Abstract

Seeds are the sources for forming nodular defects that largely limit the improvement of laser-induced damage threshold of 1ω laser mirrors in the nanosecond pulse regime. To shed more light of the composition and sizes of seeds on the associated structure of nodular defects and laser damage sensitivity, nodular defects were generated in 1064 nm HfO2/SiO2 high reflectors with different sizes of absorbing Au and nonabsorbing SiO2 nanoparticles located on the surfaces of substrates. The width dimensions, inner structures, and damage morphologies of nodular defects were characterized by an atomic force microscope, a field emission scanning electron microscope, and a focused ion beam. It was found that the composition and size both influenced the structure and the laser damage of nodular defects. The width of nodules from SiO2 seeds were larger than that formed by the same size of Au seed. A nodule grown from a small seed generally tends to have a continuous and stable boundary. The ejection fluences of nodules generated from different size absorbing Au and nonabsorbing SiO2 seeds were totally different. The results were interpreted from the aspects of absorption cross sections of seeds and mechanical stability of nodular structures.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Tench, R. Chow, and M. R. Kozlowski, “Characterization of defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
    [CrossRef]
  2. C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fornier, “A comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374–382 (1996).
    [CrossRef]
  3. A. Fornier, C. Cordillot, D. Bernardino, O. Lam, A. Roussel, B. Pinot, B. Geenen, H. Leplan, and W. Alexandre, “Characterization of HR coatings for the megajoule laser transport mirrors,” Proc. SPIE 2966, 327–341 (1997).
    [CrossRef]
  4. J. F. DeFord and M. R. Kozlowski, “Modeling of electric-field enhancement at nodular defects in dielectric mirror coatings,” Proc. SPIE 1848, 455–472 (1993).
    [CrossRef]
  5. J. Dijon, M. Poulingue, and J. Hue, “Thermomechanical model of mirror laser damage at 1.06 μm: I. Nodule ejection,” Proc. SPIE 3578, 387–397 (1999).
    [CrossRef]
  6. C. J. Stolz, M. D. Feit, and T. V. Pistor, “Laser intensification by spherical inclusions embedded within multilayer coatings,” Appl. Opt. 45, 1594–1601 (2006).
    [CrossRef]
  7. C. J. Stolz, S. Hafeman, and T. V. Pistor, “Light intensification modeling of coating inclusions irradiated at 351 and 1053 nm,” Appl. Opt. 47, C162–C166 (2008).
    [CrossRef]
  8. X. Liu, D. Li, Y. Zhao, X. Li, and J. Shao, “Characteristics of nodular defect in HfO2/SiO2 multilayer optical coatings,” Appl. Surf. Sci. 256, 3783–3788 (2010).
    [CrossRef]
  9. T. Spalvins and W. A. Brainard, “Nodular growth in thick-sputtered metallic coatings,” J. Vac. Sci. Technol. 11, 1186–1192 (1974).
    [CrossRef]
  10. X. Liu, D. Li, Y. Zhao, and X. Li, “Further investigation of the characteristics of nodular defects,” Appl. Opt. 49, 1774–1779 (2010).
    [CrossRef]
  11. X. Cheng, T. Ding, W. He, J. Zhang, H. Jiao, B. Ma, Z. Shen, and Z. Wang, “Using monodisperse SiO2 microspheres to study laser-induced damage of nodules in HfO2/SiO2 high reflectors,” Proc. SPIE 8168, 816816 (2011).
    [CrossRef]
  12. Y. Shan, H. He, C. Wei, S. Li, M. Zhou, D. Li, and Y. Zhao, “Geometrical characteristics and damage morphology of nodules grown from artificial seeds in multilayer coating,” Appl. Opt. 49, 4290–4295 (2010).
    [CrossRef]
  13. N. Bloembergen, “Laser induced electric breakdown in solids,” IEEE J. Quantum Electron. QE-10, 375–386 (1974).
    [CrossRef]

2011

X. Cheng, T. Ding, W. He, J. Zhang, H. Jiao, B. Ma, Z. Shen, and Z. Wang, “Using monodisperse SiO2 microspheres to study laser-induced damage of nodules in HfO2/SiO2 high reflectors,” Proc. SPIE 8168, 816816 (2011).
[CrossRef]

2010

2008

2006

1999

J. Dijon, M. Poulingue, and J. Hue, “Thermomechanical model of mirror laser damage at 1.06 μm: I. Nodule ejection,” Proc. SPIE 3578, 387–397 (1999).
[CrossRef]

1997

A. Fornier, C. Cordillot, D. Bernardino, O. Lam, A. Roussel, B. Pinot, B. Geenen, H. Leplan, and W. Alexandre, “Characterization of HR coatings for the megajoule laser transport mirrors,” Proc. SPIE 2966, 327–341 (1997).
[CrossRef]

