Abstract

We experimentally demonstrated a compact fiber laser-pumped multichannel PPMgLN-based optical parametric oscillator (OPO) generating total OPO output power of 15.8, 15.2, 14.2, 12.9, and 8.8 W with idler output power of 4.7, 4.3, 4.1, 3.3, and 2.1 W at the wavelength of 3.43, 3.63, 3.72, 3.83, and 3.99 μm, respectively. The OPO was pumped by a fully fiberized polarization maintaining (PM) ytterbium-doped pulsed fiber master oscillation power amplifier (MOPA) operating at 1064 nm at a repetition rate of 65 kHz with effective pump power of 28.7 W. The MOPA system was constructed with an acousto-optic Q-switched fiber laser seed and only one stage PM fiber amplifier without any free space components, which makes the pump system compact and stable in the long-term. Comparisons on efficiencies and signal wavelength shifts between different channels showed that the idler absorption was the main factor preventing high average-power OPO operation with long idler wavelength.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. P. Petrov, L. Goldberg, W. K. Burns, R. F. Curl, and F. K. Tittel, “Detection of CO in air by diode-pumped 4.6 μm difference-frequency generation in quasi-phase-matched LiNbO3,” Opt. Lett. 21, 86–88 (1996).
    [CrossRef]
  2. H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
    [CrossRef]
  3. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116, (1995).
    [CrossRef]
  4. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “93% pump depletion, 3.5 W continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett. 21, 1336–1338 (1996).
    [CrossRef]
  5. H. Ishizuki and T. Taira, “High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5  mm×5  mm aperture,” Opt. Lett. 30, 2918–2920 (2005).
    [CrossRef]
  6. H. Lin, H. Tan, J. Miao, T. Cui, S. Su, and J. Guo, “Extra-cavity, widely tunable, continuous wave MgO-doped PPLN optical parametric oscillator pumped with a Nd:YVO4 laser,” Opt. Mater. 32, 257–260 (2009).
    [CrossRef]
  7. Z. Sacks, O. Gayer, E. Tal, and A. Arie, “Improving the efficiency of an optical parametric oscillator by tailoring the pump pulse shape,” Opt. Express 18, 12669–12674 (2010).
    [CrossRef]
  8. Y. Peng, W. Wang, X. Wei, and D. Li, “High-efficiency mid-infrared optical parametric oscillator based on PPMgO:CLN,” Opt. Lett. 34, 2897–2899 (2009).
    [CrossRef]
  9. B. Wu, J. Kong, and Y. Shen, “High-efficiency semi-external-cavity-structured periodically poled MgLN-based optical parametric oscillator with output power exceeding 9.2 W at 3.82 μm,” Opt. Lett. 35, 1118–1120 (2010).
    [CrossRef]
  10. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27, B63–B92 (2010).
    [CrossRef]
  11. D. Chen and T. S. Rose, “Low noise 10 W CW OPO generation near 3 μm with MgO doped PPLN,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CThQ2.
  12. T. P. Lamour, L. Kornaszewski, J. H. Sun, and D. T. Reid, “Yb:fiber-laser-pumped high-energy picosecond optical parametric oscillator,” Opt. Express 17, 14229–14234 (2009).
    [CrossRef]
  13. F. Kienle, P. S. Teh, S. U. Alam, C. B. E. Gawith, D. C. Hanna, D. J. Richardson, and D. P. Shepherd, “Compact, high-pulse-energy, picosecond optical parametric oscillator,” Opt. Lett. 35, 3580–3582 (2010).
    [CrossRef]
  14. O. Kokabee, A. Esteban-Martin, and M. Ebrahim-Zadeh, “Efficient, high-power, ytterbium-fiber-laser-pumped picosecond optical parametric oscillator,” Opt. Lett. 35, 3210–3212(2010).
    [CrossRef]
  15. S. C. Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B 102, 31–35 (2011).
    [CrossRef]
  16. Y. Shen, S. U. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 15, 385–392 (2009).
    [CrossRef]
  17. D. Lin, S. U. Alam, Y. Shen, T. Chen, B. Wu, and D. J. Richardson, “Large aperture PPMgLN based high-power optical parametric oscillator at 3.8 μm pumped by a nanosecond linearly polarized fiber MOPA,” Opt. Express 20, 15008–15014 (2012).
    [CrossRef]
  18. P. P. Jiang, D. Z. Yang, Y. X. Wang, T. Chen, B. Wu, and Y. H. Shen, “All-fiberized MOPA structured single-mode pulse Yb fiber laser with a linearly polarized output power of 30 W,” Laser Phys. Lett. 6, 384–387 (2009).
    [CrossRef]
  19. A. Wetter, M. Faucher, and B. Sévigny, “High power cladding light strippers,” Proc. SPIE 6873, 687327 (2008).
    [CrossRef]
  20. B. Wu, Y. Shen, and S. Cai, “Widely tunable high power OPO based on a periodically poled MgO doped lithium niobate crystal,” Opt. Laser Technol. 39, 1115–1119 (2007).
    [CrossRef]
  21. T. Chen, B. Wu, W. Liu, P. Jiang, J. Kong, and Y. Shen, “Efficient parametric conversion from 1.06 to 3.8 μm by an aperiodically poled cascaded lithium niobate,” Opt. Lett. 36, 921–923 (2011).
    [CrossRef]
  22. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
    [CrossRef]

