Abstract

Multimode silica step-index optical fibers are examined for use in planar laser-induced fluorescence (PLIF) for combustion diagnostics using ultraviolet (UV) laser sources. The multimode step-index fibers are characterized at UV wavelengths by examining their energy damage thresholds and solarization performance. The beam quality achievable with large clad step-index multimode fibers is also studied. Emphasis is placed on simultaneously achieving high output energy and beam quality (low output M2). The use of multimode fibers to deliver UV pulses at 283 nm for PLIF measurements of OH radicals in a Hencken burner is demonstrated. The fiber delivery capability of UV light will benefit combustion diagnostics in hostile environments, such as augmentor and combustor rigs.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Dreizler and J. Janicka, “Diagnostic challenges for gas turbine combustor model validation,” in Applied Combustion Diagnostics, K. Kohse-Hoinghaus and J. B. Jeffries, eds. (Taylor & Francis, 2002), p. 561.
  2. H. B. Ebrahimi, “Overview of gas turbine augmentor design, operation and combustion oscillation,” presented at the 19th Annual Conference on Liquid Atomization and Spray Systems, ILASS Americas, Toronto, Canada, 23–26 May 2006.
  3. H. Bohm and H. Jander, “PAH formation in acetylene-benzene pyrolysis,” Phys. Chem. Chem. Phys. 1, 3775–3781 (1999).
    [CrossRef]
  4. A. C. Eckbreth, Laser Diagnostics for Combustion, Temperature and Species (Gordon & Breach, 1996).
  5. G. Kychakoff, M. A. Kimball-Linne, and R. K. Hanson, “Fiber-optic absorption fluorescence probes for combustion measurements,” Appl. Opt. 22, 1426–1428 (1983).
    [CrossRef]
  6. M. A. Kimball-Linne, G. Kychakoff, and R. K. Hanson, “Fiberoptic absorption fluorescence combustion diagnostics,” Combus. Sci. Technol. 50, 307–322 (1986).
    [CrossRef]
  7. W. D. Kulatilaka, P. S. Hsu, J. R. Gord, and S. Roy, “Point and planar ultraviolet excitation/detection of hydroxyl-radical laser-induced fluorescence through long optical fibers,” Opt. Lett. 36, 1818–1820 (2011).
    [CrossRef]
  8. P. S. Hsu, W. D. Kulatilaka, N. B. Jiang, J. R. Gord, and S. Roy, “Investigation of optical fibers for gas-phase, ultraviolet laser-induced-fluorescence (UV-LIF) spectroscopy,” Appl. Opt. 51, 4047–4057 (2012).
    [CrossRef]
  9. J. M. Whitney, K. Takami, S. T. Sanders, and Y. Okura, “Design of system for rugged, low-noise fiber-optic access to high-temperature, high-pressure environments,” IEEE Sens. J. 11, 3295–3302 (2011).
    [CrossRef]
  10. C. Kittler and A. Dreizler, “Cinematographic imaging of hydroxyl radicals in turbulent flames by planar laser-induced fluorescence up to 5 kHz repetition rate,” Appl. Phys. B 89, 163–166 (2007).
    [CrossRef]
  11. S. H. R. Muller, B. Bohm, M. Gleissner, S. Arndt, and A. Dreizler, “Analysis of the temporal flame kernel development in an optically accessible IC engine using high-speed OH-PLIF,” Appl. Phys. B 100, 447–452 (2010).
    [CrossRef]
  12. I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95, 23–29 (2009).
    [CrossRef]
  13. R. S. Taylor, K. E. Leopold, R. K. Brimacombe, and S. Mihailov, “Dependence of the damage and transmission properties of fused silica fibers on the excimer laser wavelength,” Appl. Opt. 27, 3124–3134 (1988).
    [CrossRef]
  14. S. Joshi, A. P. Yalin, and A. Galvanauskas, “Use of hollow core fibers, fiber lasers, and photonic crystal fibers for spark delivery and laser ignition in gases,” Appl. Opt. 46, 4057–4064 (2007).
    [CrossRef]
  15. Y. Matsuura, G. Takada, T. Yamamoto, Y. W. Shi, and M. Miyagi, “Hollow fibers for delivery of harmonic pulses of Q-switched Nd:YAG lasers,” Appl. Opt. 41, 442–445 (2002).
    [CrossRef]
  16. J. P. Parry, T. J. Stephens, J. D. Shephard, J. D. C. Jones, and D. P. Hand, “Analysis of optical damage mechanisms in hollow-core waveguides delivery nanosecond pulses from a Q-switched Nd:YAG laser,” Appl. Opt. 45, 9160–9167(2006).
    [CrossRef]
  17. A. P. Yalin, M. DeFoort, B. Willson, Y. Matsuura, and M. Miyagi, “Use of hollow-core fibers to deliver nanosecond Nd:YAG laser pulses to form sparks in gases,” Opt. Lett. 30, 2083–2085 (2005).
    [CrossRef]
  18. A. K. Ghatak and K. Thyagarajan, Optical Electronics(Cambridge University, 1989).
  19. S. Hurand, L. A. Chauny, H. El-Rabii, S. Joshi, and A. P. Yalin, “Mode coupling and output beam quality of 100–400 μm core silica fibers,” Appl. Opt. 50, 492–499 (2011).
    [CrossRef]
  20. R. Hancock, K. Bertagnolli, and R. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
    [CrossRef]
  21. D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51, 1767–1783 (1972).
  22. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett. 23, 52–54 (1998).
    [CrossRef]
  23. S. Joshi, N. Wilvert, and A. P. Yalin, “Delivery of high intensity beams with large clad step-index fibers for engine ignition,” Appl. Phys. B (to be published).
  24. S. Savovic, A. Djordjevich, A. Simovic, and B. Drljaca, “Equilibrium mode distribution and steady-state distribution in 100–400 μm core step-index silica optical fibers,” Appl. Opt. 50, 4170–4173 (2011).
    [CrossRef]
  25. P. S. Hsu, W. D. Kulatilaka, S. Roy, A. K. Patnaik, and J. R. Gord, “Development of an all-fiber-coupled, pulsed, ultraviolet, laser-induced-fluorescence (UV-LIF) detection system for OH radicals in practical combustion devices,” presented at the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tenn., 9–12 Jan. 2012.
  26. W. P. Leung, M. Kulkarni, D. Krajnovich, and A. C. Tam, “Effect of intense and prolonged 248 nm pulsed-laser irradiation on the properties of ultraviolet-grade fused-silica,” Appl. Phys. Lett. 58, 551–553 (1991).
    [CrossRef]
  27. N. Yamamoto, L. Tao, and A. P. Yalin, “Single-mode delivery of 250 nm light using a large mode area photonic crystal fiber,” Opt. Express 17, 16933–16940 (2009).
    [CrossRef]
  28. N. B. Jiang, M. C. Webster, and W. R. Lempert, “Advances in generation of high-repetition-rate burst mode laser output,” Appl. Opt. 48, B23–B31 (2009).
    [CrossRef]
  29. N. Jiang, W. R. Lempert, G. L. Switzer, T. R. Meyer, and J. R. Gord, “Narrow-linewidth megahertz-repetition-rate optical parametric oscillator for high-speed flow and combustion diagnostics,” Appl. Opt. 47, 64–71 (2008).
    [CrossRef]

