Abstract

Three-dimensional terahertz computed tomography has been used to investigate dried human bones such as a lumbar vertebra, a coxal bone, and a skull, with a direct comparison with standard radiography. In spite of lower spatial resolution compared with x-ray, terahertz imaging clearly discerns a compact bone from a spongy one, with strong terahertz absorption as shown by additional terahertz time-domain transmission spectroscopy.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Hahn, “X-ray fluorescence analysis on iron gall inks, pencils and coloured crayons,” Stud. Conserv. 50, 23–32 (2005).
  2. M. P. Morigi, F. Casali, M. Bettuzzi, R. Brancaccio, and V. d’Errico, “Application of x-ray computed tomography to cultural heritage diagnostics,” Appl. Phys. A 100, 653–661 (2010).
    [CrossRef]
  3. M. J. Aitken, Thermoluminescence Dating (Academic, 1985).
  4. J. B. Jackson, J. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, and K. Fukunaga, “A survey of terahertz applications in cultural heritage conservation science,” IEEE Trans. Terahertz Sci. Technol. 1, 220–231 (2011).
    [CrossRef]
  5. J.-P. Caumes, A. Younus, S. Salort, B. Chassagne, B. Recur, A. Ziéglé, A. Dautant, and E. Abraham, “Terahertz tomographic imaging of XVIIIth dynasty Egyptian sealed pottery,” Appl. Opt. 50, 3604–3608 (2011).
    [CrossRef]
  6. K. Fukunaga, E. Cortes, A. Cosentino, I. Stünkel, M. Leona, I. N. Duling, and D. T. Mininberg, “Investigating the use of terahertz pulsed time domain reflection imaging for the study of fabric layers of an Egyptian mummy,” J. Eur. Opt. Soc. Rapid Commun. 6, 11040 (2011).
    [CrossRef]
  7. M. Bessou, H. Duday, J.-P. Caumes, S. Salort, B. Chassagne, A. Dautant, A. Ziéglé, and E. Abraham, “Advantage of terahertz radiation versus x-ray to detect hidden organic materials in sealed vessels,” Opt. Commun. 285, 4175–4179 (2012).
    [CrossRef]
  8. M. R. Stringer, D. N. Lund, A. P. Foulds, A. Duddin, E. Berry, R. E. Miles, and A. G. Davies, “The analysis of human cortical bone by terahertz time-domain spectroscopy,” Phys. Med. Biol. 50, 3211–3219 (2005).
    [CrossRef]
  9. W. C. Kan, W. S. Lee, W. H. Cheung, V. P. Wallace, and E. Pickwell-MacPherson, “Terahertz pulsed imaging of knee cartilage,” Biomed. Opt. Express 1, 967–974 (2010).
    [CrossRef]
  10. W. Baughman, D. S. Wilbert, S. Balci, M. Bolus, P. Kung, and S. M. Kim, “Application of terahertz spectral imaging for the identification of osseous tissue,” in Proceedings of 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) (IEEE, 2011), pp. 1–2.
  11. L. Öhrström, A. Bitzer, M. Walther, and F. J. Rühli, “Technical note: terahertz imaging of ancient mummies and bone,” Am. J. Phys. Anthropol. 142, 497–500 (2010).
    [CrossRef]
  12. B. Ferguson, S. Wang, D. Gray, D. Abbot, and X. C. Zhang, “T-ray computed tomography,” Opt. Lett. 27, 1312–1314 (2002).
    [CrossRef]
  13. S. Wang, B. Ferguson, D. Abbott, and X. C. Zhang, “T-ray imaging and tomography,” J. Biol. Phys. 29, 247–256 (2003).
    [CrossRef]
  14. S. Wang and X. C. Zhang, “Pulsed terahertz tomography,” J. Phys. D 37, R1–R36 (2004).
    [CrossRef]
  15. M. M. Awad and R. A. Cheville, “Transmission terahertz waveguide-based imaging below the diffraction limit,” Appl. Phys. Lett. 86, 221107 (2005).
    [CrossRef]
  16. X. Yin, B. W. H. Ng, B. Ferguson, and D. Abbott, “Wavelet based local tomographic image using terahertz techniques,” Digit. Signal Process. 19, 750–763 (2009).
    [CrossRef]
  17. A. Brahm, M. Kunz, S. Riehemann, G. Notni, and A. Tünnermann, “Volumetric spectral analysis of materials using terahertz tomography techniques,” Appl. Phys. B 100, 151–158 (2010).
    [CrossRef]
  18. E. Abraham, A. Younus, C. Aguerre, P. Desbarats, and P. Mounaix, “Refraction losses in terahertz computed tomography,” Opt. Commun. 283, 2050–2055 (2010).
    [CrossRef]
  19. D. J. Cook, and R. M. Hochstrasser, “Intense terahertz pulses by four-wave rectification in air,” Opt. Lett. 25, 1210–1212 (2000).
    [CrossRef]
  20. A. Younus, S. Salort, B. Recur, P. Desbarats, P. Mounaix, J.-P. Caumes, and E. Abraham, “Millimeter wave tomographic scanner for large size opaque object inspection with different refractive index contrasts,” Proc. SPIE 7837, 783709 (2010).
    [CrossRef]
  21. G. T. Herman, Image Reconstruction From Projections: The Fundamentals of Computerized Tomography (Academic, 1980).
  22. J. Radon, “Uber die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Mannigfaltigkeiten,” Ber. Ver. Sachs. Akad. Wiss. Leipzig, Math-Phys. Kl 69, 262 (1917).
  23. A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm,” Ultrason. Imag. 6, 81–94 (1984).
    [CrossRef]
  24. L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging 1, 113–122 (1982).
    [CrossRef]
  25. H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Trans. Med. Imaging 13, 601–609 (1994).
    [CrossRef]
  26. B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J.-P. Caumes, and E. Abraham, “Investigation on reconstruction methods applied to 3D terahertz computed tomography,” Opt. Express 19, 5105–5117 (2011).
    [CrossRef]
  27. S. Joly, F. Garet, and J.-L. Coutaz, “Accurate determination of the complex refractive index of scattering materials by THz time-domain spectroscopy,” presented at the 3rd EOS Topical Meeting on Terahertz Science and Technology (TST 2012), Prague, Czech Republic, 17–20 June 2012.

