Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Polarization-induced noise in resonator fiber optic gyro

Not Accessible

Your library or personal account may give you access

Abstract

An optical fiber ring resonator (OFRR) is the key rotation-sensing element in the resonator fiber optic gyro (R-FOG). In comparing between different OFRR types, a simulation model that can apply to all cases is set up. Both the polarization crosstalk and polarization-dependent loss in the coupler are fully investigated for the first time to our knowledge. Three different splicing schemes, including a single 0°, a single 90°, and twin 90° polarization axis rotated spices, are compared. Two general configurations of the OFRR are considered. One is a reflector OFRR, the other is a transmitter OFRR. This leads to six different OFRR types. The output stability of the R-FOG with six OFRR types is fully investigated theoretically and experimentally. Additional Kerr noise due to the polarization fluctuation is discovered. The OFRR with twin 90° polarization axis rotated splices is of lower additional Kerr noise and hence has better temperature stability. As the coupler is polarization dependent, we notice that in a reflector OFRR, the straight-through component of the output lightwave, which can be isolated by a transmitter configuration, would produce large polarization fluctuation–induced noise. The experimental results show that the bias stability of the transmitter OFRR is 8 times improved over that of the reflector OFRR, which is in accord with the theoretical analysis. By the analysis and experiments above, it is reasonable to make a conclusion that an R-FOG based on a transmitter OFRR with twin 90° polarization axis rotated splices is of better temperature stability and smaller additional Kerr effect noise.

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
In-line polarizer used in all-0°-splice resonator fiber-optic gyro

Huilan Liu, Wei Wang, Junjie Wang, Lishuang Feng, and Yinzhou Zhi
Appl. Opt. 52(32) 7821-7825 (2013)

Improving thermal stability of a resonator fiber optic gyro employing a polarizing resonator

Xuhui Yu, Huilian Ma, and Zhonghe Jin
Opt. Express 21(1) 358-369 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (56)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved