Abstract

Here we report nonintrusive local rotational temperature measurements of molecular oxygen, based on coherent microwave scattering (radar) from resonance-enhanced multiphoton ionization (REMPI) in room air and hydrogen/air flames. Analyses of the rotational line strengths of the two-photon molecular oxygen C3Π(v=2)X3Σ(v=0) transition have been used to determine the hyperfine rotational state distribution of the ground X3Σ(v=0) state. Rotationally resolved 2+1 REMPI spectra of the molecular oxygen C3Π(v=2)X3Σ(v=0) transition at different temperatures were obtained experimentally by radar REMPI. Rotational temperatures have been determined from the resulting Boltzmann plots. The measurements in general had an accuracy of ±60K in the hydrogen/air flames at various equivalence ratios. Discussions about the decreased accuracy for the temperature measurement at elevated temperatures have been presented.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Wu, Z. Zhang, and S. F. Adams, “O2 rotational temperature measurements by coherent microwave scattering from REMPI,” Chem. Phys. Lett. 513, 191–194 (2011).
    [CrossRef]
  2. S. Adams and J. Williamson, “Gas temperature measurement in atmospheric nitrogen discharge by laser REMPI-LIF technique,” presented at the 63rd Annual Gaseous Electronics Conference and 7th International Conference on Reactive Plasmas, Paris, France, 4–8Oct.2010.
  3. Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave Rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett. 98, 265005 (2007).
    [CrossRef]
  4. Z. Zhang, M. N. Shneider, and R. B. Miles, “Experiments of microwave scattering of (3+1), (2+1) and (1+1) resonance enhanced multi-photon ionization,” presented at the 38th AIAA Plasmadynamics and Laser Conference, Miami, Fla., 25–28June2007.
  5. R. B. Miles, Z. Zhang, S. H. Zaidi, and M. N. Shneider, “Microwave scattering from laser ionized molecules: A new approach to nonintrusive diagnostics,” AIAA J. 45, 513–515 (2007).
    [CrossRef]
  6. A. Dogariu and R. B. Miles, “Detecting localized trace species in air using radar resonance-enhanced multi-photon ionization,” Appl. Opt. 50, A68–A73 (2011).
    [CrossRef]
  7. A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331, 442–445 (2011).
    [CrossRef]
  8. Y. Wu, A. Bottom, Z. Zhang, M. O. Timonthy, and R. K. Viswanath, “Direct measurement of methyl radicals in a methane/air flame at atmospheric pressure by radar REMPI,” Opt. Express 19, 23997–24004 (2011).
    [CrossRef]
  9. F. Rudakov and Z. Zhang, “Standoff detection of large organic molecules using Rydberg fingerprint spectroscopy and microwave Rayleigh scattering,” Opt. Lett. 37, 145–147 (2012).
    [CrossRef]
  10. G. Herzberg, Molecular Spectra and Molecular Structure: Spectra of Diatomic Molecules, 2nd ed. (Krieger, 1989), Chap. V, pp. 215–229.
  11. C. Mainos, “Multiphoton rotational line strength in diatomic molecules and for states with Hund’s case-(a) or case-(b) coupling,” Phys. Rev. A 33, 3983–3992 (1986).
    [CrossRef]
  12. Z. Zhang, “Coherent microwave scattering of laser-induced plasma,” in Mechanical and Aerospace Engineering (Princeton University, 2008), pp. 36–46.
  13. Z. Zhang and M. N. Shneider, “Measurement of plasma decay processes in mixture of sodium and argon by coherent microwave scattering,” Phys. Plasmas 17, 033108(2010).
    [CrossRef]
  14. R. S. Barlow, R. W. Dibble, J.-Y. Chen, and R. P. Lucht, “Effect of Damkohler number on superequilibrium OH concentration in turbulent nonpremixed jet flames,” Combust. Flame 82, 235–251 (1990).
    [CrossRef]
  15. F. Takahashi, W. J. Schmoll, and V. R. Katta, “Attachment mechanisms of diffusion flames,” Symp. Int. Combust. 27, 675–684 (1998).
    [CrossRef]
  16. J. Sakakibara and R. J. Adrian, “Whole field measurement of temperature in water using two-color laser induced fluorescence,” Exp. Fluids 26, 7–15 (1999).
    [CrossRef]
  17. J. Guasto and K. Breuer, “Simultaneous, ensemble-averaged measurement of near-wall temperature and velocity in steady micro-flows using single quantum dot tracking,” Exp. Fluids 45, 157–166 (2008).
    [CrossRef]
  18. X. Perpiñà1, X. Jordà1, M. Vellvehi1, and J. Altet, “Hot spot analysis in integrated circuit substrates by laser mirage effect,” Appl. Phys. Lett. 98, 164104 (2011).
    [CrossRef]
  19. W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames,” Combust. Flame 137, 523–537 (2004).
    [CrossRef]
  20. S. Roy, T. R. Meyer, M. S. Brown, V. N. Velur, R. P. Lucht, and J. R. Gord, “Triple-pump coherent anti-Stokes Raman scattering (CARS): temperature and multiple-species concentration measurements in reacting flows,” Opt. Commun. 224, 131–137 (2003).
    [CrossRef]
  21. R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
    [CrossRef]