2012 (1)

M. Bessou, H. Duday, J.-P. Caumes, S. Salort, B. Chassagne, A. Dautant, A. Ziéglé, and E. Abraham, “Advantage of terahertz radiation versus x-ray to detect hidden organic materials in sealed vessels,” Opt. Commun. 285, 4175–4179 (2012).
[CrossRef]

2011 (4)

J. B. Jackson, J. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, and K. Fukunaga, “A survey of terahertz applications in cultural heritage conservation science,” IEEE Trans. Terahertz Sci. Technol. 1, 220–231 (2011).
[CrossRef]

K. Fukunaga, E. Cortes, A. Cosentino, I. Stünkel, M. Leona, I. N. Duling, and D. T. Mininberg, “Investigating the use of terahertz pulsed time domain reflection imaging for the study of fabric layers of an Egyptian mummy,” J. Eur. Opt. Soc. Rapid Commun. 6, 11040 (2011).
[CrossRef]

B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J.-P. Caumes, and E. Abraham, “Investigation on reconstruction methods applied to 3D terahertz computed tomography,” Opt. Express 19, 5105–5117 (2011).
[CrossRef]

J.-P. Caumes, A. Younus, S. Salort, B. Chassagne, B. Recur, A. Ziéglé, A. Dautant, and E. Abraham, “Terahertz tomographic imaging of XVIIIth dynasty Egyptian sealed pottery,” Appl. Opt. 50, 3604–3608 (2011).
[CrossRef]

2010 (6)

L. Öhrström, A. Bitzer, M. Walther, and F. J. Rühli, “Technical note: terahertz imaging of ancient mummies and bone,” Am. J. Phys. Anthropol. 142, 497–500 (2010).
[CrossRef]

W. C. Kan, W. S. Lee, W. H. Cheung, V. P. Wallace, and E. Pickwell-MacPherson, “Terahertz pulsed imaging of knee cartilage,” Biomed. Opt. Express 1, 967–974 (2010).
[CrossRef]

M. P. Morigi, F. Casali, M. Bettuzzi, R. Brancaccio, and V. d’Errico, “Application of x-ray computed tomography to cultural heritage diagnostics,” Appl. Phys. A 100, 653–661 (2010).
[CrossRef]

A. Brahm, M. Kunz, S. Riehemann, G. Notni, and A. Tünnermann, “Volumetric spectral analysis of materials using terahertz tomography techniques,” Appl. Phys. B 100, 151–158 (2010).
[CrossRef]

E. Abraham, A. Younus, C. Aguerre, P. Desbarats, and P. Mounaix, “Refraction losses in terahertz computed tomography,” Opt. Commun. 283, 2050–2055 (2010).
[CrossRef]

A. Younus, S. Salort, B. Recur, P. Desbarats, P. Mounaix, J.-P. Caumes, and E. Abraham, “Millimeter wave tomographic scanner for large size opaque object inspection with different refractive index contrasts,” Proc. SPIE 7837, 783709 (2010).
[CrossRef]

2009 (1)

X. Yin, B. W. H. Ng, B. Ferguson, and D. Abbott, “Wavelet based local tomographic image using terahertz techniques,” Digit. Signal Process. 19, 750–763 (2009).
[CrossRef]

2005 (3)

O. Hahn, “X-ray fluorescence analysis on iron gall inks, pencils and coloured crayons,” Stud. Conserv. 50, 23–32 (2005).

M. R. Stringer, D. N. Lund, A. P. Foulds, A. Duddin, E. Berry, R. E. Miles, and A. G. Davies, “The analysis of human cortical bone by terahertz time-domain spectroscopy,” Phys. Med. Biol. 50, 3211–3219 (2005).
[CrossRef]

M. M. Awad and R. A. Cheville, “Transmission terahertz waveguide-based imaging below the diffraction limit,” Appl. Phys. Lett. 86, 221107 (2005).
[CrossRef]

2004 (1)

S. Wang and X. C. Zhang, “Pulsed terahertz tomography,” J. Phys. D 37, R1–R36 (2004).
[CrossRef]

2003 (1)

S. Wang, B. Ferguson, D. Abbott, and X. C. Zhang, “T-ray imaging and tomography,” J. Biol. Phys. 29, 247–256 (2003).
[CrossRef]

2002 (1)

2000 (1)

1994 (1)

H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Trans. Med. Imaging 13, 601–609 (1994).
[CrossRef]

1984 (1)

A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm,” Ultrason. Imag. 6, 81–94 (1984).
[CrossRef]

1982 (1)

L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging 1, 113–122 (1982).
[CrossRef]

1917 (1)

J. Radon, “Uber die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Mannigfaltigkeiten,” Ber. Ver. Sachs. Akad. Wiss. Leipzig, Math-Phys. Kl 69, 262 (1917).