1996

C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fornier, “A comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374–382 (1996).
[CrossRef]

1994

R. J. Tench, R. Chow, and M. R. Kozlowski, “Characterization of defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
[CrossRef]

1993

J. F. DeFord and M. R. Kozlowski, “Modeling of electric-field enhancement at nodular defects in dielectric mirror coatings,” Proc. SPIE 1848, 455–472 (1993).
[CrossRef]

1974

T. Spalvins and W. A. Brainard, “Nodular growth in thick-sputtered metallic coatings,” J. Vac. Sci. Technol. 11, 1186–1192 (1974).
[CrossRef]

N. Bloembergen, “Laser induced electric breakdown in solids,” IEEE J. Quantum Electron. QE-10, 375–386 (1974).
[CrossRef]

Alexandre, W.

A. Fornier, C. Cordillot, D. Bernardino, O. Lam, A. Roussel, B. Pinot, B. Geenen, H. Leplan, and W. Alexandre, “Characterization of HR coatings for the megajoule laser transport mirrors,” Proc. SPIE 2966, 327–341 (1997).
[CrossRef]

Bernardino, D.

A. Fornier, C. Cordillot, D. Bernardino, O. Lam, A. Roussel, B. Pinot, B. Geenen, H. Leplan, and W. Alexandre, “Characterization of HR coatings for the megajoule laser transport mirrors,” Proc. SPIE 2966, 327–341 (1997).
[CrossRef]

Bloembergen, N.

N. Bloembergen, “Laser induced electric breakdown in solids,” IEEE J. Quantum Electron. QE-10, 375–386 (1974).
[CrossRef]

Brainard, W. A.

T. Spalvins and W. A. Brainard, “Nodular growth in thick-sputtered metallic coatings,” J. Vac. Sci. Technol. 11, 1186–1192 (1974).
[CrossRef]

Cheng, X.

X. Cheng, T. Ding, W. He, J. Zhang, H. Jiao, B. Ma, Z. Shen, and Z. Wang, “Using monodisperse SiO2 microspheres to study laser-induced damage of nodules in HfO2/SiO2 high reflectors,” Proc. SPIE 8168, 816816 (2011).
[CrossRef]

Chow, R.

R. J. Tench, R. Chow, and M. R. Kozlowski, “Characterization of defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
[CrossRef]

Cordillot, C.

A. Fornier, C. Cordillot, D. Bernardino, O. Lam, A. Roussel, B. Pinot, B. Geenen, H. Leplan, and W. Alexandre, “Characterization of HR coatings for the megajoule laser transport mirrors,” Proc. SPIE 2966, 327–341 (1997).
[CrossRef]

DeFord, J. F.

J. F. DeFord and M. R. Kozlowski, “Modeling of electric-field enhancement at nodular defects in dielectric mirror coatings,” Proc. SPIE 1848, 455–472 (1993).
[CrossRef]

Dijon, J.

J. Dijon, M. Poulingue, and J. Hue, “Thermomechanical model of mirror laser damage at 1.06 μm: I. Nodule ejection,” Proc. SPIE 3578, 387–397 (1999).
[CrossRef]

Ding, T.

X. Cheng, T. Ding, W. He, J. Zhang, H. Jiao, B. Ma, Z. Shen, and Z. Wang, “Using monodisperse SiO2 microspheres to study laser-induced damage of nodules in HfO2/SiO2 high reflectors,” Proc. SPIE 8168, 816816 (2011).
[CrossRef]

Feit, M. D.

Fornier, A.

A. Fornier, C. Cordillot, D. Bernardino, O. Lam, A. Roussel, B. Pinot, B. Geenen, H. Leplan, and W. Alexandre, “Characterization of HR coatings for the megajoule laser transport mirrors,” Proc. SPIE 2966, 327–341 (1997).
[CrossRef]

C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fornier, “A comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374–382 (1996).
[CrossRef]

Geenen, B.

A. Fornier, C. Cordillot, D. Bernardino, O. Lam, A. Roussel, B. Pinot, B. Geenen, H. Leplan, and W. Alexandre, “Characterization of HR coatings for the megajoule laser transport mirrors,” Proc. SPIE 2966, 327–341 (1997).
[CrossRef]

Hafeman, S.

He, H.

He, W.

X. Cheng, T. Ding, W. He, J. Zhang, H. Jiao, B. Ma, Z. Shen, and Z. Wang, “Using monodisperse SiO2 microspheres to study laser-induced damage of nodules in HfO2/SiO2 high reflectors,” Proc. SPIE 8168, 816816 (2011).
[CrossRef]

Hue, J.

