Abstract

An optical preamplifier is utilized to improve the signal-to-noise and distortion ratio (SNDR) of intersatellite microwave photonic links employing a Mach–Zehnder modulator under dual-tone modulation. The resulting SNDR at an appropriate direct current (DC) bias phase shift is additionally investigated without small-signal approximation in order to optimize the performance of all the links. It is observed that the most limiting factor degrading the SNDR performance is changed, and the fundamental power is seen to increase more compared with the power of third-order intermodulation (IM3) plus noise due to the optical preamplifier. Thus, SNDR can be improved with respect to the case of a nonoptical preamplifier. For the preamplifier gain of 20 dB and noise figure of 3 dB, an increase of about 24 dB in optimum SNDR is accessible. In addition, the optimum DC bias phase shift is found to be insensitive to the preamplifier gain and noise figure, while the optimum SNDR is sensitive to the preamplifier gain and noise figure.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
    [CrossRef]
  2. A. Bensoussan and M. Vanzi, “Optoelectronic devices product assurance guideline for space application,” in Proceedings of ICSO 2010: International Conference on Space Optics (ESA, 2010), pp. 8–13.
  3. M. Sotom, B. Benazet, A. Le Kernec, and M. Maignan, “Microwave photonic technologies for flexible satellite telecom payloads,” in Proceedings of the 35th European Conference on Optical Communication, 2009 (IEEE, 2009), pp. 20–24.
  4. L. Cheng, S. Aditya, and A. Nirmalathas, “An exact analytical model for dispersive transmission in microwave fiber-optic links using Mach-Zehnder external modulator,” IEEE Photon. Technol. Lett. 17, 1525–1527 (2005).
    [CrossRef]
  5. A. Le Kernec, M. Sotom, B. Benazet, J. Barbero, L. Peñate, M. Maignan, I. Esquivias, F. Lopez, and N. Karafolas, “Space evaluation of optical modulators for microwave photonic on-board applications,” in Proceedings of ICSO 2010: International Conference on Space Optics (ESA, 2010), pp. 35–38.
  6. W. Lim, T.-S. Cho, C. Yun, and K. Kim, “Average BER analysis of SCM-based free-space optical systems by considering the effect of IM3 with OSSB signals under turbulence channels,” Opt. Express 17, 20721–20725 (2009).
    [CrossRef]
  7. T.-S. Cho and K. Kim, “Effect of third-order intermodulation on radio-over-fiber systems by a dual-electrode Mach-Zehnder modulator with ODSB and OSSB signals,” J. Lightwave Technol. 24, 2052–2058 (2006).
    [CrossRef]
  8. L. Cheng, S. Aditya, Z. Li, and A. Nirmalathas, “Generalized analysis of subcarrier multiplexing in dispersive fiber-optic links using Mach-Zehnder external modulator,” J. Lightwave Technol. 24, 2296–2304 (2006).
    [CrossRef]
  9. M. M. Sisto, S. LaRochelle, and L. A. Rusch, “Carrier-to-noise ratio optimization by modulator bias control in radio-over-fiber links,” IEEE Photon. Technol. Lett. 18, 1840–1842 (2006).
    [CrossRef]
  10. V. J. Urick, M. E. Godinez, P. S. Devgan, J. D. McKinney, and F. Bucholtz, “Analysis of an analog fiber-optic link employing a low-biased Mach-Zehnder modulator followed by an erbium-doped fiber amplifier,” J. Lightwave Technol. 27, 2013–2019 (2009).
    [CrossRef]
  11. G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge University, 1922).
  12. T.-S. Cho and K. Kim, “Optimization of radio-on-fiber systems employing ODSB signals by utilizing a dual-electrode Mach-Zehnder modulator against IM3,” IEEE Photon. Technol. Lett. 18, 1076–1078 (2006).
    [CrossRef]
  13. E. Duca, V. Carrozzo, and C. Roseti, “Performance evaluation of a hybrid satellite network based on high-altitude-platforms,” in Proceedings of 2007 IEEE Aerospace Conference (IEEE, 2007), pp. 1–12.