2012 (1)

2011 (5)

Y. Wu, Z. Zhang, and S. F. Adams, “O2 rotational temperature measurements by coherent microwave scattering from REMPI,” Chem. Phys. Lett. 513, 191–194 (2011).
[CrossRef]

A. Dogariu and R. B. Miles, “Detecting localized trace species in air using radar resonance-enhanced multi-photon ionization,” Appl. Opt. 50, A68–A73 (2011).
[CrossRef]

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331, 442–445 (2011).
[CrossRef]

Y. Wu, A. Bottom, Z. Zhang, M. O. Timonthy, and R. K. Viswanath, “Direct measurement of methyl radicals in a methane/air flame at atmospheric pressure by radar REMPI,” Opt. Express 19, 23997–24004 (2011).
[CrossRef]

X. Perpiñà1, X. Jordà1, M. Vellvehi1, and J. Altet, “Hot spot analysis in integrated circuit substrates by laser mirage effect,” Appl. Phys. Lett. 98, 164104 (2011).
[CrossRef]

2010 (1)

Z. Zhang and M. N. Shneider, “Measurement of plasma decay processes in mixture of sodium and argon by coherent microwave scattering,” Phys. Plasmas 17, 033108(2010).
[CrossRef]

2008 (1)

J. Guasto and K. Breuer, “Simultaneous, ensemble-averaged measurement of near-wall temperature and velocity in steady micro-flows using single quantum dot tracking,” Exp. Fluids 45, 157–166 (2008).
[CrossRef]

2007 (2)

Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave Rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett. 98, 265005 (2007).
[CrossRef]

R. B. Miles, Z. Zhang, S. H. Zaidi, and M. N. Shneider, “Microwave scattering from laser ionized molecules: A new approach to nonintrusive diagnostics,” AIAA J. 45, 513–515 (2007).
[CrossRef]

2004 (1)

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames,” Combust. Flame 137, 523–537 (2004).
[CrossRef]

2003 (1)

S. Roy, T. R. Meyer, M. S. Brown, V. N. Velur, R. P. Lucht, and J. R. Gord, “Triple-pump coherent anti-Stokes Raman scattering (CARS): temperature and multiple-species concentration measurements in reacting flows,” Opt. Commun. 224, 131–137 (2003).
[CrossRef]

1999 (1)

J. Sakakibara and R. J. Adrian, “Whole field measurement of temperature in water using two-color laser induced fluorescence,” Exp. Fluids 26, 7–15 (1999).
[CrossRef]

1998 (1)

F. Takahashi, W. J. Schmoll, and V. R. Katta, “Attachment mechanisms of diffusion flames,” Symp. Int. Combust. 27, 675–684 (1998).
[CrossRef]

1997 (1)

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

1990 (1)

R. S. Barlow, R. W. Dibble, J.-Y. Chen, and R. P. Lucht, “Effect of Damkohler number on superequilibrium OH concentration in turbulent nonpremixed jet flames,” Combust. Flame 82, 235–251 (1990).
[CrossRef]

1986 (1)

C. Mainos, “Multiphoton rotational line strength in diatomic molecules and for states with Hund’s case-(a) or case-(b) coupling,” Phys. Rev. A 33, 3983–3992 (1986).
[CrossRef]

Adams, S.

S. Adams and J. Williamson, “Gas temperature measurement in atmospheric nitrogen discharge by laser REMPI-LIF technique,” presented at the 63rd Annual Gaseous Electronics Conference and 7th International Conference on Reactive Plasmas, Paris, France, 4–8Oct.2010.

Adams, S. F.