2012 (1)

2011 (4)

2010 (1)

S. H. R. Muller, B. Bohm, M. Gleissner, S. Arndt, and A. Dreizler, “Analysis of the temporal flame kernel development in an optically accessible IC engine using high-speed OH-PLIF,” Appl. Phys. B 100, 447–452 (2010).
[CrossRef]

2009 (3)

2008 (1)

2007 (2)

C. Kittler and A. Dreizler, “Cinematographic imaging of hydroxyl radicals in turbulent flames by planar laser-induced fluorescence up to 5 kHz repetition rate,” Appl. Phys. B 89, 163–166 (2007).
[CrossRef]

S. Joshi, A. P. Yalin, and A. Galvanauskas, “Use of hollow core fibers, fiber lasers, and photonic crystal fibers for spark delivery and laser ignition in gases,” Appl. Opt. 46, 4057–4064 (2007).
[CrossRef]

2006 (1)

2005 (1)

2002 (1)

1999 (1)

H. Bohm and H. Jander, “PAH formation in acetylene-benzene pyrolysis,” Phys. Chem. Chem. Phys. 1, 3775–3781 (1999).
[CrossRef]

1998 (1)

1997 (1)

R. Hancock, K. Bertagnolli, and R. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

1991 (1)

W. P. Leung, M. Kulkarni, D. Krajnovich, and A. C. Tam, “Effect of intense and prolonged 248 nm pulsed-laser irradiation on the properties of ultraviolet-grade fused-silica,” Appl. Phys. Lett. 58, 551–553 (1991).
[CrossRef]

1988 (1)

1986 (1)

M. A. Kimball-Linne, G. Kychakoff, and R. K. Hanson, “Fiberoptic absorption fluorescence combustion diagnostics,” Combus. Sci. Technol. 50, 307–322 (1986).
[CrossRef]

1983 (1)

1972 (1)

D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51, 1767–1783 (1972).

Arndt, S.

S. H. R. Muller, B. Bohm, M. Gleissner, S. Arndt, and A. Dreizler, “Analysis of the temporal flame kernel development in an optically accessible IC engine using high-speed OH-PLIF,” Appl. Phys. B 100, 447–452 (2010).
[CrossRef]

Bertagnolli, K.

R. Hancock, K. Bertagnolli, and R. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

Bohm, B.

S. H. R. Muller, B. Bohm, M. Gleissner, S. Arndt, and A. Dreizler, “Analysis of the temporal flame kernel development in an optically accessible IC engine using high-speed OH-PLIF,” Appl. Phys. B 100, 447–452 (2010).
[CrossRef]

Bohm, H.

H. Bohm and H. Jander, “PAH formation in acetylene-benzene pyrolysis,” Phys. Chem. Chem. Phys. 1, 3775–3781 (1999).
[CrossRef]

Boxx, I.

I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95, 23–29 (2009).
[CrossRef]

Brimacombe, R. K.

Carter, C.

I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95, 23–29 (2009).
[CrossRef]

Chauny, L. A.

DeFoort, M.

Djordjevich, A.

Dreizler, A.

S. H. R. Muller, B. Bohm, M. Gleissner, S. Arndt, and A. Dreizler, “Analysis of the temporal flame kernel development in an optically accessible IC engine using high-speed OH-PLIF,” Appl. Phys. B 100, 447–452 (2010).
[CrossRef]

C. Kittler and A. Dreizler, “Cinematographic imaging of hydroxyl radicals in turbulent flames by planar laser-induced fluorescence up to 5 kHz repetition rate,” Appl. Phys. B 89, 163–166 (2007).
[CrossRef]

A. Dreizler and J. Janicka, “Diagnostic challenges for gas turbine combustor model validation,” in Applied Combustion Diagnostics, K. Kohse-Hoinghaus and J. B. Jeffries, eds. (Taylor & Francis, 2002), p. 561.

Drljaca, B.

Ebrahimi, H. B.

H. B. Ebrahimi, “Overview of gas turbine augmentor design, operation and combustion oscillation,” presented at the 19th Annual Conference on Liquid Atomization and Spray Systems, ILASS Americas, Toronto, Canada, 23–26 May 2006.

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion, Temperature and Species (Gordon & Breach, 1996).

El-Rabii, H.

Fermann, M. E.

Galvanauskas, A.

Ghatak, A. K.

A. K. Ghatak and K. Thyagarajan, Optical Electronics(Cambridge University, 1989).

Gleissner, M.

S. H. R. Muller, B. Bohm, M. Gleissner, S. Arndt, and A. Dreizler, “Analysis of the temporal flame kernel development in an optically accessible IC engine using high-speed OH-PLIF,” Appl. Phys. B 100, 447–452 (2010).
[CrossRef]

Gloge, D.

D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51, 1767–1783 (1972).

Gord, J. R.

Hancock, R.

R. Hancock, K. Bertagnolli, and R. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

Hand, D. P.

Hanson, R. K.

