Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Planar waveguide concentrator used with a seasonal tracker

Not Accessible

Your library or personal account may give you access

Abstract

Solar concentrators offer good promise for reducing the cost of solar power. Planar waveguides equipped with a microlens slab have already been proposed as an excellent approach to produce medium to high concentration levels. Instead, we suggest the use of a cylindrical microlens array to get useful concentration without tracking during the day. To use only a seasonal tracking system and get the highest possible concentration, cylindrical microlenses are placed in the east–west orientation. Our new design has an acceptance angle in the north–south direction of ±9° and ±54° in the east–west axis. Simulation of our optimized system achieves a 4.6× average concentration level from 8:30 to 16:30 with a maximum of 8.1× and 80% optical efficiency. The low-cost advantage of waveguide-based solar concentrators could support their use in roof-mounted solar panels and eliminate the need for an expensive and heavy active tracker.

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
GRIN planar waveguide concentrator used with a single axis tracker

Sébastien Bouchard and Simon Thibault
Opt. Express 22(S2) A248-A258 (2014)

Total internal reflection-based planar waveguide solar concentrator with symmetric air prisms as couplers

Peng Xie, Huichuan Lin, Yong Liu, and Baojun Li
Opt. Express 22(S6) A1389-A1398 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.