2009

2006

M. M. Sisto, S. LaRochelle, and L. A. Rusch, “Carrier-to-noise ratio optimization by modulator bias control in radio-over-fiber links,” IEEE Photon. Technol. Lett. 18, 1840–1842 (2006).
[CrossRef]

T.-S. Cho and K. Kim, “Optimization of radio-on-fiber systems employing ODSB signals by utilizing a dual-electrode Mach-Zehnder modulator against IM3,” IEEE Photon. Technol. Lett. 18, 1076–1078 (2006).
[CrossRef]

T.-S. Cho and K. Kim, “Effect of third-order intermodulation on radio-over-fiber systems by a dual-electrode Mach-Zehnder modulator with ODSB and OSSB signals,” J. Lightwave Technol. 24, 2052–2058 (2006).
[CrossRef]

L. Cheng, S. Aditya, Z. Li, and A. Nirmalathas, “Generalized analysis of subcarrier multiplexing in dispersive fiber-optic links using Mach-Zehnder external modulator,” J. Lightwave Technol. 24, 2296–2304 (2006).
[CrossRef]

2005

L. Cheng, S. Aditya, and A. Nirmalathas, “An exact analytical model for dispersive transmission in microwave fiber-optic links using Mach-Zehnder external modulator,” IEEE Photon. Technol. Lett. 17, 1525–1527 (2005).
[CrossRef]

Aditya, S.

L. Cheng, S. Aditya, Z. Li, and A. Nirmalathas, “Generalized analysis of subcarrier multiplexing in dispersive fiber-optic links using Mach-Zehnder external modulator,” J. Lightwave Technol. 24, 2296–2304 (2006).
[CrossRef]

L. Cheng, S. Aditya, and A. Nirmalathas, “An exact analytical model for dispersive transmission in microwave fiber-optic links using Mach-Zehnder external modulator,” IEEE Photon. Technol. Lett. 17, 1525–1527 (2005).
[CrossRef]

Barbero, J.

A. Le Kernec, M. Sotom, B. Benazet, J. Barbero, L. Peñate, M. Maignan, I. Esquivias, F. Lopez, and N. Karafolas, “Space evaluation of optical modulators for microwave photonic on-board applications,” in Proceedings of ICSO 2010: International Conference on Space Optics (ESA, 2010), pp. 35–38.

Benazet, B.

A. Le Kernec, M. Sotom, B. Benazet, J. Barbero, L. Peñate, M. Maignan, I. Esquivias, F. Lopez, and N. Karafolas, “Space evaluation of optical modulators for microwave photonic on-board applications,” in Proceedings of ICSO 2010: International Conference on Space Optics (ESA, 2010), pp. 35–38.

M. Sotom, B. Benazet, A. Le Kernec, and M. Maignan, “Microwave photonic technologies for flexible satellite telecom payloads,” in Proceedings of the 35th European Conference on Optical Communication, 2009 (IEEE, 2009), pp. 20–24.

Bensoussan, A.

A. Bensoussan and M. Vanzi, “Optoelectronic devices product assurance guideline for space application,” in Proceedings of ICSO 2010: International Conference on Space Optics (ESA, 2010), pp. 8–13.

Bucholtz, F.

Carrozzo, V.

E. Duca, V. Carrozzo, and C. Roseti, “Performance evaluation of a hybrid satellite network based on high-altitude-platforms,” in Proceedings of 2007 IEEE Aerospace Conference (IEEE, 2007), pp. 1–12.

Cheng, L.

L. Cheng, S. Aditya, Z. Li, and A. Nirmalathas, “Generalized analysis of subcarrier multiplexing in dispersive fiber-optic links using Mach-Zehnder external modulator,” J. Lightwave Technol. 24, 2296–2304 (2006).
[CrossRef]

L. Cheng, S. Aditya, and A. Nirmalathas, “An exact analytical model for dispersive transmission in microwave fiber-optic links using Mach-Zehnder external modulator,” IEEE Photon. Technol. Lett. 17, 1525–1527 (2005).
[CrossRef]

Cho, T.-S.

Devgan, P. S.

Duca, E.

E. Duca, V. Carrozzo, and C. Roseti, “Performance evaluation of a hybrid satellite network based on high-altitude-platforms,” in Proceedings of 2007 IEEE Aerospace Conference (IEEE, 2007), pp. 1–12.

Esquivias, I.

A. Le Kernec, M. Sotom, B. Benazet, J. Barbero, L. Peñate, M. Maignan, I. Esquivias, F. Lopez, and N. Karafolas, “Space evaluation of optical modulators for microwave photonic on-board applications,” in Proceedings of ICSO 2010: International Conference on Space Optics (ESA, 2010), pp. 35–38.

