Abstract

We demonstrate a polymer waveguide, Fabry–Perot interferometer strain sensor fabricated through a self-writing process in a photopolymerizable resin bath between two silica optical fibers. The measurable strain range is extended through sensor self-repair and strain measurements are demonstrated up to 150% applied tensile strain. The sensor fabrication and repair is performed in the ultraviolet wavelength range, while the sensor interrogation is performed in the near-infrared wavelength range. A hybrid sensor is fabricated by splicing a short segment of multimode optical fiber to the input single-mode optical fiber. The hybrid sensor provides the high quality of waveguide fabrication previously demonstrated through self-writing between multimode optical fibers with the high fringe visibility of single-mode propagation. The peak frequency shift of the reflected spectrum Fabry–Perot sensor is extremely linear with applied strain for the hybrid sensor, with a sensitivity of 2.3×103 per nanometer per percent strain. The calibrated peak frequency shift with applied strain is the same for both the original sensor and the repaired sensor; therefore, the fact that the sensor has self-repaired does not need to be known. Additionally, this calibration is the same between multiple sensor fabrications. In contrast to a conventional air gap Fabry–Perot cavity sensor, no decrease in the fringe visibility is observed over the measurable strain range.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Peters, “Polymer optical fiber sensors—a review,” Smart Mater. Struct. 20, 013002 (2011).
    [CrossRef]
  2. S. Liehr, P. Lenke, M. Wendt, K. Drebber, M. Seeger, E. Thiele, H. Metschies, B. Gebreselassie, and J. C. Münich, “Polymer optical fiber sensors for distributed strain measurement and application in structural health monitoring,” IEEE Sens. J. 9, 1330–1338 (2009).
    [CrossRef]
  3. H. Huang, A. Majumdar, and J.-S. Cho, “Fabrication and evaluation of hybrid silica/polymer optical fiber sensors for large strain measurement,” Trans. Inst. Meas. Control 31, 247–257 (2009).
    [CrossRef]
  4. S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Large deformation in-fiber polymer optical fiber sensor,” IEEE Photon. Technol. Lett. 20, 416–418 (2008).
    [CrossRef]
  5. Y. Song and K. Peters, “A self-repairing polymer waveguide sensor,” Smart Mater. Struct. 20, 065005 (2011).
    [CrossRef]
  6. A. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization,” Opt. Lett. 21, 24–26 (1996).
    [CrossRef]
  7. M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79, 1079–1081 (2001).
    [CrossRef]
  8. K. Dorkenoo, O. Crégut, L. Mager, and F. Gillot, “Quasi-solitonic behavior of self-written waveguides created by photopolymerization,” Opt. Lett. 27, 1782–1784 (2002).
    [CrossRef]
  9. K. Deng, T. Gorczyca, B. Lee, H. Xia, R. Guida, and T. Karras, “Self-aligned single-mode polymer waveguide interconnections for efficient chip-to-chip optical coupling,” IEEE J. Sel. Top. Quantum Electron. 12, 923–930 (2006).
    [CrossRef]
  10. S. Jradi, O. Soppera, and D. Lougnot, “Fabrication of polymer waveguides between two optical fibers using spatially controlled light-induced polymerization,” Appl. Opt. 47, 3987–3993 (2008).
    [CrossRef]
  11. Y. Song and K. Peters, “Self-repairing, packaged strain sensor with high repeatability,” IEEE Sensors J. (to be published).
    [CrossRef]
  12. Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photon. J. 2, 469–481 (2010).
    [CrossRef]
  13. Y. Jung, Y. Jeong, G. Brambilla, and D. Richardson, “Adiabatically tapered splice for selective excitation of the fundamental mode in a multimode fiber,” Opt. Lett. 34, 2369–2371 (2009).
    [CrossRef]
  14. J. L. Santos, A. P. Leite, and D. A. Jackson, “Optical fiber sensing with a low-finesse Fabry–Perot cavity,” Appl. Opt. 31, 7361–7366 (1992).
    [CrossRef]

2011

K. Peters, “Polymer optical fiber sensors—a review,” Smart Mater. Struct. 20, 013002 (2011).
[CrossRef]

Y. Song and K. Peters, “A self-repairing polymer waveguide sensor,” Smart Mater. Struct. 20, 065005 (2011).
[CrossRef]

2010

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photon. J. 2, 469–481 (2010).
[CrossRef]

2009

S. Liehr, P. Lenke, M. Wendt, K. Drebber, M. Seeger, E. Thiele, H. Metschies, B. Gebreselassie, and J. C. Münich, “Polymer optical fiber sensors for distributed strain measurement and application in structural health monitoring,” IEEE Sens. J. 9, 1330–1338 (2009).
[CrossRef]