Abbot, D.

Abbott, D.

X. Yin, B. W. H. Ng, B. Ferguson, and D. Abbott, “Wavelet based local tomographic image using terahertz techniques,” Digit. Signal Process. 19, 750–763 (2009).
[CrossRef]

S. Wang, B. Ferguson, D. Abbott, and X. C. Zhang, “T-ray imaging and tomography,” J. Biol. Phys. 29, 247–256 (2003).
[CrossRef]

Abraham, E.

M. Bessou, H. Duday, J.-P. Caumes, S. Salort, B. Chassagne, A. Dautant, A. Ziéglé, and E. Abraham, “Advantage of terahertz radiation versus x-ray to detect hidden organic materials in sealed vessels,” Opt. Commun. 285, 4175–4179 (2012).
[CrossRef]

J.-P. Caumes, A. Younus, S. Salort, B. Chassagne, B. Recur, A. Ziéglé, A. Dautant, and E. Abraham, “Terahertz tomographic imaging of XVIIIth dynasty Egyptian sealed pottery,” Appl. Opt. 50, 3604–3608 (2011).
[CrossRef]

B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J.-P. Caumes, and E. Abraham, “Investigation on reconstruction methods applied to 3D terahertz computed tomography,” Opt. Express 19, 5105–5117 (2011).
[CrossRef]

A. Younus, S. Salort, B. Recur, P. Desbarats, P. Mounaix, J.-P. Caumes, and E. Abraham, “Millimeter wave tomographic scanner for large size opaque object inspection with different refractive index contrasts,” Proc. SPIE 7837, 783709 (2010).
[CrossRef]

E. Abraham, A. Younus, C. Aguerre, P. Desbarats, and P. Mounaix, “Refraction losses in terahertz computed tomography,” Opt. Commun. 283, 2050–2055 (2010).
[CrossRef]

Aguerre, C.

E. Abraham, A. Younus, C. Aguerre, P. Desbarats, and P. Mounaix, “Refraction losses in terahertz computed tomography,” Opt. Commun. 283, 2050–2055 (2010).
[CrossRef]

Aitken, M. J.

M. J. Aitken, Thermoluminescence Dating (Academic, 1985).

Andersen, A. H.

A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm,” Ultrason. Imag. 6, 81–94 (1984).
[CrossRef]

Awad, M. M.

M. M. Awad and R. A. Cheville, “Transmission terahertz waveguide-based imaging below the diffraction limit,” Appl. Phys. Lett. 86, 221107 (2005).
[CrossRef]

Balci, S.

W. Baughman, D. S. Wilbert, S. Balci, M. Bolus, P. Kung, and S. M. Kim, “Application of terahertz spectral imaging for the identification of osseous tissue,” in Proceedings of 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) (IEEE, 2011), pp. 1–2.

Baughman, W.

W. Baughman, D. S. Wilbert, S. Balci, M. Bolus, P. Kung, and S. M. Kim, “Application of terahertz spectral imaging for the identification of osseous tissue,” in Proceedings of 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) (IEEE, 2011), pp. 1–2.

Berry, E.

M. R. Stringer, D. N. Lund, A. P. Foulds, A. Duddin, E. Berry, R. E. Miles, and A. G. Davies, “The analysis of human cortical bone by terahertz time-domain spectroscopy,” Phys. Med. Biol. 50, 3211–3219 (2005).
[CrossRef]

Bessou, M.

M. Bessou, H. Duday, J.-P. Caumes, S. Salort, B. Chassagne, A. Dautant, A. Ziéglé, and E. Abraham, “Advantage of terahertz radiation versus x-ray to detect hidden organic materials in sealed vessels,” Opt. Commun. 285, 4175–4179 (2012).
[CrossRef]

Bettuzzi, M.

M. P. Morigi, F. Casali, M. Bettuzzi, R. Brancaccio, and V. d’Errico, “Application of x-ray computed tomography to cultural heritage diagnostics,” Appl. Phys. A 100, 653–661 (2010).
[CrossRef]

Bitzer, A.

L. Öhrström, A. Bitzer, M. Walther, and F. J. Rühli, “Technical note: terahertz imaging of ancient mummies and bone,” Am. J. Phys. Anthropol. 142, 497–500 (2010).
[CrossRef]

Bolus, M.

W. Baughman, D. S. Wilbert, S. Balci, M. Bolus, P. Kung, and S. M. Kim, “Application of terahertz spectral imaging for the identification of osseous tissue,” in Proceedings of 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) (IEEE, 2011), pp. 1–2.

Bowen, J.

J. B. Jackson, J. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, and K. Fukunaga, “A survey of terahertz applications in cultural heritage conservation science,” IEEE Trans. Terahertz Sci. Technol. 1, 220–231 (2011).
[CrossRef]

Brahm, A.

A. Brahm, M. Kunz, S. Riehemann, G. Notni, and A. Tünnermann, “Volumetric spectral analysis of materials using terahertz tomography techniques,” Appl. Phys. B 100, 151–158 (2010).
[CrossRef]

Brancaccio, R.

M. P. Morigi, F. Casali, M. Bettuzzi, R. Brancaccio, and V. d’Errico, “Application of x-ray computed tomography to cultural heritage diagnostics,” Appl. Phys. A 100, 653–661 (2010).
[CrossRef]

Casali, F.