Godinez, M. E.

Karafolas, N.

A. Le Kernec, M. Sotom, B. Benazet, J. Barbero, L. Peñate, M. Maignan, I. Esquivias, F. Lopez, and N. Karafolas, “Space evaluation of optical modulators for microwave photonic on-board applications,” in Proceedings of ICSO 2010: International Conference on Space Optics (ESA, 2010), pp. 35–38.

Kim, K.

LaRochelle, S.

M. M. Sisto, S. LaRochelle, and L. A. Rusch, “Carrier-to-noise ratio optimization by modulator bias control in radio-over-fiber links,” IEEE Photon. Technol. Lett. 18, 1840–1842 (2006).
[CrossRef]

Le Kernec, A.

A. Le Kernec, M. Sotom, B. Benazet, J. Barbero, L. Peñate, M. Maignan, I. Esquivias, F. Lopez, and N. Karafolas, “Space evaluation of optical modulators for microwave photonic on-board applications,” in Proceedings of ICSO 2010: International Conference on Space Optics (ESA, 2010), pp. 35–38.

M. Sotom, B. Benazet, A. Le Kernec, and M. Maignan, “Microwave photonic technologies for flexible satellite telecom payloads,” in Proceedings of the 35th European Conference on Optical Communication, 2009 (IEEE, 2009), pp. 20–24.

Li, Z.

Lim, W.

Lopez, F.

A. Le Kernec, M. Sotom, B. Benazet, J. Barbero, L. Peñate, M. Maignan, I. Esquivias, F. Lopez, and N. Karafolas, “Space evaluation of optical modulators for microwave photonic on-board applications,” in Proceedings of ICSO 2010: International Conference on Space Optics (ESA, 2010), pp. 35–38.

Maignan, M.

A. Le Kernec, M. Sotom, B. Benazet, J. Barbero, L. Peñate, M. Maignan, I. Esquivias, F. Lopez, and N. Karafolas, “Space evaluation of optical modulators for microwave photonic on-board applications,” in Proceedings of ICSO 2010: International Conference on Space Optics (ESA, 2010), pp. 35–38.

M. Sotom, B. Benazet, A. Le Kernec, and M. Maignan, “Microwave photonic technologies for flexible satellite telecom payloads,” in Proceedings of the 35th European Conference on Optical Communication, 2009 (IEEE, 2009), pp. 20–24.

McKinney, J. D.

Nirmalathas, A.

L. Cheng, S. Aditya, Z. Li, and A. Nirmalathas, “Generalized analysis of subcarrier multiplexing in dispersive fiber-optic links using Mach-Zehnder external modulator,” J. Lightwave Technol. 24, 2296–2304 (2006).
[CrossRef]

L. Cheng, S. Aditya, and A. Nirmalathas, “An exact analytical model for dispersive transmission in microwave fiber-optic links using Mach-Zehnder external modulator,” IEEE Photon. Technol. Lett. 17, 1525–1527 (2005).
[CrossRef]

Peñate, L.

A. Le Kernec, M. Sotom, B. Benazet, J. Barbero, L. Peñate, M. Maignan, I. Esquivias, F. Lopez, and N. Karafolas, “Space evaluation of optical modulators for microwave photonic on-board applications,” in Proceedings of ICSO 2010: International Conference on Space Optics (ESA, 2010), pp. 35–38.

Roseti, C.

E. Duca, V. Carrozzo, and C. Roseti, “Performance evaluation of a hybrid satellite network based on high-altitude-platforms,” in Proceedings of 2007 IEEE Aerospace Conference (IEEE, 2007), pp. 1–12.

Rusch, L. A.

M. M. Sisto, S. LaRochelle, and L. A. Rusch, “Carrier-to-noise ratio optimization by modulator bias control in radio-over-fiber links,” IEEE Photon. Technol. Lett. 18, 1840–1842 (2006).
[CrossRef]

Sisto, M. M.

M. M. Sisto, S. LaRochelle, and L. A. Rusch, “Carrier-to-noise ratio optimization by modulator bias control in radio-over-fiber links,” IEEE Photon. Technol. Lett. 18, 1840–1842 (2006).
[CrossRef]

Sotom, M.