M. A. Kimball-Linne, G. Kychakoff, and R. K. Hanson, “Fiberoptic absorption fluorescence combustion diagnostics,” Combus. Sci. Technol. 50, 307–322 (1986).
[CrossRef]

G. Kychakoff, M. A. Kimball-Linne, and R. K. Hanson, “Fiber-optic absorption fluorescence probes for combustion measurements,” Appl. Opt. 22, 1426–1428 (1983).
[CrossRef]

Hsu, P. S.

P. S. Hsu, W. D. Kulatilaka, N. B. Jiang, J. R. Gord, and S. Roy, “Investigation of optical fibers for gas-phase, ultraviolet laser-induced-fluorescence (UV-LIF) spectroscopy,” Appl. Opt. 51, 4047–4057 (2012).
[CrossRef]

W. D. Kulatilaka, P. S. Hsu, J. R. Gord, and S. Roy, “Point and planar ultraviolet excitation/detection of hydroxyl-radical laser-induced fluorescence through long optical fibers,” Opt. Lett. 36, 1818–1820 (2011).
[CrossRef]

P. S. Hsu, W. D. Kulatilaka, S. Roy, A. K. Patnaik, and J. R. Gord, “Development of an all-fiber-coupled, pulsed, ultraviolet, laser-induced-fluorescence (UV-LIF) detection system for OH radicals in practical combustion devices,” presented at the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tenn., 9–12 Jan. 2012.

Hurand, S.

Jander, H.

H. Bohm and H. Jander, “PAH formation in acetylene-benzene pyrolysis,” Phys. Chem. Chem. Phys. 1, 3775–3781 (1999).
[CrossRef]

Janicka, J.

A. Dreizler and J. Janicka, “Diagnostic challenges for gas turbine combustor model validation,” in Applied Combustion Diagnostics, K. Kohse-Hoinghaus and J. B. Jeffries, eds. (Taylor & Francis, 2002), p. 561.

Jiang, N.

Jiang, N. B.

Jones, J. D. C.

Joshi, S.

Kimball-Linne, M. A.

M. A. Kimball-Linne, G. Kychakoff, and R. K. Hanson, “Fiberoptic absorption fluorescence combustion diagnostics,” Combus. Sci. Technol. 50, 307–322 (1986).
[CrossRef]

G. Kychakoff, M. A. Kimball-Linne, and R. K. Hanson, “Fiber-optic absorption fluorescence probes for combustion measurements,” Appl. Opt. 22, 1426–1428 (1983).
[CrossRef]

Kittler, C.

C. Kittler and A. Dreizler, “Cinematographic imaging of hydroxyl radicals in turbulent flames by planar laser-induced fluorescence up to 5 kHz repetition rate,” Appl. Phys. B 89, 163–166 (2007).
[CrossRef]

Krajnovich, D.

W. P. Leung, M. Kulkarni, D. Krajnovich, and A. C. Tam, “Effect of intense and prolonged 248 nm pulsed-laser irradiation on the properties of ultraviolet-grade fused-silica,” Appl. Phys. Lett. 58, 551–553 (1991).
[CrossRef]

Kulatilaka, W. D.

P. S. Hsu, W. D. Kulatilaka, N. B. Jiang, J. R. Gord, and S. Roy, “Investigation of optical fibers for gas-phase, ultraviolet laser-induced-fluorescence (UV-LIF) spectroscopy,” Appl. Opt. 51, 4047–4057 (2012).
[CrossRef]

W. D. Kulatilaka, P. S. Hsu, J. R. Gord, and S. Roy, “Point and planar ultraviolet excitation/detection of hydroxyl-radical laser-induced fluorescence through long optical fibers,” Opt. Lett. 36, 1818–1820 (2011).
[CrossRef]

P. S. Hsu, W. D. Kulatilaka, S. Roy, A. K. Patnaik, and J. R. Gord, “Development of an all-fiber-coupled, pulsed, ultraviolet, laser-induced-fluorescence (UV-LIF) detection system for OH radicals in practical combustion devices,” presented at the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tenn., 9–12 Jan. 2012.

Kulkarni, M.

