Abstract

The headlamp of the automobile is a very important device for the safety of driving in the dark. Therefore, the distribution of the light designed to provide forward and lateral illumination needs to meet the requirements of various regulations. Traditional measurement of the distribution has been based on a point-by-point approach using a goniophotometer. In this paper, an imaging photometer is developed by combining a regular digital camera and a high dynamic range imaging technique to achieve faster and more complete measurement of the entire distribution. The experimental results indicate that errors of the measurements are within 10% of the true values, which is better than the 20% requirements of the industry.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Varghese and U. Shankar, “Passenger vehicle occupant fatalities by day and night—a contrast,” Research Note of NHTSA, http://www-nrd.nhtsa.dot.gov/Pubs/810637.PDF , May2007.
  2. ECE regulation R112: Headlamps emitting an asymmetrical passing beam and/or a driving beam and equipped with filament bulbs.
  3. ECE regulation R98: Headlamps equipped with gas-discharge light sources.
  4. FMVSS, 108 http://edocket.access.gpo.gov/cfr_2004/octqtr/49cfr571.108.htm .
  5. CMVSS, 108 http://www.tc.gc.ca/en/menu.htm .
  6. J. A. Bruder, “Instrumentation for mapping light intensity contours,” IEEE Trans. Veh. Technol. VT-19, 225–229(1970).
    [CrossRef]
  7. J. N. Rogers, “Vehicle headlight testing system,” U.S. patent 5,321,439 (14June1994).
  8. S. Royo, M. J. Arranz, J. Arasa, M. Cattoen, and T. Bosch, “Compact low-cost unit for photometric testing of automotive headlamps,” Opt. Eng. 45, 063602 (2006).
    [CrossRef]
  9. C. Ouchi, “Illuminance distribution measuring system,” U.S. patent 5,067,811 (25June1990).
  10. S. Royo, M. J. Arranz, J. Arasa, M. Cattoen, and T. Bosch, “New costeffective sensor for the characterization of automotive headlamps by measurements in the near field,” Sens. Actuators A 132, 56–62 (2006).
    [CrossRef]
  11. K. Ohana, “Illuminance measurement of vehicle lamp,” U.S. patent 5,426,500 (20June1995).
  12. A. Bevilacqua, A. Gherardi, and L. Carozza, “A fully automatic real time system for the characterization of automotive headlamps,” in Proceedings of IEEE I2MTC, Singapore (IEEE, 2009), pp. 36–39.
  13. A. Bevilacqua, A. Gherardi, and L. Carozza, “An automatic system for the real-time characterization of vehicle headlamp beams exploiting image analysis,” IEEE Trans. Instrum. Meas. 9, 2630–2638 (2010).
    [CrossRef]
  14. LMTGoniophotometer GO-H 1400, http://www.lmt-berlin.de/ .
  15. Goniophotometer SMS-10, http://www.xrite.com or www.optronik.de/ , Optronik is a subsidiary of X-Rite Incorporated.
  16. Y. Y. Yu, Y. L. Chen, W. H. Chen, H. X. Chen, X. H. Lee, C. C. Liu, and C. C. Sun, “Bidirectional scattering distribution function by screen imaging synthesis,” Opt. Express 20, 1268–1280 (2012).
    [CrossRef]
  17. M. V. Kliein and T. E. Furtak, Optics (Wiley, 1986).
  18. M. Oren and S. K. Nayar, “Generalization of the Lambertian model and implications for machine vision,” Int. J. Comput. Vis. 14, 227–251 (1995).
    [CrossRef]
  19. D. A. Forsyth and J. Ponce, Computer Vision A Modern Approach (Prentice-Hall, 2003).
  20. Hearn, D., Baker, and M. P., Computer Graphics, 2nd ed.(Prentice-Hall, 1994).
  21. M. D. Grossberg and S. K. Nayar, “Modeling the space of camera response functions,” IEEE Trans. Pattern Anal. Machine Intell. 26, 1272–1282 (2004).
    [CrossRef]
  22. P. E. Debevec and J. Malik, “Recovering high dynamic range radiance maps from photographs,” in ACM Proceedings SIGGRAPH (1997), pp. 369–378.
  23. http://www.unece.org/trans/main/wp29/wp29regs41-60.html , ECE Addendum 55: Regulation No. 56 (P.19 Annex4, 1.2).