M. P. Morigi, F. Casali, M. Bettuzzi, R. Brancaccio, and V. d’Errico, “Application of x-ray computed tomography to cultural heritage diagnostics,” Appl. Phys. A 100, 653–661 (2010).
[CrossRef]

Caumes, J.-P.

M. Bessou, H. Duday, J.-P. Caumes, S. Salort, B. Chassagne, A. Dautant, A. Ziéglé, and E. Abraham, “Advantage of terahertz radiation versus x-ray to detect hidden organic materials in sealed vessels,” Opt. Commun. 285, 4175–4179 (2012).
[CrossRef]

J.-P. Caumes, A. Younus, S. Salort, B. Chassagne, B. Recur, A. Ziéglé, A. Dautant, and E. Abraham, “Terahertz tomographic imaging of XVIIIth dynasty Egyptian sealed pottery,” Appl. Opt. 50, 3604–3608 (2011).
[CrossRef]

B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J.-P. Caumes, and E. Abraham, “Investigation on reconstruction methods applied to 3D terahertz computed tomography,” Opt. Express 19, 5105–5117 (2011).
[CrossRef]

A. Younus, S. Salort, B. Recur, P. Desbarats, P. Mounaix, J.-P. Caumes, and E. Abraham, “Millimeter wave tomographic scanner for large size opaque object inspection with different refractive index contrasts,” Proc. SPIE 7837, 783709 (2010).
[CrossRef]

Chassagne, B.

Cheung, W. H.

Cheville, R. A.

M. M. Awad and R. A. Cheville, “Transmission terahertz waveguide-based imaging below the diffraction limit,” Appl. Phys. Lett. 86, 221107 (2005).
[CrossRef]

Cook, D. J.

Cortes, E.

K. Fukunaga, E. Cortes, A. Cosentino, I. Stünkel, M. Leona, I. N. Duling, and D. T. Mininberg, “Investigating the use of terahertz pulsed time domain reflection imaging for the study of fabric layers of an Egyptian mummy,” J. Eur. Opt. Soc. Rapid Commun. 6, 11040 (2011).
[CrossRef]

Cosentino, A.

K. Fukunaga, E. Cortes, A. Cosentino, I. Stünkel, M. Leona, I. N. Duling, and D. T. Mininberg, “Investigating the use of terahertz pulsed time domain reflection imaging for the study of fabric layers of an Egyptian mummy,” J. Eur. Opt. Soc. Rapid Commun. 6, 11040 (2011).
[CrossRef]

Coutaz, J.-L.

S. Joly, F. Garet, and J.-L. Coutaz, “Accurate determination of the complex refractive index of scattering materials by THz time-domain spectroscopy,” presented at the 3rd EOS Topical Meeting on Terahertz Science and Technology (TST 2012), Prague, Czech Republic, 17–20 June 2012.

d’Errico, V.

M. P. Morigi, F. Casali, M. Bettuzzi, R. Brancaccio, and V. d’Errico, “Application of x-ray computed tomography to cultural heritage diagnostics,” Appl. Phys. A 100, 653–661 (2010).
[CrossRef]

Dautant, A.

M. Bessou, H. Duday, J.-P. Caumes, S. Salort, B. Chassagne, A. Dautant, A. Ziéglé, and E. Abraham, “Advantage of terahertz radiation versus x-ray to detect hidden organic materials in sealed vessels,” Opt. Commun. 285, 4175–4179 (2012).
[CrossRef]

J.-P. Caumes, A. Younus, S. Salort, B. Chassagne, B. Recur, A. Ziéglé, A. Dautant, and E. Abraham, “Terahertz tomographic imaging of XVIIIth dynasty Egyptian sealed pottery,” Appl. Opt. 50, 3604–3608 (2011).
[CrossRef]

Davies, A. G.

M. R. Stringer, D. N. Lund, A. P. Foulds, A. Duddin, E. Berry, R. E. Miles, and A. G. Davies, “The analysis of human cortical bone by terahertz time-domain spectroscopy,” Phys. Med. Biol. 50, 3211–3219 (2005).
[CrossRef]

Desbarats, P.

B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J.-P. Caumes, and E. Abraham, “Investigation on reconstruction methods applied to 3D terahertz computed tomography,” Opt. Express 19, 5105–5117 (2011).
[CrossRef]

A. Younus, S. Salort, B. Recur, P. Desbarats, P. Mounaix, J.-P. Caumes, and E. Abraham, “Millimeter wave tomographic scanner for large size opaque object inspection with different refractive index contrasts,” Proc. SPIE 7837, 783709 (2010).
[CrossRef]

E. Abraham, A. Younus, C. Aguerre, P. Desbarats, and P. Mounaix, “Refraction losses in terahertz computed tomography,” Opt. Commun. 283, 2050–2055 (2010).
[CrossRef]

Duday, H.

M. Bessou, H. Duday, J.-P. Caumes, S. Salort, B. Chassagne, A. Dautant, A. Ziéglé, and E. Abraham, “Advantage of terahertz radiation versus x-ray to detect hidden organic materials in sealed vessels,” Opt. Commun. 285, 4175–4179 (2012).
[CrossRef]

Duddin, A.

M. R. Stringer, D. N. Lund, A. P. Foulds, A. Duddin, E. Berry, R. E. Miles, and A. G. Davies, “The analysis of human cortical bone by terahertz time-domain spectroscopy,” Phys. Med. Biol. 50, 3211–3219 (2005).
[CrossRef]

Duling, I. N.