W. P. Leung, M. Kulkarni, D. Krajnovich, and A. C. Tam, “Effect of intense and prolonged 248 nm pulsed-laser irradiation on the properties of ultraviolet-grade fused-silica,” Appl. Phys. Lett. 58, 551–553 (1991).
[CrossRef]

Kychakoff, G.

M. A. Kimball-Linne, G. Kychakoff, and R. K. Hanson, “Fiberoptic absorption fluorescence combustion diagnostics,” Combus. Sci. Technol. 50, 307–322 (1986).
[CrossRef]

G. Kychakoff, M. A. Kimball-Linne, and R. K. Hanson, “Fiber-optic absorption fluorescence probes for combustion measurements,” Appl. Opt. 22, 1426–1428 (1983).
[CrossRef]

Lempert, W. R.

Leopold, K. E.

Leung, W. P.

W. P. Leung, M. Kulkarni, D. Krajnovich, and A. C. Tam, “Effect of intense and prolonged 248 nm pulsed-laser irradiation on the properties of ultraviolet-grade fused-silica,” Appl. Phys. Lett. 58, 551–553 (1991).
[CrossRef]

Lucht, R.

R. Hancock, K. Bertagnolli, and R. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

Matsuura, Y.

Meier, W.

I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95, 23–29 (2009).
[CrossRef]

Meyer, T. R.

Mihailov, S.

Miyagi, M.

Muller, S. H. R.

S. H. R. Muller, B. Bohm, M. Gleissner, S. Arndt, and A. Dreizler, “Analysis of the temporal flame kernel development in an optically accessible IC engine using high-speed OH-PLIF,” Appl. Phys. B 100, 447–452 (2010).
[CrossRef]

Okura, Y.

J. M. Whitney, K. Takami, S. T. Sanders, and Y. Okura, “Design of system for rugged, low-noise fiber-optic access to high-temperature, high-pressure environments,” IEEE Sens. J. 11, 3295–3302 (2011).
[CrossRef]

Parry, J. P.

Patnaik, A. K.

P. S. Hsu, W. D. Kulatilaka, S. Roy, A. K. Patnaik, and J. R. Gord, “Development of an all-fiber-coupled, pulsed, ultraviolet, laser-induced-fluorescence (UV-LIF) detection system for OH radicals in practical combustion devices,” presented at the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tenn., 9–12 Jan. 2012.

Roy, S.

P. S. Hsu, W. D. Kulatilaka, N. B. Jiang, J. R. Gord, and S. Roy, “Investigation of optical fibers for gas-phase, ultraviolet laser-induced-fluorescence (UV-LIF) spectroscopy,” Appl. Opt. 51, 4047–4057 (2012).
[CrossRef]

W. D. Kulatilaka, P. S. Hsu, J. R. Gord, and S. Roy, “Point and planar ultraviolet excitation/detection of hydroxyl-radical laser-induced fluorescence through long optical fibers,” Opt. Lett. 36, 1818–1820 (2011).
[CrossRef]

P. S. Hsu, W. D. Kulatilaka, S. Roy, A. K. Patnaik, and J. R. Gord, “Development of an all-fiber-coupled, pulsed, ultraviolet, laser-induced-fluorescence (UV-LIF) detection system for OH radicals in practical combustion devices,” presented at the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tenn., 9–12 Jan. 2012.

Sanders, S. T.

J. M. Whitney, K. Takami, S. T. Sanders, and Y. Okura, “Design of system for rugged, low-noise fiber-optic access to high-temperature, high-pressure environments,” IEEE Sens. J. 11, 3295–3302 (2011).
[CrossRef]

Savovic, S.

Shephard, J. D.

Shi, Y. W.

Simovic, A.

Stephens, T. J.

Stöhr, M.

I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95, 23–29 (2009).
[CrossRef]

Switzer, G. L.

Takada, G.

Takami, K.

J. M. Whitney, K. Takami, S. T. Sanders, and Y. Okura, “Design of system for rugged, low-noise fiber-optic access to high-temperature, high-pressure environments,” IEEE Sens. J. 11, 3295–3302 (2011).
[CrossRef]

Tam, A. C.