Y. Wu, Z. Zhang, and S. F. Adams, “O2 rotational temperature measurements by coherent microwave scattering from REMPI,” Chem. Phys. Lett. 513, 191–194 (2011).
[CrossRef]

Adrian, R. J.

J. Sakakibara and R. J. Adrian, “Whole field measurement of temperature in water using two-color laser induced fluorescence,” Exp. Fluids 26, 7–15 (1999).
[CrossRef]

Altet, J.

X. Perpiñà1, X. Jordà1, M. Vellvehi1, and J. Altet, “Hot spot analysis in integrated circuit substrates by laser mirage effect,” Appl. Phys. Lett. 98, 164104 (2011).
[CrossRef]

Barlow, R. S.

R. S. Barlow, R. W. Dibble, J.-Y. Chen, and R. P. Lucht, “Effect of Damkohler number on superequilibrium OH concentration in turbulent nonpremixed jet flames,” Combust. Flame 82, 235–251 (1990).
[CrossRef]

Bertagnolli, K. E.

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

Bottom, A.

Breuer, K.

J. Guasto and K. Breuer, “Simultaneous, ensemble-averaged measurement of near-wall temperature and velocity in steady micro-flows using single quantum dot tracking,” Exp. Fluids 45, 157–166 (2008).
[CrossRef]

Brown, M. S.

S. Roy, T. R. Meyer, M. S. Brown, V. N. Velur, R. P. Lucht, and J. R. Gord, “Triple-pump coherent anti-Stokes Raman scattering (CARS): temperature and multiple-species concentration measurements in reacting flows,” Opt. Commun. 224, 131–137 (2003).
[CrossRef]

Chen, J.-Y.

R. S. Barlow, R. W. Dibble, J.-Y. Chen, and R. P. Lucht, “Effect of Damkohler number on superequilibrium OH concentration in turbulent nonpremixed jet flames,” Combust. Flame 82, 235–251 (1990).
[CrossRef]

Dibble, R. W.

R. S. Barlow, R. W. Dibble, J.-Y. Chen, and R. P. Lucht, “Effect of Damkohler number on superequilibrium OH concentration in turbulent nonpremixed jet flames,” Combust. Flame 82, 235–251 (1990).
[CrossRef]

Dogariu, A.

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331, 442–445 (2011).
[CrossRef]

A. Dogariu and R. B. Miles, “Detecting localized trace species in air using radar resonance-enhanced multi-photon ionization,” Appl. Opt. 50, A68–A73 (2011).
[CrossRef]

Gord, J. R.

S. Roy, T. R. Meyer, M. S. Brown, V. N. Velur, R. P. Lucht, and J. R. Gord, “Triple-pump coherent anti-Stokes Raman scattering (CARS): temperature and multiple-species concentration measurements in reacting flows,” Opt. Commun. 224, 131–137 (2003).
[CrossRef]

Guasto, J.

J. Guasto and K. Breuer, “Simultaneous, ensemble-averaged measurement of near-wall temperature and velocity in steady micro-flows using single quantum dot tracking,” Exp. Fluids 45, 157–166 (2008).
[CrossRef]

Hancock, R. D.

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

Hanna, S. F.

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames,” Combust. Flame 137, 523–537 (2004).
[CrossRef]

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure: Spectra of Diatomic Molecules, 2nd ed. (Krieger, 1989), Chap. V, pp. 215–229.

Jordà1, X.

X. Perpiñà1, X. Jordà1, M. Vellvehi1, and J. Altet, “Hot spot analysis in integrated circuit substrates by laser mirage effect,” Appl. Phys. Lett. 98, 164104 (2011).
[CrossRef]

Katta, V. R.

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames,” Combust. Flame 137, 523–537 (2004).
[CrossRef]

F. Takahashi, W. J. Schmoll, and V. R. Katta, “Attachment mechanisms of diffusion flames,” Symp. Int. Combust. 27, 675–684 (1998).
[CrossRef]

Kulatilaka, W. D.

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames,” Combust. Flame 137, 523–537 (2004).
[CrossRef]

Lucht, R. P.

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames,” Combust. Flame 137, 523–537 (2004).
[CrossRef]

S. Roy, T. R. Meyer, M. S. Brown, V. N. Velur, R. P. Lucht, and J. R. Gord, “Triple-pump coherent anti-Stokes Raman scattering (CARS): temperature and multiple-species concentration measurements in reacting flows,” Opt. Commun. 224, 131–137 (2003).
[CrossRef]

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

R. S. Barlow, R. W. Dibble, J.-Y. Chen, and R. P. Lucht, “Effect of Damkohler number on superequilibrium OH concentration in turbulent nonpremixed jet flames,” Combust. Flame 82, 235–251 (1990).
[CrossRef]

Mainos, C.