K. Fukunaga, E. Cortes, A. Cosentino, I. Stünkel, M. Leona, I. N. Duling, and D. T. Mininberg, “Investigating the use of terahertz pulsed time domain reflection imaging for the study of fabric layers of an Egyptian mummy,” J. Eur. Opt. Soc. Rapid Commun. 6, 11040 (2011).
[CrossRef]

Ferguson, B.

X. Yin, B. W. H. Ng, B. Ferguson, and D. Abbott, “Wavelet based local tomographic image using terahertz techniques,” Digit. Signal Process. 19, 750–763 (2009).
[CrossRef]

S. Wang, B. Ferguson, D. Abbott, and X. C. Zhang, “T-ray imaging and tomography,” J. Biol. Phys. 29, 247–256 (2003).
[CrossRef]

B. Ferguson, S. Wang, D. Gray, D. Abbot, and X. C. Zhang, “T-ray computed tomography,” Opt. Lett. 27, 1312–1314 (2002).
[CrossRef]

Foulds, A. P.

M. R. Stringer, D. N. Lund, A. P. Foulds, A. Duddin, E. Berry, R. E. Miles, and A. G. Davies, “The analysis of human cortical bone by terahertz time-domain spectroscopy,” Phys. Med. Biol. 50, 3211–3219 (2005).
[CrossRef]

Fukunaga, K.

J. B. Jackson, J. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, and K. Fukunaga, “A survey of terahertz applications in cultural heritage conservation science,” IEEE Trans. Terahertz Sci. Technol. 1, 220–231 (2011).
[CrossRef]

K. Fukunaga, E. Cortes, A. Cosentino, I. Stünkel, M. Leona, I. N. Duling, and D. T. Mininberg, “Investigating the use of terahertz pulsed time domain reflection imaging for the study of fabric layers of an Egyptian mummy,” J. Eur. Opt. Soc. Rapid Commun. 6, 11040 (2011).
[CrossRef]

Garet, F.

S. Joly, F. Garet, and J.-L. Coutaz, “Accurate determination of the complex refractive index of scattering materials by THz time-domain spectroscopy,” presented at the 3rd EOS Topical Meeting on Terahertz Science and Technology (TST 2012), Prague, Czech Republic, 17–20 June 2012.

Gray, D.

Hahn, O.

O. Hahn, “X-ray fluorescence analysis on iron gall inks, pencils and coloured crayons,” Stud. Conserv. 50, 23–32 (2005).

Herman, G. T.

G. T. Herman, Image Reconstruction From Projections: The Fundamentals of Computerized Tomography (Academic, 1980).

Hochstrasser, R. M.

Hudson, H. M.

H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Trans. Med. Imaging 13, 601–609 (1994).
[CrossRef]

Jackson, J. B.

J. B. Jackson, J. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, and K. Fukunaga, “A survey of terahertz applications in cultural heritage conservation science,” IEEE Trans. Terahertz Sci. Technol. 1, 220–231 (2011).
[CrossRef]

Joly, S.

S. Joly, F. Garet, and J.-L. Coutaz, “Accurate determination of the complex refractive index of scattering materials by THz time-domain spectroscopy,” presented at the 3rd EOS Topical Meeting on Terahertz Science and Technology (TST 2012), Prague, Czech Republic, 17–20 June 2012.

Kak, A. C.

A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm,” Ultrason. Imag. 6, 81–94 (1984).
[CrossRef]

Kan, W. C.

Kim, S. M.

W. Baughman, D. S. Wilbert, S. Balci, M. Bolus, P. Kung, and S. M. Kim, “Application of terahertz spectral imaging for the identification of osseous tissue,” in Proceedings of 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) (IEEE, 2011), pp. 1–2.

Kung, P.

W. Baughman, D. S. Wilbert, S. Balci, M. Bolus, P. Kung, and S. M. Kim, “Application of terahertz spectral imaging for the identification of osseous tissue,” in Proceedings of 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) (IEEE, 2011), pp. 1–2.

Kunz, M.

A. Brahm, M. Kunz, S. Riehemann, G. Notni, and A. Tünnermann, “Volumetric spectral analysis of materials using terahertz tomography techniques,” Appl. Phys. B 100, 151–158 (2010).
[CrossRef]

Labaune, J.

J. B. Jackson, J. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, and K. Fukunaga, “A survey of terahertz applications in cultural heritage conservation science,” IEEE Trans. Terahertz Sci. Technol. 1, 220–231 (2011).
[CrossRef]

Larkin, R. S.

H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Trans. Med. Imaging 13, 601–609 (1994).
[CrossRef]

Lee, W. S.

Leona, M.

K. Fukunaga, E. Cortes, A. Cosentino, I. Stünkel, M. Leona, I. N. Duling, and D. T. Mininberg, “Investigating the use of terahertz pulsed time domain reflection imaging for the study of fabric layers of an Egyptian mummy,” J. Eur. Opt. Soc. Rapid Commun. 6, 11040 (2011).
[CrossRef]

Lund, D. N.

M. R. Stringer, D. N. Lund, A. P. Foulds, A. Duddin, E. Berry, R. E. Miles, and A. G. Davies, “The analysis of human cortical bone by terahertz time-domain spectroscopy,” Phys. Med. Biol. 50, 3211–3219 (2005).
[CrossRef]

Menu, M.