W. P. Leung, M. Kulkarni, D. Krajnovich, and A. C. Tam, “Effect of intense and prolonged 248 nm pulsed-laser irradiation on the properties of ultraviolet-grade fused-silica,” Appl. Phys. Lett. 58, 551–553 (1991).
[CrossRef]

Tao, L.

Taylor, R. S.

Thyagarajan, K.

A. K. Ghatak and K. Thyagarajan, Optical Electronics(Cambridge University, 1989).

Webster, M. C.

Whitney, J. M.

J. M. Whitney, K. Takami, S. T. Sanders, and Y. Okura, “Design of system for rugged, low-noise fiber-optic access to high-temperature, high-pressure environments,” IEEE Sens. J. 11, 3295–3302 (2011).
[CrossRef]

Willson, B.

Wilvert, N.

S. Joshi, N. Wilvert, and A. P. Yalin, “Delivery of high intensity beams with large clad step-index fibers for engine ignition,” Appl. Phys. B (to be published).

Yalin, A. P.

Yamamoto, N.

Yamamoto, T.

Appl. Opt. (10)

G. Kychakoff, M. A. Kimball-Linne, and R. K. Hanson, “Fiber-optic absorption fluorescence probes for combustion measurements,” Appl. Opt. 22, 1426–1428 (1983).
[CrossRef]

P. S. Hsu, W. D. Kulatilaka, N. B. Jiang, J. R. Gord, and S. Roy, “Investigation of optical fibers for gas-phase, ultraviolet laser-induced-fluorescence (UV-LIF) spectroscopy,” Appl. Opt. 51, 4047–4057 (2012).
[CrossRef]

R. S. Taylor, K. E. Leopold, R. K. Brimacombe, and S. Mihailov, “Dependence of the damage and transmission properties of fused silica fibers on the excimer laser wavelength,” Appl. Opt. 27, 3124–3134 (1988).
[CrossRef]

S. Joshi, A. P. Yalin, and A. Galvanauskas, “Use of hollow core fibers, fiber lasers, and photonic crystal fibers for spark delivery and laser ignition in gases,” Appl. Opt. 46, 4057–4064 (2007).
[CrossRef]

Y. Matsuura, G. Takada, T. Yamamoto, Y. W. Shi, and M. Miyagi, “Hollow fibers for delivery of harmonic pulses of Q-switched Nd:YAG lasers,” Appl. Opt. 41, 442–445 (2002).
[CrossRef]

J. P. Parry, T. J. Stephens, J. D. Shephard, J. D. C. Jones, and D. P. Hand, “Analysis of optical damage mechanisms in hollow-core waveguides delivery nanosecond pulses from a Q-switched Nd:YAG laser,” Appl. Opt. 45, 9160–9167(2006).
[CrossRef]

S. Hurand, L. A. Chauny, H. El-Rabii, S. Joshi, and A. P. Yalin, “Mode coupling and output beam quality of 100–400 μm core silica fibers,” Appl. Opt. 50, 492–499 (2011).
[CrossRef]

S. Savovic, A. Djordjevich, A. Simovic, and B. Drljaca, “Equilibrium mode distribution and steady-state distribution in 100–400 μm core step-index silica optical fibers,” Appl. Opt. 50, 4170–4173 (2011).
[CrossRef]

N. B. Jiang, M. C. Webster, and W. R. Lempert, “Advances in generation of high-repetition-rate burst mode laser output,” Appl. Opt. 48, B23–B31 (2009).
[CrossRef]

N. Jiang, W. R. Lempert, G. L. Switzer, T. R. Meyer, and J. R. Gord, “Narrow-linewidth megahertz-repetition-rate optical parametric oscillator for high-speed flow and combustion diagnostics,” Appl. Opt. 47, 64–71 (2008).
[CrossRef]

Appl. Phys. B (3)

C. Kittler and A. Dreizler, “Cinematographic imaging of hydroxyl radicals in turbulent flames by planar laser-induced fluorescence up to 5 kHz repetition rate,” Appl. Phys. B 89, 163–166 (2007).
[CrossRef]

S. H. R. Muller, B. Bohm, M. Gleissner, S. Arndt, and A. Dreizler, “Analysis of the temporal flame kernel development in an optically accessible IC engine using high-speed OH-PLIF,” Appl. Phys. B 100, 447–452 (2010).
[CrossRef]

I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95, 23–29 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

W. P. Leung, M. Kulkarni, D. Krajnovich, and A. C. Tam, “Effect of intense and prolonged 248 nm pulsed-laser irradiation on the properties of ultraviolet-grade fused-silica,” Appl. Phys. Lett. 58, 551–553 (1991).
[CrossRef]

Bell Syst. Tech. J. (1)

D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51, 1767–1783 (1972).