C. Mainos, “Multiphoton rotational line strength in diatomic molecules and for states with Hund’s case-(a) or case-(b) coupling,” Phys. Rev. A 33, 3983–3992 (1986).
[CrossRef]

Meyer, T. R.

S. Roy, T. R. Meyer, M. S. Brown, V. N. Velur, R. P. Lucht, and J. R. Gord, “Triple-pump coherent anti-Stokes Raman scattering (CARS): temperature and multiple-species concentration measurements in reacting flows,” Opt. Commun. 224, 131–137 (2003).
[CrossRef]

Michael, J. B.

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331, 442–445 (2011).
[CrossRef]

Miles, R. B.

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331, 442–445 (2011).
[CrossRef]

A. Dogariu and R. B. Miles, “Detecting localized trace species in air using radar resonance-enhanced multi-photon ionization,” Appl. Opt. 50, A68–A73 (2011).
[CrossRef]

R. B. Miles, Z. Zhang, S. H. Zaidi, and M. N. Shneider, “Microwave scattering from laser ionized molecules: A new approach to nonintrusive diagnostics,” AIAA J. 45, 513–515 (2007).
[CrossRef]

Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave Rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett. 98, 265005 (2007).
[CrossRef]

Z. Zhang, M. N. Shneider, and R. B. Miles, “Experiments of microwave scattering of (3+1), (2+1) and (1+1) resonance enhanced multi-photon ionization,” presented at the 38th AIAA Plasmadynamics and Laser Conference, Miami, Fla., 25–28June2007.

Perpiñà1, X.

X. Perpiñà1, X. Jordà1, M. Vellvehi1, and J. Altet, “Hot spot analysis in integrated circuit substrates by laser mirage effect,” Appl. Phys. Lett. 98, 164104 (2011).
[CrossRef]

Roy, S.

S. Roy, T. R. Meyer, M. S. Brown, V. N. Velur, R. P. Lucht, and J. R. Gord, “Triple-pump coherent anti-Stokes Raman scattering (CARS): temperature and multiple-species concentration measurements in reacting flows,” Opt. Commun. 224, 131–137 (2003).
[CrossRef]

Rudakov, F.

Sakakibara, J.

J. Sakakibara and R. J. Adrian, “Whole field measurement of temperature in water using two-color laser induced fluorescence,” Exp. Fluids 26, 7–15 (1999).
[CrossRef]

Schmoll, W. J.

F. Takahashi, W. J. Schmoll, and V. R. Katta, “Attachment mechanisms of diffusion flames,” Symp. Int. Combust. 27, 675–684 (1998).
[CrossRef]

Scully, M. O.

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331, 442–445 (2011).
[CrossRef]

Shneider, M. N.

Z. Zhang and M. N. Shneider, “Measurement of plasma decay processes in mixture of sodium and argon by coherent microwave scattering,” Phys. Plasmas 17, 033108(2010).
[CrossRef]

R. B. Miles, Z. Zhang, S. H. Zaidi, and M. N. Shneider, “Microwave scattering from laser ionized molecules: A new approach to nonintrusive diagnostics,” AIAA J. 45, 513–515 (2007).
[CrossRef]

Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave Rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett. 98, 265005 (2007).
[CrossRef]

Z. Zhang, M. N. Shneider, and R. B. Miles, “Experiments of microwave scattering of (3+1), (2+1) and (1+1) resonance enhanced multi-photon ionization,” presented at the 38th AIAA Plasmadynamics and Laser Conference, Miami, Fla., 25–28June2007.

Takahashi, F.

F. Takahashi, W. J. Schmoll, and V. R. Katta, “Attachment mechanisms of diffusion flames,” Symp. Int. Combust. 27, 675–684 (1998).
[CrossRef]

Timonthy, M. O.

Vellvehi1, M.

X. Perpiñà1, X. Jordà1, M. Vellvehi1, and J. Altet, “Hot spot analysis in integrated circuit substrates by laser mirage effect,” Appl. Phys. Lett. 98, 164104 (2011).
[CrossRef]

Velur, V. N.