J. B. Jackson, J. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, and K. Fukunaga, “A survey of terahertz applications in cultural heritage conservation science,” IEEE Trans. Terahertz Sci. Technol. 1, 220–231 (2011).
[CrossRef]

Miles, R. E.

M. R. Stringer, D. N. Lund, A. P. Foulds, A. Duddin, E. Berry, R. E. Miles, and A. G. Davies, “The analysis of human cortical bone by terahertz time-domain spectroscopy,” Phys. Med. Biol. 50, 3211–3219 (2005).
[CrossRef]

Mininberg, D. T.

K. Fukunaga, E. Cortes, A. Cosentino, I. Stünkel, M. Leona, I. N. Duling, and D. T. Mininberg, “Investigating the use of terahertz pulsed time domain reflection imaging for the study of fabric layers of an Egyptian mummy,” J. Eur. Opt. Soc. Rapid Commun. 6, 11040 (2011).
[CrossRef]

Morigi, M. P.

M. P. Morigi, F. Casali, M. Bettuzzi, R. Brancaccio, and V. d’Errico, “Application of x-ray computed tomography to cultural heritage diagnostics,” Appl. Phys. A 100, 653–661 (2010).
[CrossRef]

Mounaix, P.

B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J.-P. Caumes, and E. Abraham, “Investigation on reconstruction methods applied to 3D terahertz computed tomography,” Opt. Express 19, 5105–5117 (2011).
[CrossRef]

A. Younus, S. Salort, B. Recur, P. Desbarats, P. Mounaix, J.-P. Caumes, and E. Abraham, “Millimeter wave tomographic scanner for large size opaque object inspection with different refractive index contrasts,” Proc. SPIE 7837, 783709 (2010).
[CrossRef]

E. Abraham, A. Younus, C. Aguerre, P. Desbarats, and P. Mounaix, “Refraction losses in terahertz computed tomography,” Opt. Commun. 283, 2050–2055 (2010).
[CrossRef]

Mourou, G.

J. B. Jackson, J. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, and K. Fukunaga, “A survey of terahertz applications in cultural heritage conservation science,” IEEE Trans. Terahertz Sci. Technol. 1, 220–231 (2011).
[CrossRef]

Ng, B. W. H.

X. Yin, B. W. H. Ng, B. Ferguson, and D. Abbott, “Wavelet based local tomographic image using terahertz techniques,” Digit. Signal Process. 19, 750–763 (2009).
[CrossRef]

Notni, G.

A. Brahm, M. Kunz, S. Riehemann, G. Notni, and A. Tünnermann, “Volumetric spectral analysis of materials using terahertz tomography techniques,” Appl. Phys. B 100, 151–158 (2010).
[CrossRef]

Öhrström, L.

L. Öhrström, A. Bitzer, M. Walther, and F. J. Rühli, “Technical note: terahertz imaging of ancient mummies and bone,” Am. J. Phys. Anthropol. 142, 497–500 (2010).
[CrossRef]

Pickwell-MacPherson, E.

Radon, J.

J. Radon, “Uber die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Mannigfaltigkeiten,” Ber. Ver. Sachs. Akad. Wiss. Leipzig, Math-Phys. Kl 69, 262 (1917).

Recur, B.

Riehemann, S.

A. Brahm, M. Kunz, S. Riehemann, G. Notni, and A. Tünnermann, “Volumetric spectral analysis of materials using terahertz tomography techniques,” Appl. Phys. B 100, 151–158 (2010).
[CrossRef]

Rühli, F. J.

L. Öhrström, A. Bitzer, M. Walther, and F. J. Rühli, “Technical note: terahertz imaging of ancient mummies and bone,” Am. J. Phys. Anthropol. 142, 497–500 (2010).
[CrossRef]

Salort, S.

M. Bessou, H. Duday, J.-P. Caumes, S. Salort, B. Chassagne, A. Dautant, A. Ziéglé, and E. Abraham, “Advantage of terahertz radiation versus x-ray to detect hidden organic materials in sealed vessels,” Opt. Commun. 285, 4175–4179 (2012).
[CrossRef]

J.-P. Caumes, A. Younus, S. Salort, B. Chassagne, B. Recur, A. Ziéglé, A. Dautant, and E. Abraham, “Terahertz tomographic imaging of XVIIIth dynasty Egyptian sealed pottery,” Appl. Opt. 50, 3604–3608 (2011).
[CrossRef]

B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J.-P. Caumes, and E. Abraham, “Investigation on reconstruction methods applied to 3D terahertz computed tomography,” Opt. Express 19, 5105–5117 (2011).
[CrossRef]

A. Younus, S. Salort, B. Recur, P. Desbarats, P. Mounaix, J.-P. Caumes, and E. Abraham, “Millimeter wave tomographic scanner for large size opaque object inspection with different refractive index contrasts,” Proc. SPIE 7837, 783709 (2010).
[CrossRef]

Shepp, L. A.

L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging 1, 113–122 (1982).
[CrossRef]

Stringer, M. R.

M. R. Stringer, D. N. Lund, A. P. Foulds, A. Duddin, E. Berry, R. E. Miles, and A. G. Davies, “The analysis of human cortical bone by terahertz time-domain spectroscopy,” Phys. Med. Biol. 50, 3211–3219 (2005).
[CrossRef]

Stünkel, I.

K. Fukunaga, E. Cortes, A. Cosentino, I. Stünkel, M. Leona, I. N. Duling, and D. T. Mininberg, “Investigating the use of terahertz pulsed time domain reflection imaging for the study of fabric layers of an Egyptian mummy,” J. Eur. Opt. Soc. Rapid Commun. 6, 11040 (2011).
[CrossRef]

Tünnermann, A.