A. Le Kernec, M. Sotom, B. Benazet, J. Barbero, L. Peñate, M. Maignan, I. Esquivias, F. Lopez, and N. Karafolas, “Space evaluation of optical modulators for microwave photonic on-board applications,” in Proceedings of ICSO 2010: International Conference on Space Optics (ESA, 2010), pp. 35–38.

M. Sotom, B. Benazet, A. Le Kernec, and M. Maignan, “Microwave photonic technologies for flexible satellite telecom payloads,” in Proceedings of the 35th European Conference on Optical Communication, 2009 (IEEE, 2009), pp. 20–24.

Urick, V. J.

Vanzi, M.

A. Bensoussan and M. Vanzi, “Optoelectronic devices product assurance guideline for space application,” in Proceedings of ICSO 2010: International Conference on Space Optics (ESA, 2010), pp. 8–13.

Watson, G. N.

G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge University, 1922).

Yao, J.

Yun, C.

IEEE Photon. Technol. Lett.

L. Cheng, S. Aditya, and A. Nirmalathas, “An exact analytical model for dispersive transmission in microwave fiber-optic links using Mach-Zehnder external modulator,” IEEE Photon. Technol. Lett. 17, 1525–1527 (2005).
[CrossRef]

M. M. Sisto, S. LaRochelle, and L. A. Rusch, “Carrier-to-noise ratio optimization by modulator bias control in radio-over-fiber links,” IEEE Photon. Technol. Lett. 18, 1840–1842 (2006).
[CrossRef]

T.-S. Cho and K. Kim, “Optimization of radio-on-fiber systems employing ODSB signals by utilizing a dual-electrode Mach-Zehnder modulator against IM3,” IEEE Photon. Technol. Lett. 18, 1076–1078 (2006).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

E. Duca, V. Carrozzo, and C. Roseti, “Performance evaluation of a hybrid satellite network based on high-altitude-platforms,” in Proceedings of 2007 IEEE Aerospace Conference (IEEE, 2007), pp. 1–12.

A. Bensoussan and M. Vanzi, “Optoelectronic devices product assurance guideline for space application,” in Proceedings of ICSO 2010: International Conference on Space Optics (ESA, 2010), pp. 8–13.

M. Sotom, B. Benazet, A. Le Kernec, and M. Maignan, “Microwave photonic technologies for flexible satellite telecom payloads,” in Proceedings of the 35th European Conference on Optical Communication, 2009 (IEEE, 2009), pp. 20–24.

A. Le Kernec, M. Sotom, B. Benazet, J. Barbero, L. Peñate, M. Maignan, I. Esquivias, F. Lopez, and N. Karafolas, “Space evaluation of optical modulators for microwave photonic on-board applications,” in Proceedings of ICSO 2010: International Conference on Space Optics (ESA, 2010), pp. 35–38.

G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge University, 1922).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Architecture of intersatellite microwave photonic links with an optical preamplifier. PD, photodetector; GEO, geostationary orbit.

Fig. 2.
Fig. 2.

Fundamental, IM3, and noise power with an input RF signal power of 20 dBm : (a) thermal noise, (b) shot noise, (c) noise from laser RIN, (d) beat noise between the signal field and the ASE noise arising from the transmitter EDFA, (e) self-mixing ASE noise.

Fig. 3.
Fig. 3.

Fundamental, IM3, and noise power with an input RF signal power of 20 dBm : (a) thermal noise, (b) shot noise, (c) noise from laser RIN, (d) beat noise between the signal field and the ASE noise arising from the transmitter EDFA, (e) self-mixing ASE noise, (f) beat noise between the signal field and the ASE noise arising from the preamplifier.

Fig. 4.
Fig. 4.

Fundamental, IM3, and noise power with an input RF signal power of 10 dBm: (a) thermal noise, (b) shot noise, (c) noise from laser RIN, (d) beat noise between the signal field and the ASE noise arising from the transmitter EDFA, (e) self-mixing ASE noise.

Fig. 5.
Fig. 5.

Fundamental, IM3, and noise power with an input RF signal power of 10 dBm: (a) thermal noise, (b) shot noise, (c) noise from laser RIN, (d) beat noise between the signal field and the ASE noise arising from the transmitter EDFA, (e) self-mixing ASE noise, (f) beat noise between the signal field and the ASE noise arising from the preamplifier.

Fig. 6.
Fig. 6.