2012 (1)

2011 (2)

S. C. Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B 102, 31–35 (2011).
[CrossRef]

T. Chen, B. Wu, W. Liu, P. Jiang, J. Kong, and Y. Shen, “Efficient parametric conversion from 1.06 to 3.8 μm by an aperiodically poled cascaded lithium niobate,” Opt. Lett. 36, 921–923 (2011).
[CrossRef]

2010 (5)

2009 (5)

Y. Peng, W. Wang, X. Wei, and D. Li, “High-efficiency mid-infrared optical parametric oscillator based on PPMgO:CLN,” Opt. Lett. 34, 2897–2899 (2009).
[CrossRef]

H. Lin, H. Tan, J. Miao, T. Cui, S. Su, and J. Guo, “Extra-cavity, widely tunable, continuous wave MgO-doped PPLN optical parametric oscillator pumped with a Nd:YVO4 laser,” Opt. Mater. 32, 257–260 (2009).
[CrossRef]

T. P. Lamour, L. Kornaszewski, J. H. Sun, and D. T. Reid, “Yb:fiber-laser-pumped high-energy picosecond optical parametric oscillator,” Opt. Express 17, 14229–14234 (2009).
[CrossRef]

P. P. Jiang, D. Z. Yang, Y. X. Wang, T. Chen, B. Wu, and Y. H. Shen, “All-fiberized MOPA structured single-mode pulse Yb fiber laser with a linearly polarized output power of 30 W,” Laser Phys. Lett. 6, 384–387 (2009).
[CrossRef]

Y. Shen, S. U. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 15, 385–392 (2009).
[CrossRef]

2008 (2)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[CrossRef]

A. Wetter, M. Faucher, and B. Sévigny, “High power cladding light strippers,” Proc. SPIE 6873, 687327 (2008).
[CrossRef]

2007 (1)

B. Wu, Y. Shen, and S. Cai, “Widely tunable high power OPO based on a periodically poled MgO doped lithium niobate crystal,” Opt. Laser Technol. 39, 1115–1119 (2007).
[CrossRef]

2005 (1)

2004 (1)

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[CrossRef]

1996 (2)

1995 (1)

Alam, S. U.

Alexander, J. I.

Arie, A.

Z. Sacks, O. Gayer, E. Tal, and A. Arie, “Improving the efficiency of an optical parametric oscillator by tailoring the pump pulse shape,” Opt. Express 18, 12669–12674 (2010).
[CrossRef]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[CrossRef]

Bekman, H. H. P. T.

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[CrossRef]

Bosenberg, W. R.

Burns, W. K.

Byer, R. L.

Cai, S.

Y. Shen, S. U. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 15, 385–392 (2009).
[CrossRef]

B. Wu, Y. Shen, and S. Cai, “Widely tunable high power OPO based on a periodically poled MgO doped lithium niobate crystal,” Opt. Laser Technol. 39, 1115–1119 (2007).
[CrossRef]

Chen, D.

D. Chen and T. S. Rose, “Low noise 10 W CW OPO generation near 3 μm with MgO doped PPLN,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CThQ2.

Chen, K. K.

Y. Shen, S. U. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 15, 385–392 (2009).
[CrossRef]

Chen, T.

Clarkson, W. A.

Cui, T.

H. Lin, H. Tan, J. Miao, T. Cui, S. Su, and J. Guo, “Extra-cavity, widely tunable, continuous wave MgO-doped PPLN optical parametric oscillator pumped with a Nd:YVO4 laser,” Opt. Mater. 32, 257–260 (2009).
[CrossRef]

Curl, R. F.