H. Huang, A. Majumdar, and J.-S. Cho, “Fabrication and evaluation of hybrid silica/polymer optical fiber sensors for large strain measurement,” Trans. Inst. Meas. Control 31, 247–257 (2009).
[CrossRef]

Y. Jung, Y. Jeong, G. Brambilla, and D. Richardson, “Adiabatically tapered splice for selective excitation of the fundamental mode in a multimode fiber,” Opt. Lett. 34, 2369–2371 (2009).
[CrossRef]

2008

S. Jradi, O. Soppera, and D. Lougnot, “Fabrication of polymer waveguides between two optical fibers using spatially controlled light-induced polymerization,” Appl. Opt. 47, 3987–3993 (2008).
[CrossRef]

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Large deformation in-fiber polymer optical fiber sensor,” IEEE Photon. Technol. Lett. 20, 416–418 (2008).
[CrossRef]

2006

K. Deng, T. Gorczyca, B. Lee, H. Xia, R. Guida, and T. Karras, “Self-aligned single-mode polymer waveguide interconnections for efficient chip-to-chip optical coupling,” IEEE J. Sel. Top. Quantum Electron. 12, 923–930 (2006).
[CrossRef]

2002

2001

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79, 1079–1081 (2001).
[CrossRef]

1996

1992

Brambilla, G.

Chen, G.

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photon. J. 2, 469–481 (2010).
[CrossRef]

Cho, J.-S.

H. Huang, A. Majumdar, and J.-S. Cho, “Fabrication and evaluation of hybrid silica/polymer optical fiber sensors for large strain measurement,” Trans. Inst. Meas. Control 31, 247–257 (2009).
[CrossRef]

Crégut, O.

Deng, K.

K. Deng, T. Gorczyca, B. Lee, H. Xia, R. Guida, and T. Karras, “Self-aligned single-mode polymer waveguide interconnections for efficient chip-to-chip optical coupling,” IEEE J. Sel. Top. Quantum Electron. 12, 923–930 (2006).
[CrossRef]

Dorkenoo, K.

Drebber, K.

S. Liehr, P. Lenke, M. Wendt, K. Drebber, M. Seeger, E. Thiele, H. Metschies, B. Gebreselassie, and J. C. Münich, “Polymer optical fiber sensors for distributed strain measurement and application in structural health monitoring,” IEEE Sens. J. 9, 1330–1338 (2009).
[CrossRef]

Gebreselassie, B.

S. Liehr, P. Lenke, M. Wendt, K. Drebber, M. Seeger, E. Thiele, H. Metschies, B. Gebreselassie, and J. C. Münich, “Polymer optical fiber sensors for distributed strain measurement and application in structural health monitoring,” IEEE Sens. J. 9, 1330–1338 (2009).
[CrossRef]

Gillot, F.

Gorczyca, T.

K. Deng, T. Gorczyca, B. Lee, H. Xia, R. Guida, and T. Karras, “Self-aligned single-mode polymer waveguide interconnections for efficient chip-to-chip optical coupling,” IEEE J. Sel. Top. Quantum Electron. 12, 923–930 (2006).
[CrossRef]

Guida, R.

K. Deng, T. Gorczyca, B. Lee, H. Xia, R. Guida, and T. Karras, “Self-aligned single-mode polymer waveguide interconnections for efficient chip-to-chip optical coupling,” IEEE J. Sel. Top. Quantum Electron. 12, 923–930 (2006).
[CrossRef]

Hassan, T.

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Large deformation in-fiber polymer optical fiber sensor,” IEEE Photon. Technol. Lett. 20, 416–418 (2008).
[CrossRef]

Huang, H.

H. Huang, A. Majumdar, and J.-S. Cho, “Fabrication and evaluation of hybrid silica/polymer optical fiber sensors for large strain measurement,” Trans. Inst. Meas. Control 31, 247–257 (2009).
[CrossRef]

Huang, Y.

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photon. J. 2, 469–481 (2010).
[CrossRef]

Ito, H.

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79, 1079–1081 (2001).
[CrossRef]

Jackson, D. A.

Jeong, Y.

Jradi, S.

Jung, Y.

Kagami, M.

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79, 1079–1081 (2001).
[CrossRef]

Karras, T.

K. Deng, T. Gorczyca, B. Lee, H. Xia, R. Guida, and T. Karras, “Self-aligned single-mode polymer waveguide interconnections for efficient chip-to-chip optical coupling,” IEEE J. Sel. Top. Quantum Electron. 12, 923–930 (2006).
[CrossRef]

Kewitsch, A.

Kiesel, S.

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Large deformation in-fiber polymer optical fiber sensor,” IEEE Photon. Technol. Lett. 20, 416–418 (2008).
[CrossRef]

Kowalsky, M.

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Large deformation in-fiber polymer optical fiber sensor,” IEEE Photon. Technol. Lett. 20, 416–418 (2008).
[CrossRef]

Lan, X.