Optimum DC bias phase shift θ o and SNDR SNDR o as a function of input RF signal power.

Fig. 7.
Fig. 7.

Optimum DC bias phase shift θ o and SNDR SNDR o as a function of preamplifier gain and noise figure.

Tables (1)

Tables Icon

Table 1. Simulation Parameters for Link Budget

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

E out ( t ) = α 2 E in { e [ j m cos ( w 1 t + π ) + j m cos ( w 2 t + π ) ] + e [ j m cos ( w 1 t ) + j m cos ( w 2 t ) + j θ ] } = α 2 E in { p = + q = + a p b q e [ j p ( w 1 t + π ) + j q ( w 2 t + π ) ] + e j θ p = + q = + a p b q e ( j p w 1 t + j q w 2 t ) } ,
P out ( t ) = E out ( t ) E out ( t ) ¯ = 1 4 α 2 E in 2 { p = + q = + a p b q e [ j p ( w 1 t + π ) + j q ( w 2 t + π ) ] + e j θ p = + q = + a p b q e ( j p w 1 t + j q w 2 t ) } { p = + q = + a p ¯ b q ¯ e [ j p ( w 1 t ) + j q ( w 2 t ) ] + e j θ p = + q = + a p ¯ b q ¯ e ( j p w 1 t + j q w 2 t ) } = 1 4 α 2 P optin { M = + N = + j M + N J M ( 0 ) J N ( 0 ) e [ j M w 1 t + j N w 2 t + j ( M + N ) π ] + M = + N = + j M + N J M ( 2 m ) J N ( 2 m ) e ( j M w 1 t + j N w 2 t j θ ) + M = + N = + j M + N J M ( 2 m ) J N ( 2 m ) e [ j M w 1 t + j N w 2 t + j ( M + N ) π + j θ ] + M = + N = + j M + N J M ( 0 ) J N ( 0 ) e ( j M w 1 t + j N w 2 t ) } ,
G edfa = G 0 1 + ( G 0 P outmzm P outmax ) β = G 0 1 + ( G 0 α 2 P optin [ 1 + cos θ J 0 2 ( 2 m ) ] 2 P outmax ) β ,
P w 1 = 1 2 [ R α 2 P optin sin θ J 1 ( 2 m ) J 0 ( 2 m ) G edfa G t G r L G pre ] 2 R l ,
P 2 w 1 w 2 = 1 2 [ R α 2 P optin sin θ J 2 ( 2 m ) J 1 ( 2 m ) G edfa G t G r L G pre ] 2 R l .
P N = σ th 2 + σ shot 2 + σ rin 2 + σ ase ase 2 + σ s ase 2 ,
σ th 2 = 4 k 0 T B el ,
σ shot 2 = 2 q R ( P r + P ase 1 + P ase 2 ) R l B el ,
P r = P outmzm G edfa G t G r L G pre
P ase 1 = q F n 1 ( G edfa 1 ) G t G r L G pre B o / R
P ase 2 = q F n 2 ( G pre 1 ) B o / R
σ rin 2 = 10 RIN / 10 ( R P r ) 2 R l B el ,
σ ase ase 2 = [ R ( P ase 1 + P ase 2 ) ] 2 R l .
σ s ase 2 = 2 R 2 P r ( P ase 1 + P ase 2 ) R l .
SNDR = 2 P w 1 2 P 2 w 1 w 2 + P N .
θ o = arccos [ ( A + C ) + ( A + C ) 2 B 2 B ] ,
A = R 2 K 1 K 2 P ase 2 + R 2 K 1 K 2 2 P ase 2 2 P outmax + σ th 2 + σ th 2 K 2 P outmax + σ th 2 K 2 2 4 P outmax 2 ,
B = R 2 K 1 K 2 2 P ase 2 J 0 2 ( 2 m ) P outmax + R 2 K 1 K 2 P ase 2 J 0 2 ( 2 m ) + σ th 2 K 2 J 0 2 ( 2 m ) P outmax + σ th 2 K 2 2 J 0 2 ( 2 m ) 2 P outmax 2 ,
C = R 2 K 1 K 2 2 P ase 2 J 0 4 ( 2 m ) 2 P outmax + σ th 2 K 2 2 J 0 4 ( 2 m ) 4 P outmax 2 ,
K 1 = G t G r L G pre ,
K 2 = G 0 α 2 P optin .

Metrics