Das, R.

S. C. Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B 102, 31–35 (2011).
[CrossRef]

Drobshoff, A.

Ebrahim-Zadeh, M.

S. C. Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B 102, 31–35 (2011).
[CrossRef]

O. Kokabee, A. Esteban-Martin, and M. Ebrahim-Zadeh, “Efficient, high-power, ytterbium-fiber-laser-pumped picosecond optical parametric oscillator,” Opt. Lett. 35, 3210–3212(2010).
[CrossRef]

Eckardt, R. C.

Esteban-Martin, A.

Faucher, M.

A. Wetter, M. Faucher, and B. Sévigny, “High power cladding light strippers,” Proc. SPIE 6873, 687327 (2008).
[CrossRef]

Fejer, M. M.

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[CrossRef]

Gawith, C. B. E.

Gayer, O.

Z. Sacks, O. Gayer, E. Tal, and A. Arie, “Improving the efficiency of an optical parametric oscillator by tailoring the pump pulse shape,” Opt. Express 18, 12669–12674 (2010).
[CrossRef]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[CrossRef]

Goldberg, L.

Guo, J.

H. Lin, H. Tan, J. Miao, T. Cui, S. Su, and J. Guo, “Extra-cavity, widely tunable, continuous wave MgO-doped PPLN optical parametric oscillator pumped with a Nd:YVO4 laser,” Opt. Mater. 32, 257–260 (2009).
[CrossRef]

Hanna, D. C.

Ishizuki, H.

Jiang, P.

T. Chen, B. Wu, W. Liu, P. Jiang, J. Kong, and Y. Shen, “Efficient parametric conversion from 1.06 to 3.8 μm by an aperiodically poled cascaded lithium niobate,” Opt. Lett. 36, 921–923 (2011).
[CrossRef]

Y. Shen, S. U. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 15, 385–392 (2009).
[CrossRef]

Jiang, P. P.

P. P. Jiang, D. Z. Yang, Y. X. Wang, T. Chen, B. Wu, and Y. H. Shen, “All-fiberized MOPA structured single-mode pulse Yb fiber laser with a linearly polarized output power of 30 W,” Laser Phys. Lett. 6, 384–387 (2009).
[CrossRef]

Kienle, F.

Kokabee, O.

Kong, J.

Kornaszewski, L.

Kumar, S. C.

S. C. Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B 102, 31–35 (2011).
[CrossRef]

Lamour, T. P.

Li, D.

Lin, D.

D. Lin, S. U. Alam, Y. Shen, T. Chen, B. Wu, and D. J. Richardson, “Large aperture PPMgLN based high-power optical parametric oscillator at 3.8 μm pumped by a nanosecond linearly polarized fiber MOPA,” Opt. Express 20, 15008–15014 (2012).
[CrossRef]

Y. Shen, S. U. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 15, 385–392 (2009).
[CrossRef]

Lin, H.

H. Lin, H. Tan, J. Miao, T. Cui, S. Su, and J. Guo, “Extra-cavity, widely tunable, continuous wave MgO-doped PPLN optical parametric oscillator pumped with a Nd:YVO4 laser,” Opt. Mater. 32, 257–260 (2009).
[CrossRef]

Liu, W.

Malinowski, A.

Y. Shen, S. U. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 15, 385–392 (2009).
[CrossRef]

Miao, J.

H. Lin, H. Tan, J. Miao, T. Cui, S. Su, and J. Guo, “Extra-cavity, widely tunable, continuous wave MgO-doped PPLN optical parametric oscillator pumped with a Nd:YVO4 laser,” Opt. Mater. 32, 257–260 (2009).
[CrossRef]

Myers, L. E.

Nilsson, J.

Peng, Y.

Petrov, K. P.

Pierce, J. W.

Reid, D. T.

Richardson, D. J.

Rose, T. S.

D. Chen and T. S. Rose, “Low noise 10 W CW OPO generation near 3 μm with MgO doped PPLN,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CThQ2.

Sacks, Z.

Z. Sacks, O. Gayer, E. Tal, and A. Arie, “Improving the efficiency of an optical parametric oscillator by tailoring the pump pulse shape,” Opt. Express 18, 12669–12674 (2010).
[CrossRef]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[CrossRef]

Samanta, G. K.

S. C. Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B 102, 31–35 (2011).
[CrossRef]

Schleijpen, H. M. A.

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[CrossRef]

Sévigny, B.