2012 (1)

2010 (1)

A. Bevilacqua, A. Gherardi, and L. Carozza, “An automatic system for the real-time characterization of vehicle headlamp beams exploiting image analysis,” IEEE Trans. Instrum. Meas. 9, 2630–2638 (2010).
[CrossRef]

2006 (2)

S. Royo, M. J. Arranz, J. Arasa, M. Cattoen, and T. Bosch, “Compact low-cost unit for photometric testing of automotive headlamps,” Opt. Eng. 45, 063602 (2006).
[CrossRef]

S. Royo, M. J. Arranz, J. Arasa, M. Cattoen, and T. Bosch, “New costeffective sensor for the characterization of automotive headlamps by measurements in the near field,” Sens. Actuators A 132, 56–62 (2006).
[CrossRef]

2004 (1)

M. D. Grossberg and S. K. Nayar, “Modeling the space of camera response functions,” IEEE Trans. Pattern Anal. Machine Intell. 26, 1272–1282 (2004).
[CrossRef]

1995 (1)

M. Oren and S. K. Nayar, “Generalization of the Lambertian model and implications for machine vision,” Int. J. Comput. Vis. 14, 227–251 (1995).
[CrossRef]

1970 (1)

J. A. Bruder, “Instrumentation for mapping light intensity contours,” IEEE Trans. Veh. Technol. VT-19, 225–229(1970).
[CrossRef]

Arasa, J.

S. Royo, M. J. Arranz, J. Arasa, M. Cattoen, and T. Bosch, “Compact low-cost unit for photometric testing of automotive headlamps,” Opt. Eng. 45, 063602 (2006).
[CrossRef]

S. Royo, M. J. Arranz, J. Arasa, M. Cattoen, and T. Bosch, “New costeffective sensor for the characterization of automotive headlamps by measurements in the near field,” Sens. Actuators A 132, 56–62 (2006).
[CrossRef]

Arranz, M. J.

S. Royo, M. J. Arranz, J. Arasa, M. Cattoen, and T. Bosch, “Compact low-cost unit for photometric testing of automotive headlamps,” Opt. Eng. 45, 063602 (2006).
[CrossRef]

S. Royo, M. J. Arranz, J. Arasa, M. Cattoen, and T. Bosch, “New costeffective sensor for the characterization of automotive headlamps by measurements in the near field,” Sens. Actuators A 132, 56–62 (2006).
[CrossRef]

Baker,

Hearn, D., Baker, and M. P., Computer Graphics, 2nd ed.(Prentice-Hall, 1994).

Bevilacqua, A.

A. Bevilacqua, A. Gherardi, and L. Carozza, “An automatic system for the real-time characterization of vehicle headlamp beams exploiting image analysis,” IEEE Trans. Instrum. Meas. 9, 2630–2638 (2010).
[CrossRef]

A. Bevilacqua, A. Gherardi, and L. Carozza, “A fully automatic real time system for the characterization of automotive headlamps,” in Proceedings of IEEE I2MTC, Singapore (IEEE, 2009), pp. 36–39.

Bosch, T.

S. Royo, M. J. Arranz, J. Arasa, M. Cattoen, and T. Bosch, “New costeffective sensor for the characterization of automotive headlamps by measurements in the near field,” Sens. Actuators A 132, 56–62 (2006).
[CrossRef]

S. Royo, M. J. Arranz, J. Arasa, M. Cattoen, and T. Bosch, “Compact low-cost unit for photometric testing of automotive headlamps,” Opt. Eng. 45, 063602 (2006).
[CrossRef]

Bruder, J. A.

J. A. Bruder, “Instrumentation for mapping light intensity contours,” IEEE Trans. Veh. Technol. VT-19, 225–229(1970).
[CrossRef]

Carozza, L.

A. Bevilacqua, A. Gherardi, and L. Carozza, “An automatic system for the real-time characterization of vehicle headlamp beams exploiting image analysis,” IEEE Trans. Instrum. Meas. 9, 2630–2638 (2010).
[CrossRef]

A. Bevilacqua, A. Gherardi, and L. Carozza, “A fully automatic real time system for the characterization of automotive headlamps,” in Proceedings of IEEE I2MTC, Singapore (IEEE, 2009), pp. 36–39.

Cattoen, M.

S. Royo, M. J. Arranz, J. Arasa, M. Cattoen, and T. Bosch, “Compact low-cost unit for photometric testing of automotive headlamps,” Opt. Eng. 45, 063602 (2006).
[CrossRef]

S. Royo, M. J. Arranz, J. Arasa, M. Cattoen, and T. Bosch, “New costeffective sensor for the characterization of automotive headlamps by measurements in the near field,” Sens. Actuators A 132, 56–62 (2006).
[CrossRef]

Chen, H. X.

Chen, W. H.