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photon. J. 2, 469–481 (2010).
[CrossRef]

Lee, B.

K. Deng, T. Gorczyca, B. Lee, H. Xia, R. Guida, and T. Karras, “Self-aligned single-mode polymer waveguide interconnections for efficient chip-to-chip optical coupling,” IEEE J. Sel. Top. Quantum Electron. 12, 923–930 (2006).
[CrossRef]

Leite, A. P.

Lenke, P.

S. Liehr, P. Lenke, M. Wendt, K. Drebber, M. Seeger, E. Thiele, H. Metschies, B. Gebreselassie, and J. C. Münich, “Polymer optical fiber sensors for distributed strain measurement and application in structural health monitoring,” IEEE Sens. J. 9, 1330–1338 (2009).
[CrossRef]

Li, Y.

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photon. J. 2, 469–481 (2010).
[CrossRef]

Liehr, S.

S. Liehr, P. Lenke, M. Wendt, K. Drebber, M. Seeger, E. Thiele, H. Metschies, B. Gebreselassie, and J. C. Münich, “Polymer optical fiber sensors for distributed strain measurement and application in structural health monitoring,” IEEE Sens. J. 9, 1330–1338 (2009).
[CrossRef]

Lougnot, D.

Mager, L.

Majumdar, A.

H. Huang, A. Majumdar, and J.-S. Cho, “Fabrication and evaluation of hybrid silica/polymer optical fiber sensors for large strain measurement,” Trans. Inst. Meas. Control 31, 247–257 (2009).
[CrossRef]

Metschies, H.

S. Liehr, P. Lenke, M. Wendt, K. Drebber, M. Seeger, E. Thiele, H. Metschies, B. Gebreselassie, and J. C. Münich, “Polymer optical fiber sensors for distributed strain measurement and application in structural health monitoring,” IEEE Sens. J. 9, 1330–1338 (2009).
[CrossRef]

Münich, J. C.

S. Liehr, P. Lenke, M. Wendt, K. Drebber, M. Seeger, E. Thiele, H. Metschies, B. Gebreselassie, and J. C. Münich, “Polymer optical fiber sensors for distributed strain measurement and application in structural health monitoring,” IEEE Sens. J. 9, 1330–1338 (2009).
[CrossRef]

Peters, K.

K. Peters, “Polymer optical fiber sensors—a review,” Smart Mater. Struct. 20, 013002 (2011).
[CrossRef]

Y. Song and K. Peters, “A self-repairing polymer waveguide sensor,” Smart Mater. Struct. 20, 065005 (2011).
[CrossRef]

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Large deformation in-fiber polymer optical fiber sensor,” IEEE Photon. Technol. Lett. 20, 416–418 (2008).
[CrossRef]

Y. Song and K. Peters, “Self-repairing, packaged strain sensor with high repeatability,” IEEE Sensors J. (to be published).
[CrossRef]

Richardson, D.

Santos, J. L.

Seeger, M.

S. Liehr, P. Lenke, M. Wendt, K. Drebber, M. Seeger, E. Thiele, H. Metschies, B. Gebreselassie, and J. C. Münich, “Polymer optical fiber sensors for distributed strain measurement and application in structural health monitoring,” IEEE Sens. J. 9, 1330–1338 (2009).
[CrossRef]

Song, Y.

Y. Song and K. Peters, “A self-repairing polymer waveguide sensor,” Smart Mater. Struct. 20, 065005 (2011).
[CrossRef]

Y. Song and K. Peters, “Self-repairing, packaged strain sensor with high repeatability,” IEEE Sensors J. (to be published).
[CrossRef]

Soppera, O.

Thiele, E.

S. Liehr, P. Lenke, M. Wendt, K. Drebber, M. Seeger, E. Thiele, H. Metschies, B. Gebreselassie, and J. C. Münich, “Polymer optical fiber sensors for distributed strain measurement and application in structural health monitoring,” IEEE Sens. J. 9, 1330–1338 (2009).
[CrossRef]

Wei, T.

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photon. J. 2, 469–481 (2010).
[CrossRef]

Wendt, M.

S. Liehr, P. Lenke, M. Wendt, K. Drebber, M. Seeger, E. Thiele, H. Metschies, B. Gebreselassie, and J. C. Münich, “Polymer optical fiber sensors for distributed strain measurement and application in structural health monitoring,” IEEE Sens. J. 9, 1330–1338 (2009).
[CrossRef]

Xia, H.

K. Deng, T. Gorczyca, B. Lee, H. Xia, R. Guida, and T. Karras, “Self-aligned single-mode polymer waveguide interconnections for efficient chip-to-chip optical coupling,” IEEE J. Sel. Top. Quantum Electron. 12, 923–930 (2006).
[CrossRef]

Xiao, H.