J. Dijon, M. Poulingue, and J. Hue, “Thermomechanical model of mirror laser damage at 1.06 μm: I. Nodule ejection,” Proc. SPIE 3578, 387–397 (1999).
[CrossRef]

Jiao, H.

X. Cheng, T. Ding, W. He, J. Zhang, H. Jiao, B. Ma, Z. Shen, and Z. Wang, “Using monodisperse SiO2 microspheres to study laser-induced damage of nodules in HfO2/SiO2 high reflectors,” Proc. SPIE 8168, 816816 (2011).
[CrossRef]

Kozlowski, M. R.

C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fornier, “A comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374–382 (1996).
[CrossRef]

R. J. Tench, R. Chow, and M. R. Kozlowski, “Characterization of defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
[CrossRef]

J. F. DeFord and M. R. Kozlowski, “Modeling of electric-field enhancement at nodular defects in dielectric mirror coatings,” Proc. SPIE 1848, 455–472 (1993).
[CrossRef]

Lam, O.

A. Fornier, C. Cordillot, D. Bernardino, O. Lam, A. Roussel, B. Pinot, B. Geenen, H. Leplan, and W. Alexandre, “Characterization of HR coatings for the megajoule laser transport mirrors,” Proc. SPIE 2966, 327–341 (1997).
[CrossRef]

Leplan, H.

A. Fornier, C. Cordillot, D. Bernardino, O. Lam, A. Roussel, B. Pinot, B. Geenen, H. Leplan, and W. Alexandre, “Characterization of HR coatings for the megajoule laser transport mirrors,” Proc. SPIE 2966, 327–341 (1997).
[CrossRef]

Li, D.

Li, S.

Li, X.

X. Liu, D. Li, Y. Zhao, and X. Li, “Further investigation of the characteristics of nodular defects,” Appl. Opt. 49, 1774–1779 (2010).
[CrossRef]

X. Liu, D. Li, Y. Zhao, X. Li, and J. Shao, “Characteristics of nodular defect in HfO2/SiO2 multilayer optical coatings,” Appl. Surf. Sci. 256, 3783–3788 (2010).
[CrossRef]

Liu, X.

X. Liu, D. Li, Y. Zhao, and X. Li, “Further investigation of the characteristics of nodular defects,” Appl. Opt. 49, 1774–1779 (2010).
[CrossRef]

X. Liu, D. Li, Y. Zhao, X. Li, and J. Shao, “Characteristics of nodular defect in HfO2/SiO2 multilayer optical coatings,” Appl. Surf. Sci. 256, 3783–3788 (2010).
[CrossRef]

Ma, B.

X. Cheng, T. Ding, W. He, J. Zhang, H. Jiao, B. Ma, Z. Shen, and Z. Wang, “Using monodisperse SiO2 microspheres to study laser-induced damage of nodules in HfO2/SiO2 high reflectors,” Proc. SPIE 8168, 816816 (2011).
[CrossRef]

Pinot, B.

A. Fornier, C. Cordillot, D. Bernardino, O. Lam, A. Roussel, B. Pinot, B. Geenen, H. Leplan, and W. Alexandre, “Characterization of HR coatings for the megajoule laser transport mirrors,” Proc. SPIE 2966, 327–341 (1997).
[CrossRef]

Pistor, T. V.

Poulingue, M.

J. Dijon, M. Poulingue, and J. Hue, “Thermomechanical model of mirror laser damage at 1.06 μm: I. Nodule ejection,” Proc. SPIE 3578, 387–397 (1999).
[CrossRef]

Roussel, A.

A. Fornier, C. Cordillot, D. Bernardino, O. Lam, A. Roussel, B. Pinot, B. Geenen, H. Leplan, and W. Alexandre, “Characterization of HR coatings for the megajoule laser transport mirrors,” Proc. SPIE 2966, 327–341 (1997).
[CrossRef]

Shan, Y.

Shao, J.

X. Liu, D. Li, Y. Zhao, X. Li, and J. Shao, “Characteristics of nodular defect in HfO2/SiO2 multilayer optical coatings,” Appl. Surf. Sci. 256, 3783–3788 (2010).
[CrossRef]

Shen, Z.

X. Cheng, T. Ding, W. He, J. Zhang, H. Jiao, B. Ma, Z. Shen, and Z. Wang, “Using monodisperse SiO2 microspheres to study laser-induced damage of nodules in HfO2/SiO2 high reflectors,” Proc. SPIE 8168, 816816 (2011).
[CrossRef]

Spalvins, T.

T. Spalvins and W. A. Brainard, “Nodular growth in thick-sputtered metallic coatings,” J. Vac. Sci. Technol. 11, 1186–1192 (1974).
[CrossRef]

Stolz, C. J.

Tench, R. J.