Chen, Y. L.

D.,

Hearn, D., Baker, and M. P., Computer Graphics, 2nd ed.(Prentice-Hall, 1994).

Debevec, P. E.

P. E. Debevec and J. Malik, “Recovering high dynamic range radiance maps from photographs,” in ACM Proceedings SIGGRAPH (1997), pp. 369–378.

Forsyth, D. A.

D. A. Forsyth and J. Ponce, Computer Vision A Modern Approach (Prentice-Hall, 2003).

Furtak, T. E.

M. V. Kliein and T. E. Furtak, Optics (Wiley, 1986).

Gherardi, A.

A. Bevilacqua, A. Gherardi, and L. Carozza, “An automatic system for the real-time characterization of vehicle headlamp beams exploiting image analysis,” IEEE Trans. Instrum. Meas. 9, 2630–2638 (2010).
[CrossRef]

A. Bevilacqua, A. Gherardi, and L. Carozza, “A fully automatic real time system for the characterization of automotive headlamps,” in Proceedings of IEEE I2MTC, Singapore (IEEE, 2009), pp. 36–39.

Grossberg, M. D.

M. D. Grossberg and S. K. Nayar, “Modeling the space of camera response functions,” IEEE Trans. Pattern Anal. Machine Intell. 26, 1272–1282 (2004).
[CrossRef]

Hearn,

Hearn, D., Baker, and M. P., Computer Graphics, 2nd ed.(Prentice-Hall, 1994).

Kliein, M. V.

M. V. Kliein and T. E. Furtak, Optics (Wiley, 1986).

Lee, X. H.

Liu, C. C.

M. P.,

Hearn, D., Baker, and M. P., Computer Graphics, 2nd ed.(Prentice-Hall, 1994).

Malik, J.

P. E. Debevec and J. Malik, “Recovering high dynamic range radiance maps from photographs,” in ACM Proceedings SIGGRAPH (1997), pp. 369–378.

Nayar, S. K.

M. D. Grossberg and S. K. Nayar, “Modeling the space of camera response functions,” IEEE Trans. Pattern Anal. Machine Intell. 26, 1272–1282 (2004).
[CrossRef]

M. Oren and S. K. Nayar, “Generalization of the Lambertian model and implications for machine vision,” Int. J. Comput. Vis. 14, 227–251 (1995).
[CrossRef]

Ohana, K.

K. Ohana, “Illuminance measurement of vehicle lamp,” U.S. patent 5,426,500 (20June1995).

Oren, M.

M. Oren and S. K. Nayar, “Generalization of the Lambertian model and implications for machine vision,” Int. J. Comput. Vis. 14, 227–251 (1995).
[CrossRef]

Ouchi, C.

C. Ouchi, “Illuminance distribution measuring system,” U.S. patent 5,067,811 (25June1990).

Ponce, J.

D. A. Forsyth and J. Ponce, Computer Vision A Modern Approach (Prentice-Hall, 2003).

Rogers, J. N.

J. N. Rogers, “Vehicle headlight testing system,” U.S. patent 5,321,439 (14June1994).

Royo, S.

S. Royo, M. J. Arranz, J. Arasa, M. Cattoen, and T. Bosch, “Compact low-cost unit for photometric testing of automotive headlamps,” Opt. Eng. 45, 063602 (2006).
[CrossRef]

S. Royo, M. J. Arranz, J. Arasa, M. Cattoen, and T. Bosch, “New costeffective sensor for the characterization of automotive headlamps by measurements in the near field,” Sens. Actuators A 132, 56–62 (2006).
[CrossRef]

Sun, C. C.

Yu, Y. Y.

IEEE Trans. Instrum. Meas. (1)

A. Bevilacqua, A. Gherardi, and L. Carozza, “An automatic system for the real-time characterization of vehicle headlamp beams exploiting image analysis,” IEEE Trans. Instrum. Meas. 9, 2630–2638 (2010).
[CrossRef]

IEEE Trans. Pattern Anal. Machine Intell. (1)

M. D. Grossberg and S. K. Nayar, “Modeling the space of camera response functions,” IEEE Trans. Pattern Anal. Machine Intell. 26, 1272–1282 (2004).
[CrossRef]

IEEE Trans. Veh. Technol. (1)

J. A. Bruder, “Instrumentation for mapping light intensity contours,” IEEE Trans. Veh. Technol. VT-19, 225–229(1970).
[CrossRef]

Int. J. Comput. Vis. (1)

M. Oren and S. K. Nayar, “Generalization of the Lambertian model and implications for machine vision,” Int. J. Comput. Vis. 14, 227–251 (1995).
[CrossRef]