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photon. J. 2, 469–481 (2010).
[CrossRef]

Yamashita, T.

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79, 1079–1081 (2001).
[CrossRef]

Yariv, A.

Zhang, Y.

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photon. J. 2, 469–481 (2010).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79, 1079–1081 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

K. Deng, T. Gorczyca, B. Lee, H. Xia, R. Guida, and T. Karras, “Self-aligned single-mode polymer waveguide interconnections for efficient chip-to-chip optical coupling,” IEEE J. Sel. Top. Quantum Electron. 12, 923–930 (2006).
[CrossRef]

IEEE Photon. J.

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photon. J. 2, 469–481 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Large deformation in-fiber polymer optical fiber sensor,” IEEE Photon. Technol. Lett. 20, 416–418 (2008).
[CrossRef]

IEEE Sens. J.

S. Liehr, P. Lenke, M. Wendt, K. Drebber, M. Seeger, E. Thiele, H. Metschies, B. Gebreselassie, and J. C. Münich, “Polymer optical fiber sensors for distributed strain measurement and application in structural health monitoring,” IEEE Sens. J. 9, 1330–1338 (2009).
[CrossRef]

Opt. Lett.

Smart Mater. Struct.

K. Peters, “Polymer optical fiber sensors—a review,” Smart Mater. Struct. 20, 013002 (2011).
[CrossRef]

Y. Song and K. Peters, “A self-repairing polymer waveguide sensor,” Smart Mater. Struct. 20, 065005 (2011).
[CrossRef]

Trans. Inst. Meas. Control

H. Huang, A. Majumdar, and J.-S. Cho, “Fabrication and evaluation of hybrid silica/polymer optical fiber sensors for large strain measurement,” Trans. Inst. Meas. Control 31, 247–257 (2009).
[CrossRef]

Other

Y. Song and K. Peters, “Self-repairing, packaged strain sensor with high repeatability,” IEEE Sensors J. (to be published).
[CrossRef]

Supplementary Material (1)

» Media 1: MOV (1433 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Schematic of experimental setup for sensor fabrication and measurement of reflected spectrum of Fabry–Perot self-repairing waveguide sensor.

Fig. 2.
Fig. 2.

Schematic of self-writing waveguide Fabry–Perot interferometer sensors. (a) SMF waveguide. (b) MMF waveguide.

Fig. 3.
Fig. 3.

Fabrication of self-written waveguide sensor. (a) 40 μm SMF waveguide. (b) 200 μm MMF waveguide.

Fig. 4.
Fig. 4.

Polymer waveguide sensor self-repair process: (a) original waveguide, (b) tensioned original waveguide near failure, (c) waveguide after separation from left optical fiber, (d)–(e) waveguide during self-repair, and (f) final, repaired waveguide. UV lightwave propagation was from right to left (see Media 1).

Fig. 5.
Fig. 5.

(a) Interference spectrum of the air cavity FP sensor for different cavity lengths. (b) calculated frequency spectrum of same data.

Fig. 6.
Fig. 6.

(a) Interference spectrum of SM waveguide FP sensor at the waveguide length of 50 μm. (b) calculated frequency spectrum at different waveguide lengths (all bandpass filtered to 0.03 to 0.1 nm 1 ).

Fig. 7.
Fig. 7.

Peak frequency of SMF waveguide sensor as a function of axial strain. Linear fit to data is also plotted.

Fig. 8.
Fig. 8.

Hybrid SM-MM self-writing waveguide sensor: (a) schematic and (b) photograph of self-written waveguide.

Fig. 9.
Fig. 9.

(a) Peak frequency of reflected spectrum. (b) normalized fringe contrast as a function of air cavity length for hybrid SM-MM Fabry–Perot sensors.

Fig. 10.
Fig. 10.

Interference spectrum of hybrid SM-MM Fabry–Perot sensor. (a) self-written waveguide at the length of 200 μm. (b) self-repaired waveguide at the length of 300 μm.

Fig. 11.
Fig. 11.

Peak frequency of reflected spectrum of hybrid SM-MM waveguide Fabry–Perot sensor as a function of strain before and after self-repair.

Fig. 12.
Fig. 12.

Normalized fringe contrast of enlarged SM waveguide FP sensor as a function of strain.

Fig. 13.
Fig. 13.

Peak frequency of reflected spectrum of second hybrid SM-MM waveguide FP sensor as a function of strain before and after multiple self-repairs.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I 0 cos ( 4 π λ n L ) ,
Δ ( 1 λ ) = 1 2 n L .
Δ ( 1 λ ) = ( 1 λ 0 ) ( 1 λ 0 + Δ λ ) = Δ λ λ 0 ( λ 0 + Δ λ ) Δ λ λ 0 2
Δ λ = λ 0 2 2 n L .

Metrics