Safaai-Jazi, and A. Wang, “Microstructural analysis of random hole optical fibers,” IEEE Photon. Technol. Lett. 16, 491–493 (2004).
[CrossRef]

Wang, D. N.

Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, and D. N. Wang, “Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion,” Opt. Commun. 242, 327–332(2004).
[CrossRef]

Zhang, L.

Y. Ni, L. Zhang, L. An, J. Peng, and C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photon. Technol. Lett. 16, 1516–1518 (2004).
[CrossRef]

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (3)

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

Y. Ni, L. Zhang, L. An, J. Peng, and C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photon. Technol. Lett. 16, 1516–1518 (2004).
[CrossRef]

G. Pickrell, D. Kominsky, R. Stolen, F. Ellis, J. Kim, A. Safaai-Jazi, and A. Wang, “Microstructural analysis of random hole optical fibers,” IEEE Photon. Technol. Lett. 16, 491–493 (2004).
[CrossRef]

J. Mod. Opt. (2)

J. I. Kim, “Investigation of cladding effects on optical guidance of microstructured holey fibres based on FDM and FDTD methods,” J. Mod. Opt. 56, 1091–1095 (2009).
[CrossRef]

R. Sharma, V. Janyani, and S. K. Bhatnagar, “Improved single mode property in elliptical air hole photonic crystal fiber,” J. Mod. Opt. 58, 604–610 (2011).
[CrossRef]

Opt. Commun. (1)

Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, and D. N. Wang, “Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion,” Opt. Commun. 242, 327–332(2004).
[CrossRef]

Opt. Express (2)

Science (1)

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef]

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

G. Keiser, Optical Fiber Communications, 4th ed. (McGraw-Hill, 2010).

A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Cross-sectional view for the proposed double-cladded CCPCF. The air holes in the third layer from the core are linked by the dashed line as a hexagonal ring.

Fig. 2.
Fig. 2.

Normalized propagation constant versus wavelength for the regular PCF and the proposed double-cladded CCPCF.

Fig. 3.
Fig. 3.

Comparison of chromatic and waveguide dispersions.

Fig. 4.
Fig. 4.

Chromatic dispersion versus wavelength for the double-cladded CCPCF with different air-hole diameters in the inner hexagonal cladding layer.

Fig. 5.
Fig. 5.

Normalized field distribution for the Ex component of the fundamental mode at λ=1.55μm: (a) three-dimensional view for the double-cladded CCPCF and (b) two-dimensional field profiles for comparison.

Fig. 6.
Fig. 6.

Effective area as a function of the operating wavelength.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Dch=λcd2β¯dλ2,
nNL=n2PAeff,

Metrics