S. Roy, T. R. Meyer, M. S. Brown, V. N. Velur, R. P. Lucht, and J. R. Gord, “Triple-pump coherent anti-Stokes Raman scattering (CARS): temperature and multiple-species concentration measurements in reacting flows,” Opt. Commun. 224, 131–137 (2003).
[CrossRef]

Viswanath, R. K.

Williamson, J.

S. Adams and J. Williamson, “Gas temperature measurement in atmospheric nitrogen discharge by laser REMPI-LIF technique,” presented at the 63rd Annual Gaseous Electronics Conference and 7th International Conference on Reactive Plasmas, Paris, France, 4–8Oct.2010.

Wu, Y.

Y. Wu, Z. Zhang, and S. F. Adams, “O2 rotational temperature measurements by coherent microwave scattering from REMPI,” Chem. Phys. Lett. 513, 191–194 (2011).
[CrossRef]

Y. Wu, A. Bottom, Z. Zhang, M. O. Timonthy, and R. K. Viswanath, “Direct measurement of methyl radicals in a methane/air flame at atmospheric pressure by radar REMPI,” Opt. Express 19, 23997–24004 (2011).
[CrossRef]

Zaidi, S. H.

R. B. Miles, Z. Zhang, S. H. Zaidi, and M. N. Shneider, “Microwave scattering from laser ionized molecules: A new approach to nonintrusive diagnostics,” AIAA J. 45, 513–515 (2007).
[CrossRef]

Zhang, Z.

F. Rudakov and Z. Zhang, “Standoff detection of large organic molecules using Rydberg fingerprint spectroscopy and microwave Rayleigh scattering,” Opt. Lett. 37, 145–147 (2012).
[CrossRef]

Y. Wu, A. Bottom, Z. Zhang, M. O. Timonthy, and R. K. Viswanath, “Direct measurement of methyl radicals in a methane/air flame at atmospheric pressure by radar REMPI,” Opt. Express 19, 23997–24004 (2011).
[CrossRef]

Y. Wu, Z. Zhang, and S. F. Adams, “O2 rotational temperature measurements by coherent microwave scattering from REMPI,” Chem. Phys. Lett. 513, 191–194 (2011).
[CrossRef]

Z. Zhang and M. N. Shneider, “Measurement of plasma decay processes in mixture of sodium and argon by coherent microwave scattering,” Phys. Plasmas 17, 033108(2010).
[CrossRef]

Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave Rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett. 98, 265005 (2007).
[CrossRef]

R. B. Miles, Z. Zhang, S. H. Zaidi, and M. N. Shneider, “Microwave scattering from laser ionized molecules: A new approach to nonintrusive diagnostics,” AIAA J. 45, 513–515 (2007).
[CrossRef]

Z. Zhang, M. N. Shneider, and R. B. Miles, “Experiments of microwave scattering of (3+1), (2+1) and (1+1) resonance enhanced multi-photon ionization,” presented at the 38th AIAA Plasmadynamics and Laser Conference, Miami, Fla., 25–28June2007.

Z. Zhang, “Coherent microwave scattering of laser-induced plasma,” in Mechanical and Aerospace Engineering (Princeton University, 2008), pp. 36–46.

AIAA J. (1)

R. B. Miles, Z. Zhang, S. H. Zaidi, and M. N. Shneider, “Microwave scattering from laser ionized molecules: A new approach to nonintrusive diagnostics,” AIAA J. 45, 513–515 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

X. Perpiñà1, X. Jordà1, M. Vellvehi1, and J. Altet, “Hot spot analysis in integrated circuit substrates by laser mirage effect,” Appl. Phys. Lett. 98, 164104 (2011).
[CrossRef]

Chem. Phys. Lett. (1)

Y. Wu, Z. Zhang, and S. F. Adams, “O2 rotational temperature measurements by coherent microwave scattering from REMPI,” Chem. Phys. Lett. 513, 191–194 (2011).
[CrossRef]

Combust. Flame (3)

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames,” Combust. Flame 137, 523–537 (2004).
[CrossRef]

R. S. Barlow, R. W. Dibble, J.-Y. Chen, and R. P. Lucht, “Effect of Damkohler number on superequilibrium OH concentration in turbulent nonpremixed jet flames,” Combust. Flame 82, 235–251 (1990).
[CrossRef]

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

Exp. Fluids (2)

J. Sakakibara and R. J. Adrian, “Whole field measurement of temperature in water using two-color laser induced fluorescence,” Exp. Fluids 26, 7–15 (1999).
[CrossRef]