A. Wetter, M. Faucher, and B. Sévigny, “High power cladding light strippers,” Proc. SPIE 6873, 687327 (2008).
[CrossRef]

Shen, Y.

Shen, Y. H.

P. P. Jiang, D. Z. Yang, Y. X. Wang, T. Chen, B. Wu, and Y. H. Shen, “All-fiberized MOPA structured single-mode pulse Yb fiber laser with a linearly polarized output power of 30 W,” Laser Phys. Lett. 6, 384–387 (2009).
[CrossRef]

Shepherd, D. P.

Su, S.

H. Lin, H. Tan, J. Miao, T. Cui, S. Su, and J. Guo, “Extra-cavity, widely tunable, continuous wave MgO-doped PPLN optical parametric oscillator pumped with a Nd:YVO4 laser,” Opt. Mater. 32, 257–260 (2009).
[CrossRef]

Sun, J. H.

Taira, T.

Tal, E.

Tan, H.

H. Lin, H. Tan, J. Miao, T. Cui, S. Su, and J. Guo, “Extra-cavity, widely tunable, continuous wave MgO-doped PPLN optical parametric oscillator pumped with a Nd:YVO4 laser,” Opt. Mater. 32, 257–260 (2009).
[CrossRef]

Teh, P. S.

Tittel, F. K.

van den Heuvel, J. C.

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[CrossRef]

van Putten, F. J. M.

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[CrossRef]

Wang, W.

Wang, Y. X.

P. P. Jiang, D. Z. Yang, Y. X. Wang, T. Chen, B. Wu, and Y. H. Shen, “All-fiberized MOPA structured single-mode pulse Yb fiber laser with a linearly polarized output power of 30 W,” Laser Phys. Lett. 6, 384–387 (2009).
[CrossRef]

Wei, X.

Wetter, A.

A. Wetter, M. Faucher, and B. Sévigny, “High power cladding light strippers,” Proc. SPIE 6873, 687327 (2008).
[CrossRef]

Wu, B.

D. Lin, S. U. Alam, Y. Shen, T. Chen, B. Wu, and D. J. Richardson, “Large aperture PPMgLN based high-power optical parametric oscillator at 3.8 μm pumped by a nanosecond linearly polarized fiber MOPA,” Opt. Express 20, 15008–15014 (2012).
[CrossRef]

T. Chen, B. Wu, W. Liu, P. Jiang, J. Kong, and Y. Shen, “Efficient parametric conversion from 1.06 to 3.8 μm by an aperiodically poled cascaded lithium niobate,” Opt. Lett. 36, 921–923 (2011).
[CrossRef]

B. Wu, J. Kong, and Y. Shen, “High-efficiency semi-external-cavity-structured periodically poled MgLN-based optical parametric oscillator with output power exceeding 9.2 W at 3.82 μm,” Opt. Lett. 35, 1118–1120 (2010).
[CrossRef]

Y. Shen, S. U. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 15, 385–392 (2009).
[CrossRef]

P. P. Jiang, D. Z. Yang, Y. X. Wang, T. Chen, B. Wu, and Y. H. Shen, “All-fiberized MOPA structured single-mode pulse Yb fiber laser with a linearly polarized output power of 30 W,” Laser Phys. Lett. 6, 384–387 (2009).
[CrossRef]

B. Wu, Y. Shen, and S. Cai, “Widely tunable high power OPO based on a periodically poled MgO doped lithium niobate crystal,” Opt. Laser Technol. 39, 1115–1119 (2007).
[CrossRef]

Yang, D. Z.

P. P. Jiang, D. Z. Yang, Y. X. Wang, T. Chen, B. Wu, and Y. H. Shen, “All-fiberized MOPA structured single-mode pulse Yb fiber laser with a linearly polarized output power of 30 W,” Laser Phys. Lett. 6, 384–387 (2009).
[CrossRef]

Appl. Phys. B (2)

S. C. Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B 102, 31–35 (2011).
[CrossRef]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Shen, S. U. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 15, 385–392 (2009).
[CrossRef]

J. Opt. Soc. Am. B (2)

Laser Phys. Lett. (1)

P. P. Jiang, D. Z. Yang, Y. X. Wang, T. Chen, B. Wu, and Y. H. Shen, “All-fiberized MOPA structured single-mode pulse Yb fiber laser with a linearly polarized output power of 30 W,” Laser Phys. Lett. 6, 384–387 (2009).
[CrossRef]