C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fornier, “A comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374–382 (1996).
[CrossRef]

R. J. Tench, R. Chow, and M. R. Kozlowski, “Characterization of defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
[CrossRef]

Wang, Z.

X. Cheng, T. Ding, W. He, J. Zhang, H. Jiao, B. Ma, Z. Shen, and Z. Wang, “Using monodisperse SiO2 microspheres to study laser-induced damage of nodules in HfO2/SiO2 high reflectors,” Proc. SPIE 8168, 816816 (2011).
[CrossRef]

Wei, C.

Zhang, J.

X. Cheng, T. Ding, W. He, J. Zhang, H. Jiao, B. Ma, Z. Shen, and Z. Wang, “Using monodisperse SiO2 microspheres to study laser-induced damage of nodules in HfO2/SiO2 high reflectors,” Proc. SPIE 8168, 816816 (2011).
[CrossRef]

Zhao, Y.

Zhou, M.

Appl. Opt.

Appl. Surf. Sci.

X. Liu, D. Li, Y. Zhao, X. Li, and J. Shao, “Characteristics of nodular defect in HfO2/SiO2 multilayer optical coatings,” Appl. Surf. Sci. 256, 3783–3788 (2010).
[CrossRef]

IEEE J. Quantum Electron.

N. Bloembergen, “Laser induced electric breakdown in solids,” IEEE J. Quantum Electron. QE-10, 375–386 (1974).
[CrossRef]

J. Vac. Sci. Technol.

T. Spalvins and W. A. Brainard, “Nodular growth in thick-sputtered metallic coatings,” J. Vac. Sci. Technol. 11, 1186–1192 (1974).
[CrossRef]

J. Vac. Sci. Technol. A

R. J. Tench, R. Chow, and M. R. Kozlowski, “Characterization of defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
[CrossRef]

Proc. SPIE

C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fornier, “A comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374–382 (1996).
[CrossRef]

A. Fornier, C. Cordillot, D. Bernardino, O. Lam, A. Roussel, B. Pinot, B. Geenen, H. Leplan, and W. Alexandre, “Characterization of HR coatings for the megajoule laser transport mirrors,” Proc. SPIE 2966, 327–341 (1997).
[CrossRef]

J. F. DeFord and M. R. Kozlowski, “Modeling of electric-field enhancement at nodular defects in dielectric mirror coatings,” Proc. SPIE 1848, 455–472 (1993).
[CrossRef]

J. Dijon, M. Poulingue, and J. Hue, “Thermomechanical model of mirror laser damage at 1.06 μm: I. Nodule ejection,” Proc. SPIE 3578, 387–397 (1999).
[CrossRef]

X. Cheng, T. Ding, W. He, J. Zhang, H. Jiao, B. Ma, Z. Shen, and Z. Wang, “Using monodisperse SiO2 microspheres to study laser-induced damage of nodules in HfO2/SiO2 high reflectors,” Proc. SPIE 8168, 816816 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Surface structures of nodules grown from Au seeds with different diameters.

Fig. 2.
Fig. 2.

Height of nodule grown from 250 nm Au seed.

Fig. 3.
Fig. 3.

Surface structures of nodules grown from SiO2 seeds with different diameters.

Fig. 4.
Fig. 4.

Cross section of nodules grown from different seeds.

Fig. 5.
Fig. 5.

Maximum and minimum LIDTs of the samples.

Fig. 6.
Fig. 6.

(a) Pit of nodule ejection of 250 nm Au seed and the surface perfect nodule near the pit; (b) section profile of the surface perfect nodule.

Fig. 7.
Fig. 7.

(a) Different damage morphologies of the samples doping 150 nm Au seed as indicated by circle 1, 2, 3, and 4; (b) surface of the critical ejected nodule 1; (c) section profile of the critical ejected nodule 2; (d) section profile of the surface perfect nodule; (e) the pit of nodule ejection.

Fig. 8.
Fig. 8.

(a) Surface of the pit of nodule ejection from shallow seeds at laser fluence 26.4J/cm2; (b) section profile of the pit of nodule ejection from the shallow seeds.

Fig. 9.
Fig. 9.

(a) Pit of nodule ejection of the sample doped with 50 nm Au seed at laser fluence of 93.4J/cm2; (b) section profile of the pit of nodule ejection of (a).

Fig. 10.
Fig. 10.

(a) Pit of nodule ejection of the samples doping 150 nm SiO2 seed at laser fluence of 92.6J/cm2; (b) section profile of nodule ejection pit (a).

Fig. 11.
Fig. 11.

(a) Pit of nodule ejection of the samples doped with 60 nm SiO2 seed at laser fluence of 91.2J/cm2; (b) section profile of nodule ejection pit (a).

Tables (1)

Tables Icon

Table 1. Widths of Nodules with Different Seeds

Metrics