Opt. Eng. (1)

S. Royo, M. J. Arranz, J. Arasa, M. Cattoen, and T. Bosch, “Compact low-cost unit for photometric testing of automotive headlamps,” Opt. Eng. 45, 063602 (2006).
[CrossRef]

Opt. Express (1)

Sens. Actuators A (1)

S. Royo, M. J. Arranz, J. Arasa, M. Cattoen, and T. Bosch, “New costeffective sensor for the characterization of automotive headlamps by measurements in the near field,” Sens. Actuators A 132, 56–62 (2006).
[CrossRef]

Other (16)

K. Ohana, “Illuminance measurement of vehicle lamp,” U.S. patent 5,426,500 (20June1995).

A. Bevilacqua, A. Gherardi, and L. Carozza, “A fully automatic real time system for the characterization of automotive headlamps,” in Proceedings of IEEE I2MTC, Singapore (IEEE, 2009), pp. 36–39.

LMTGoniophotometer GO-H 1400, http://www.lmt-berlin.de/ .

Goniophotometer SMS-10, http://www.xrite.com or www.optronik.de/ , Optronik is a subsidiary of X-Rite Incorporated.

M. V. Kliein and T. E. Furtak, Optics (Wiley, 1986).

D. A. Forsyth and J. Ponce, Computer Vision A Modern Approach (Prentice-Hall, 2003).

Hearn, D., Baker, and M. P., Computer Graphics, 2nd ed.(Prentice-Hall, 1994).

C. Ouchi, “Illuminance distribution measuring system,” U.S. patent 5,067,811 (25June1990).

J. N. Rogers, “Vehicle headlight testing system,” U.S. patent 5,321,439 (14June1994).

A. Varghese and U. Shankar, “Passenger vehicle occupant fatalities by day and night—a contrast,” Research Note of NHTSA, http://www-nrd.nhtsa.dot.gov/Pubs/810637.PDF , May2007.

ECE regulation R112: Headlamps emitting an asymmetrical passing beam and/or a driving beam and equipped with filament bulbs.

ECE regulation R98: Headlamps equipped with gas-discharge light sources.

FMVSS, 108 http://edocket.access.gpo.gov/cfr_2004/octqtr/49cfr571.108.htm .

CMVSS, 108 http://www.tc.gc.ca/en/menu.htm .

P. E. Debevec and J. Malik, “Recovering high dynamic range radiance maps from photographs,” in ACM Proceedings SIGGRAPH (1997), pp. 369–378.

http://www.unece.org/trans/main/wp29/wp29regs41-60.html , ECE Addendum 55: Regulation No. 56 (P.19 Annex4, 1.2).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

System setup for the goniometric headlamp measurements.

Fig. 2.
Fig. 2.

Graphics and image to show (a) the ECE regulation lines (dimension in centimeters with screen at 25 m distance) and (b) the projected light pattern of the headlamp. The cross marks in both two figures (at the same positions) are one example of the selected checkpoints usually used in the headlamp industry for verification.

Fig. 3.
Fig. 3.

Orientation of the headlamp during measurement. (a) The headlamp needs to be rotated precisely in goniophotometer-based system. (b) The headlamp can stay stationary in the proposed image-based system.

Fig. 4.
Fig. 4.

Seven images with different exposures were used to obtain an HDR image (bottom right).

Fig. 5.
Fig. 5.

Seven images acquired with different shutter speed was used to generate (a) camera response function, and (b) a high dynamic range image.

Fig. 6.
Fig. 6.

40 selected points for the verification of the derived linear equation. (a) Positions of selected points on the measuring screen. (b) Scatter-gram of the measurement data and the fitted line based on the least-squared (LS) method.

Fig. 7.
Fig. 7.

Deviation ratios of the estimated luminous densities for all 40 checked points. The hollow diamond markers are results of SI fitting using only two points. The full circle markers are results of direct solution.

Fig. 8.
Fig. 8.

Performance of the imaging photometer for the ECE headlamp. (a) Constructed illuminance map and the 20 checked points. (b) Deviation ratios of the measurements.

Fig. 9.
Fig. 9.

Performance of the imaging photometer for the SAE headlamp. (a) Constructed illuminance map and the 20 checked points. (b) Deviation ratios of the measurements.