Opt. Express (3)

Opt. Laser Technol. (1)

B. Wu, Y. Shen, and S. Cai, “Widely tunable high power OPO based on a periodically poled MgO doped lithium niobate crystal,” Opt. Laser Technol. 39, 1115–1119 (2007).
[CrossRef]

Opt. Lett. (8)

T. Chen, B. Wu, W. Liu, P. Jiang, J. Kong, and Y. Shen, “Efficient parametric conversion from 1.06 to 3.8 μm by an aperiodically poled cascaded lithium niobate,” Opt. Lett. 36, 921–923 (2011).
[CrossRef]

Y. Peng, W. Wang, X. Wei, and D. Li, “High-efficiency mid-infrared optical parametric oscillator based on PPMgO:CLN,” Opt. Lett. 34, 2897–2899 (2009).
[CrossRef]

B. Wu, J. Kong, and Y. Shen, “High-efficiency semi-external-cavity-structured periodically poled MgLN-based optical parametric oscillator with output power exceeding 9.2 W at 3.82 μm,” Opt. Lett. 35, 1118–1120 (2010).
[CrossRef]

K. P. Petrov, L. Goldberg, W. K. Burns, R. F. Curl, and F. K. Tittel, “Detection of CO in air by diode-pumped 4.6 μm difference-frequency generation in quasi-phase-matched LiNbO3,” Opt. Lett. 21, 86–88 (1996).
[CrossRef]

W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “93% pump depletion, 3.5 W continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett. 21, 1336–1338 (1996).
[CrossRef]

H. Ishizuki and T. Taira, “High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5  mm×5  mm aperture,” Opt. Lett. 30, 2918–2920 (2005).
[CrossRef]

F. Kienle, P. S. Teh, S. U. Alam, C. B. E. Gawith, D. C. Hanna, D. J. Richardson, and D. P. Shepherd, “Compact, high-pulse-energy, picosecond optical parametric oscillator,” Opt. Lett. 35, 3580–3582 (2010).
[CrossRef]

O. Kokabee, A. Esteban-Martin, and M. Ebrahim-Zadeh, “Efficient, high-power, ytterbium-fiber-laser-pumped picosecond optical parametric oscillator,” Opt. Lett. 35, 3210–3212(2010).
[CrossRef]

Opt. Mater. (1)

H. Lin, H. Tan, J. Miao, T. Cui, S. Su, and J. Guo, “Extra-cavity, widely tunable, continuous wave MgO-doped PPLN optical parametric oscillator pumped with a Nd:YVO4 laser,” Opt. Mater. 32, 257–260 (2009).
[CrossRef]

Proc. SPIE (2)

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[CrossRef]

A. Wetter, M. Faucher, and B. Sévigny, “High power cladding light strippers,” Proc. SPIE 6873, 687327 (2008).
[CrossRef]

Other (1)

D. Chen and T. S. Rose, “Low noise 10 W CW OPO generation near 3 μm with MgO doped PPLN,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CThQ2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of the fully fiberized Yb-doped fiber MOPA and its pumped PPMgLN-based OPO system.

Fig. 2.
Fig. 2.

Top view of the assembled OPO system, including the PM ISO, HWP, the beam transform lenses, reflecting mirrors, and the OPO cavity, with 20 cm in length, 13 cm in width, and 9 cm in height.

Fig. 3.
Fig. 3.

Output power of the fiber MOPA as a function of the launched pump power at 915 nm. Inset, laser spectra at different output power and the pulse shape of the seed.

Fig. 4.
Fig. 4.

Pulse profiles of the pump, the depleted pump, and the generated signal wave at 1472 nm under the maximum pump power.

Fig. 5.
Fig. 5.

Threshold condition and the maximum OPO output powers at different PPMgLN channels.

Fig. 6.
Fig. 6.

Comparison on the OPO output power and the conversion efficiency between channels for generating idler wavelength of (a) 3.99 μm and (b) 3.43 μm.

Fig. 7.
Fig. 7.

Comparison on the signal wavelength shift between channels for generating idler wavelengths of 3.43 and 3.99 μm when the pump power increased from 7 to 26 W. (a) Pump power dependent signal spectra shifts around 1.450 μm (refer to the idler wavelength of 3.99 μm), (b) pump power dependent signal spectra shifts around 1.54 μm (refer to the idler wavelength of 3.43 μm), and (c) idler wavelength-dependent temperature rises for the pump power increasing from 7 to 26 W.

Metrics