J. Guasto and K. Breuer, “Simultaneous, ensemble-averaged measurement of near-wall temperature and velocity in steady micro-flows using single quantum dot tracking,” Exp. Fluids 45, 157–166 (2008).
[CrossRef]

Opt. Commun. (1)

S. Roy, T. R. Meyer, M. S. Brown, V. N. Velur, R. P. Lucht, and J. R. Gord, “Triple-pump coherent anti-Stokes Raman scattering (CARS): temperature and multiple-species concentration measurements in reacting flows,” Opt. Commun. 224, 131–137 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Plasmas (1)

Z. Zhang and M. N. Shneider, “Measurement of plasma decay processes in mixture of sodium and argon by coherent microwave scattering,” Phys. Plasmas 17, 033108(2010).
[CrossRef]

Phys. Rev. A (1)

C. Mainos, “Multiphoton rotational line strength in diatomic molecules and for states with Hund’s case-(a) or case-(b) coupling,” Phys. Rev. A 33, 3983–3992 (1986).
[CrossRef]

Phys. Rev. Lett. (1)

Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave Rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett. 98, 265005 (2007).
[CrossRef]

Science (1)

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331, 442–445 (2011).
[CrossRef]

Symp. Int. Combust. (1)

F. Takahashi, W. J. Schmoll, and V. R. Katta, “Attachment mechanisms of diffusion flames,” Symp. Int. Combust. 27, 675–684 (1998).
[CrossRef]

Other (4)

Z. Zhang, “Coherent microwave scattering of laser-induced plasma,” in Mechanical and Aerospace Engineering (Princeton University, 2008), pp. 36–46.

G. Herzberg, Molecular Spectra and Molecular Structure: Spectra of Diatomic Molecules, 2nd ed. (Krieger, 1989), Chap. V, pp. 215–229.

Z. Zhang, M. N. Shneider, and R. B. Miles, “Experiments of microwave scattering of (3+1), (2+1) and (1+1) resonance enhanced multi-photon ionization,” presented at the 38th AIAA Plasmadynamics and Laser Conference, Miami, Fla., 25–28June2007.

S. Adams and J. Williamson, “Gas temperature measurement in atmospheric nitrogen discharge by laser REMPI-LIF technique,” presented at the 63rd Annual Gaseous Electronics Conference and 7th International Conference on Reactive Plasmas, Paris, France, 4–8Oct.2010.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup for coherent microwave scattering from the REMPI of molecular oxygen, in flames.

Fig. 2.
Fig. 2.

(a) REMPI spectrum of molecular oxygen in room air and (b) temperature determination by the Boltzmann plot.

Fig. 3.
Fig. 3.

REMPI spectrum of room air (green) compared to H2/air flame mixtures (blue 214 and red 314) with temperature determination by Boltzmann plot fit.

Fig. 4.
Fig. 4.

Boltzmann plots, where T is the adiabatic flame temperature in the Hencken burner and in parentheses is the oxygen rotational temperature in the flames determine by the fit.

Tables (4)

Tables Icon

Table 1. Adopted Constants for C3Π(v=2) of Molecular Oxygen

Tables Icon

Table 2. Selected Rotational Lines of S21 for Low Temperature Measurements

Tables Icon

Table 3. Selected Rotational Lines for Elevated Temperature Measurements

Tables Icon

Table 4. Referenced and Measured Temperatures in Pure Oxygen, Room Air, and H2/Air Flame

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

G1=BvJ(J+1)DvJ2(J+1)2+(2J+3)BvL(2J+3)2Bv2+L22LBv+G(J+1),G2=BvJ(J+1)DvJ2(J+1)2,G3=BvJ(J+1)DvJ2(J+1)2+(2J+1)BvL(2J1)2Bv2+L22LBv+GJ,
F1(Ω=0)=n01+Beff1J(J+1)Dv1J2(J+1)2,F2(Ω=1)=n02+Beff2J(J+1)Dv2J2(J+1)2,F3(Ω=2)=n03+Beff3J(J+1)Dv3J2(J+1)2,
Tf,g2=k=0,2|βk(2)|22k+1(2J+1)(2J+1)(2N+1)[JSNΛ+ΣΣΛ]2[JkJΩΔΛΛΣ]2,
EMWNe=N0·Tf,g2I2·TfiI·exp(EgkBT),
log(EMWI3Tf,g(2))(Eg)1kBT.

Metrics