Combus. Sci. Technol. (1)

M. A. Kimball-Linne, G. Kychakoff, and R. K. Hanson, “Fiberoptic absorption fluorescence combustion diagnostics,” Combus. Sci. Technol. 50, 307–322 (1986).
[CrossRef]

Combust. Flame (1)

R. Hancock, K. Bertagnolli, and R. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

IEEE Sens. J. (1)

J. M. Whitney, K. Takami, S. T. Sanders, and Y. Okura, “Design of system for rugged, low-noise fiber-optic access to high-temperature, high-pressure environments,” IEEE Sens. J. 11, 3295–3302 (2011).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Chem. Chem. Phys. (1)

H. Bohm and H. Jander, “PAH formation in acetylene-benzene pyrolysis,” Phys. Chem. Chem. Phys. 1, 3775–3781 (1999).
[CrossRef]

Other (6)

A. C. Eckbreth, Laser Diagnostics for Combustion, Temperature and Species (Gordon & Breach, 1996).

A. Dreizler and J. Janicka, “Diagnostic challenges for gas turbine combustor model validation,” in Applied Combustion Diagnostics, K. Kohse-Hoinghaus and J. B. Jeffries, eds. (Taylor & Francis, 2002), p. 561.

H. B. Ebrahimi, “Overview of gas turbine augmentor design, operation and combustion oscillation,” presented at the 19th Annual Conference on Liquid Atomization and Spray Systems, ILASS Americas, Toronto, Canada, 23–26 May 2006.

A. K. Ghatak and K. Thyagarajan, Optical Electronics(Cambridge University, 1989).

S. Joshi, N. Wilvert, and A. P. Yalin, “Delivery of high intensity beams with large clad step-index fibers for engine ignition,” Appl. Phys. B (to be published).

P. S. Hsu, W. D. Kulatilaka, S. Roy, A. K. Patnaik, and J. R. Gord, “Development of an all-fiber-coupled, pulsed, ultraviolet, laser-induced-fluorescence (UV-LIF) detection system for OH radicals in practical combustion devices,” presented at the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tenn., 9–12 Jan. 2012.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental setup for fiber characterization. Alignment He:Ne beam not shown.

Fig. 2.
Fig. 2.

Experimental setup used for fiber delivered PLIF. Alignment He:Ne beam not shown.

Fig. 3.
Fig. 3.

Fiber output beam quality (M2) for 266 nm light pulses as function of launch NA for 2 m long fibers with core sizes of 400 and 600 μm. The dashed lines are linear fits to guide the reader.

Fig. 4.
Fig. 4.

Output beam profiles from regular and thick clad fibers at 283 nm. Left: 400μmcore/440μmclad fiber; M2=42. Right: 400μmcore/1400μmclad fiber; M2=30.

Fig. 5.
Fig. 5.

Sheet thickness versus position along the laser beam as determined from model. The dashed red curve is for embedded Gaussian (M2=1), while the solid black curve is for the actual sheet for M2=50.

Fig. 6.
Fig. 6.

Solarization test of 400 μm core FDP fiber with 283 nm light.

Fig. 7.
Fig. 7.

PLIF images from Hencken burner with beam delivery using a fiber of 600 μm core diameter. Images (a)–(d) are for a 2 m length fiber, (e) is for a 7 m length fiber.

Fig. 8.
Fig. 8.

Spectral broadening induced by the fiber delivery.

Tables (2)

Tables Icon

Table 1. Results of FDP Fiber Damage Tests for 266 nm Light Source

Tables Icon

Table 2. Results of FDP Fiber Damage Tests for 283 nm Light Source

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

M2=wθ(λ/π),

Metrics