A. Brahm, M. Kunz, S. Riehemann, G. Notni, and A. Tünnermann, “Volumetric spectral analysis of materials using terahertz tomography techniques,” Appl. Phys. B 100, 151–158 (2010).
[CrossRef]

Vardi, Y.

L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging 1, 113–122 (1982).
[CrossRef]

Walker, G.

J. B. Jackson, J. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, and K. Fukunaga, “A survey of terahertz applications in cultural heritage conservation science,” IEEE Trans. Terahertz Sci. Technol. 1, 220–231 (2011).
[CrossRef]

Wallace, V. P.

Walther, M.

L. Öhrström, A. Bitzer, M. Walther, and F. J. Rühli, “Technical note: terahertz imaging of ancient mummies and bone,” Am. J. Phys. Anthropol. 142, 497–500 (2010).
[CrossRef]

Wang, S.

S. Wang and X. C. Zhang, “Pulsed terahertz tomography,” J. Phys. D 37, R1–R36 (2004).
[CrossRef]

S. Wang, B. Ferguson, D. Abbott, and X. C. Zhang, “T-ray imaging and tomography,” J. Biol. Phys. 29, 247–256 (2003).
[CrossRef]

B. Ferguson, S. Wang, D. Gray, D. Abbot, and X. C. Zhang, “T-ray computed tomography,” Opt. Lett. 27, 1312–1314 (2002).
[CrossRef]

Wilbert, D. S.

W. Baughman, D. S. Wilbert, S. Balci, M. Bolus, P. Kung, and S. M. Kim, “Application of terahertz spectral imaging for the identification of osseous tissue,” in Proceedings of 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) (IEEE, 2011), pp. 1–2.

Yin, X.

X. Yin, B. W. H. Ng, B. Ferguson, and D. Abbott, “Wavelet based local tomographic image using terahertz techniques,” Digit. Signal Process. 19, 750–763 (2009).
[CrossRef]

Younus, A.

B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J.-P. Caumes, and E. Abraham, “Investigation on reconstruction methods applied to 3D terahertz computed tomography,” Opt. Express 19, 5105–5117 (2011).
[CrossRef]

J.-P. Caumes, A. Younus, S. Salort, B. Chassagne, B. Recur, A. Ziéglé, A. Dautant, and E. Abraham, “Terahertz tomographic imaging of XVIIIth dynasty Egyptian sealed pottery,” Appl. Opt. 50, 3604–3608 (2011).
[CrossRef]

A. Younus, S. Salort, B. Recur, P. Desbarats, P. Mounaix, J.-P. Caumes, and E. Abraham, “Millimeter wave tomographic scanner for large size opaque object inspection with different refractive index contrasts,” Proc. SPIE 7837, 783709 (2010).
[CrossRef]

E. Abraham, A. Younus, C. Aguerre, P. Desbarats, and P. Mounaix, “Refraction losses in terahertz computed tomography,” Opt. Commun. 283, 2050–2055 (2010).
[CrossRef]

Zhang, X. C.

S. Wang and X. C. Zhang, “Pulsed terahertz tomography,” J. Phys. D 37, R1–R36 (2004).
[CrossRef]

S. Wang, B. Ferguson, D. Abbott, and X. C. Zhang, “T-ray imaging and tomography,” J. Biol. Phys. 29, 247–256 (2003).
[CrossRef]

B. Ferguson, S. Wang, D. Gray, D. Abbot, and X. C. Zhang, “T-ray computed tomography,” Opt. Lett. 27, 1312–1314 (2002).
[CrossRef]

Ziéglé, A.

M. Bessou, H. Duday, J.-P. Caumes, S. Salort, B. Chassagne, A. Dautant, A. Ziéglé, and E. Abraham, “Advantage of terahertz radiation versus x-ray to detect hidden organic materials in sealed vessels,” Opt. Commun. 285, 4175–4179 (2012).
[CrossRef]

J.-P. Caumes, A. Younus, S. Salort, B. Chassagne, B. Recur, A. Ziéglé, A. Dautant, and E. Abraham, “Terahertz tomographic imaging of XVIIIth dynasty Egyptian sealed pottery,” Appl. Opt. 50, 3604–3608 (2011).
[CrossRef]

Am. J. Phys. Anthropol. (1)

L. Öhrström, A. Bitzer, M. Walther, and F. J. Rühli, “Technical note: terahertz imaging of ancient mummies and bone,” Am. J. Phys. Anthropol. 142, 497–500 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (1)

M. P. Morigi, F. Casali, M. Bettuzzi, R. Brancaccio, and V. d’Errico, “Application of x-ray computed tomography to cultural heritage diagnostics,” Appl. Phys. A 100, 653–661 (2010).
[CrossRef]

Appl. Phys. B (1)

A. Brahm, M. Kunz, S. Riehemann, G. Notni, and A. Tünnermann, “Volumetric spectral analysis of materials using terahertz tomography techniques,” Appl. Phys. B 100, 151–158 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

M. M. Awad and R. A. Cheville, “Transmission terahertz waveguide-based imaging below the diffraction limit,” Appl. Phys. Lett. 86, 221107 (2005).
[CrossRef]

Ber. Ver. Sachs. Akad. Wiss. Leipzig, Math-Phys. Kl (1)

J. Radon, “Uber die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Mannigfaltigkeiten,” Ber. Ver. Sachs. Akad. Wiss. Leipzig, Math-Phys. Kl 69, 262 (1917).