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

I ( θ , ϕ , λ ) = P ( λ ) · G ( θ , ϕ ) .
I v ( θ , ϕ ) = 683 · 0 y ( λ ) I ( θ , ϕ , λ ) d λ
= G ( θ , ϕ ) · 683 · 0 y ( λ ) P ( λ ) d λ ,
I v ( θ , ϕ ) = E v p ( d p , θ , ϕ ) · d p 2 .
I ( λ ) E s ( r , λ ) L s ( r , λ ) L v s E v c X Z .
E s ( r , θ , ϕ , λ ) = I ( θ , ϕ , λ ) r 2 · cos θ ,
L s ( r , θ , ϕ , λ ) = ρ ( λ ) π · E s ( r , θ , ϕ , λ ) ,
L v d ( θ , ϕ ) = 683 · 0 y ( λ ) L s ( r , θ , ϕ , λ ) d λ .
L s ( r , θ , ϕ , λ ) = ρ ( λ ) π · I ( θ , ϕ , λ ) d s 2 cos 3 θ ,
L v d ( θ , ϕ ) = 683 · 0 y ( λ ) ρ ( λ ) cos 3 θ π d s 2 I ( θ , ϕ , λ ) d λ .
L v s ( θ , ϕ ) = L v a ( θ , ϕ ) + L v d ( θ , ϕ )
= L v a + 683 · 0 y ( λ ) ρ ( λ ) cos 3 θ π d s 2 I ( θ , ϕ , λ ) d λ .
E v c ( θ , ϕ ) = ( L v a + L v d ( θ , ϕ ) ) π 4 ( d f ) 2 cos 4 α ,
E v c ( θ , ϕ ) = ( L v a + 683 · 0 y ( λ ) ρ ( λ ) cos 3 θ π d s 2 I ( θ , ϕ , λ ) d λ ) π 4 ( d f ) 2 cos 4 α = ( L v a + 0 y ( λ ) ρ ( λ ) cos 3 θ π d s 2 I ( θ , ϕ , λ ) d λ · I v ( θ , ϕ ) 0 y ( λ ) I ( θ , ϕ , λ ) d λ ) π 4 ( d f ) 2 cos 4 α .
E v c ( θ , ϕ ) = ( L v a + 0 y ( λ ) P ( λ ) ρ ( λ ) π d λ d s 2 0 y ( λ ) P ( λ ) d λ I v ( θ , ϕ ) cos 3 θ ) π 4 ( d f ) 2 cos 4 α
E v c ( θ , ϕ ) = E v a + I v ( θ , ϕ ) cos 3 θ · 1 R ,
E v a = L v a · π 4 ( d f ) 2 cos 4 α
R = 0 y ( λ ) P ( λ ) d λ 0 ρ ( λ ) y ( λ ) P ( λ ) d λ · 4 d s 2 ( d f ) 2 cos 4 α .
I v ( θ , ϕ ) = R ( E v c ( θ , ϕ ) E v a ) cos 3 θ ,
Z i j = f c ( X i j ) = f c ( E i Δ t j ) ,
X i j = E i Δ t j = f c 1 ( Z i j ) .
X i j r = f c 1 ( Z i j ) .
X i j = k X i j r , 0 X i j r 1 .
E v c ( θ , ϕ ) = X ( θ , ϕ ) Δ t = k X r ( θ , ϕ ) Δ t = k f c 1 ( Z ( θ , ϕ ) ) Δ t
E v c ( θ , ϕ ) = k E v c r ( θ , ϕ ) , 0 X r ( θ , ϕ ) 1 ,
E v c r ( θ , ϕ ) = 1 M for j = 1 : J and 30 < Z j ( θ , ϕ ) < 245 f c 1 ( Z j ( θ , ϕ ) ) Δ t j ,
I v ( θ , ϕ ) = R ( k E v c r ( θ , ϕ ) E v a ) cos 3 θ ,
I v ( θ , ϕ ) cos 3 θ = k R E v c r ( θ , ϕ ) R E v a , or
I v ( θ , ϕ ) cos 3 θ = a E v c r ( θ , ϕ ) b .
I v ( θ , ϕ ) = a E v c r ( θ , ϕ ) b cos 3 θ .
ε r = 1 I v ( I v I v ) × 100 % .
I v ( θ , ϕ ) cos 3 θ = 4422.6 E v c r ( θ , ϕ ) 35.6 ,
I v ( θ , ϕ ) = 4152.1 E v c r ( θ , ϕ ) 14.1 cos 3 θ ,
I v ( θ , ϕ ) cos 3 θ = 5023.3 E v c r ( θ , ϕ ) 113.4 ,
I v ( θ , ϕ ) = 5023.3 E v c r ( θ , ϕ ) 113.4 cos 3 θ .

Metrics