Biomed. Opt. Express (1)

Digit. Signal Process. (1)

X. Yin, B. W. H. Ng, B. Ferguson, and D. Abbott, “Wavelet based local tomographic image using terahertz techniques,” Digit. Signal Process. 19, 750–763 (2009).
[CrossRef]

IEEE Trans. Med. Imaging (2)

L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging 1, 113–122 (1982).
[CrossRef]

H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Trans. Med. Imaging 13, 601–609 (1994).
[CrossRef]

IEEE Trans. Terahertz Sci. Technol. (1)

J. B. Jackson, J. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, and K. Fukunaga, “A survey of terahertz applications in cultural heritage conservation science,” IEEE Trans. Terahertz Sci. Technol. 1, 220–231 (2011).
[CrossRef]

J. Biol. Phys. (1)

S. Wang, B. Ferguson, D. Abbott, and X. C. Zhang, “T-ray imaging and tomography,” J. Biol. Phys. 29, 247–256 (2003).
[CrossRef]

J. Eur. Opt. Soc. Rapid Commun. (1)

K. Fukunaga, E. Cortes, A. Cosentino, I. Stünkel, M. Leona, I. N. Duling, and D. T. Mininberg, “Investigating the use of terahertz pulsed time domain reflection imaging for the study of fabric layers of an Egyptian mummy,” J. Eur. Opt. Soc. Rapid Commun. 6, 11040 (2011).
[CrossRef]

J. Phys. D (1)

S. Wang and X. C. Zhang, “Pulsed terahertz tomography,” J. Phys. D 37, R1–R36 (2004).
[CrossRef]

Opt. Commun. (2)

M. Bessou, H. Duday, J.-P. Caumes, S. Salort, B. Chassagne, A. Dautant, A. Ziéglé, and E. Abraham, “Advantage of terahertz radiation versus x-ray to detect hidden organic materials in sealed vessels,” Opt. Commun. 285, 4175–4179 (2012).
[CrossRef]

E. Abraham, A. Younus, C. Aguerre, P. Desbarats, and P. Mounaix, “Refraction losses in terahertz computed tomography,” Opt. Commun. 283, 2050–2055 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Med. Biol. (1)

M. R. Stringer, D. N. Lund, A. P. Foulds, A. Duddin, E. Berry, R. E. Miles, and A. G. Davies, “The analysis of human cortical bone by terahertz time-domain spectroscopy,” Phys. Med. Biol. 50, 3211–3219 (2005).
[CrossRef]

Proc. SPIE (1)

A. Younus, S. Salort, B. Recur, P. Desbarats, P. Mounaix, J.-P. Caumes, and E. Abraham, “Millimeter wave tomographic scanner for large size opaque object inspection with different refractive index contrasts,” Proc. SPIE 7837, 783709 (2010).
[CrossRef]

Stud. Conserv. (1)

O. Hahn, “X-ray fluorescence analysis on iron gall inks, pencils and coloured crayons,” Stud. Conserv. 50, 23–32 (2005).

Ultrason. Imag. (1)

A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm,” Ultrason. Imag. 6, 81–94 (1984).
[CrossRef]

Other (4)

G. T. Herman, Image Reconstruction From Projections: The Fundamentals of Computerized Tomography (Academic, 1980).

S. Joly, F. Garet, and J.-L. Coutaz, “Accurate determination of the complex refractive index of scattering materials by THz time-domain spectroscopy,” presented at the 3rd EOS Topical Meeting on Terahertz Science and Technology (TST 2012), Prague, Czech Republic, 17–20 June 2012.

M. J. Aitken, Thermoluminescence Dating (Academic, 1985).

W. Baughman, D. S. Wilbert, S. Balci, M. Bolus, P. Kung, and S. M. Kim, “Application of terahertz spectral imaging for the identification of osseous tissue,” in Proceedings of 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) (IEEE, 2011), pp. 1–2.

Supplementary Material (3)

» Media 1: MOV (139 KB)     
» Media 2: MOV (1167 KB)     
» Media 3: MOV (1396 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Experimental setup. C, optical chopper; M, off-axis parabolic mirror (f=150mm); L, Teflon lens (f=60mm); S, sample; D, pyroelectric detector. (b) Photograph of the THz scanner analyzing a human lumbar vertebra.

Fig. 2.
Fig. 2.

Refractive index (blue curve) and absorption coefficient (red curve) of compact bone.

Fig. 3.
Fig. 3.

Human lumbar vertebra (superior view). (a) Photograph. (b) Radiograph. (c) THz imaging.

Fig. 4.
Fig. 4.

Human skull (right lateral view). (a) Photograph. (b) Radiograph. (c) THz imaging. The red arrows indicate the location of the coronal suture.

Fig. 5.
Fig. 5.

Right human coxal bone. (a) Photograph. (b) Radiograph. (c) THz imaging.

Fig. 6.
Fig. 6.

THz imaging of right human coxal bone. Tilted series with a 20° angular step. Whole tilted series available in “Media 1.”

Fig. 7.
Fig. 7.

Right human coxal bone. (a) 3D THz reconstruction (volume). Multimedia file in “Media 2”. (b) 3D THz reconstruction (slices). From 3D tomographic reconstruction movie. Multimedia file in “Media 3.” 3D tomographic reconstruction obtained with ImageJ software.

Metrics