Abstract

Although some azo-carbazole derivatives attached on or doped into inert polymers are known to show photorefractive effect without external electric field, the origin of their asymmetric energy transfer in two-beam coupling experiments were unknown. We made the two-beam coupling experiment followed by sample translation and one-beam diffraction at 633 nm for thick films composed of 3-[(4-nitrophenyl)]azo-9H-carbazole-9-ethanol (NACzEtOH) and poly(methylmethacrylate), finding that photoinduced gratings grew in several minutes accompanied with phase displacement of the gratings, but the phase shift was not always synchronized with the refractive index modulation. We reformulated the Kogelnik’s coupled-wave theory with strict energy conservation law for analysis. Comparison of the grating growth and erasure at 532 nm to Disperse Red 1 (DR1), the most well-known azo dye showed that the photoisomerization was dominant at this wavelength and that the azo-carbazole dyes were faster in response time and more resistive to erasure than DR1.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Günter and J.-P. Huignard, eds. Photorefractive Materials and Their Applications (Springer, 2006), Vols. 1–3.
  2. O. Ostroverkhova and W. E. Moener, “Organic photorefractives: mechanism, materials, and applications,” Chem. Rev. 104, 3267–3314 (2004).
    [CrossRef]
  3. S. Köber, M. Salvador, and K. Meeholz, “Organic photorefractive materials and applications,” Adv. Mater. 23, 4725–4763 (2011).
    [CrossRef]
  4. Y. M. Chen, Z. H. Peng, W. K. Chen, and L. P. Yu, “New photorefractive polymer based on multifunctional polyurethane,” Appl. Phys. Lett. 64, 1195–1197 (1994).
    [CrossRef]
  5. C.-J. Chang, H.-C. Wang, G.-Y. Liao, W.-T. Whang, J.-M. Liu, and K.-Y. Hsu, “The effect of laser wavelength on the photorefractive characteristics of PMDA-DR19 based photorefractive polymeric materials,” Polymer 38, 5063–5071(1997).
    [CrossRef]
  6. P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, “A photorefractive organically modified silica glass with high optical gain,” Nature 408, 64–67 (2000).
    [CrossRef]
  7. W. Zhang, S. Bian, S. I. Kim, and M. G. Kuzyk, “High-efficiency holographic volume index grating in DR1-dye-doped poly (methyl methacrylate),” Opt. Lett. 27, 1105–1107 (2002).
    [CrossRef]
  8. R. Raschellà, I.-G. Marino, P. P. Lottici, D. Bersani, A. Lorenzi, and A. Montenero, “Photorefractive gratings in DR1-doped hybrid sol-gel films,” Opt. Mater. 25, 419–423 (2004).
    [CrossRef]
  9. J. Jeong, K. Ohnishi, H. Sato, and K. Ogino, “Observation of pseudo-photorefractivity in monolithic molecular glass,” Jpn. J. Appl. Phys. 42, L179–L181 (2003).
    [CrossRef]
  10. N. Tsutsumi and Y. Shimizu, “Asymmetric two-beam coupling with high optical gain and high beam diffraction in external-electric-field free polymer composites,” Jpn. J. Appl. Phys. 43, 3466–3472 (2004).
    [CrossRef]
  11. J. Nishide, A. Tanaka, Y. Hirama, and H. Sasabe, “Non-electric field photorefractive effect using polymer composites,” Mol. Cryst. Liq. Cryst. 491, 217–222 (2008).
    [CrossRef]
  12. F. Gallego-Gómez, F. Del Monte, and K. Meerholz, “Optical gain by a simple photoisomerization process,” Nat. Mater. 7, 490–497 (2008).
    [CrossRef]
  13. J. Mysliwiec, A. Miniewicz, S. Nespurek, M. Studenovsky, and Z. Seldakova, “Efficient holographic recording in novel azo-containing polymer,” Opt. Mater. 29, 1756–1762 (2007).
    [CrossRef]
  14. A. Sobolewska and A. Miniewicz, “Analysis of the kinetics of diffraction efficiency during the holographic grating recording in azobenzene functionalized polymers,” J. Phys. Chem. B 111, 1536–1544 (2007).
    [CrossRef]
  15. D. L. Silva, E. Schab-Balcerzak, and A. Miniewicz, “Grating translation technique as a tool for monitoring phase shifts during holographic recording in azo-polymers,” J. Appl. Phys. 108, 083540 (2010).
    [CrossRef]
  16. I. Naydenova, Tz. Petrova, T. Tomova, V. Dragostinova, L. Nikolova, and T. Todorov, “Polarization holographic gratings with surface relief in amorphous azobenzene containing methacrylic copolymers,” Pure Appl. Opt. 7, 723–731(1998).
    [CrossRef]
  17. D. Sek, E. Schab-Balcerzak, M. Solyga, and A. Miniewicz, “Polarisation-sensitive holographic recording in polyimide-containing azo-dye,” Synth. Met. 127, 89–93 (2002).
    [CrossRef]
  18. C. Cojocariu and P. Rochon, “Light-induced motions in azobenzene-containing polymers,” Pure Appl. Chem. 76, 1479–1497 (2004).
    [CrossRef]
  19. P.-A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jérôme, “Photoinduced birefringence and diffraction efficiency in azo dye doped or grafted polymers; theory versus experiment of the temperature influence,” J. Opt. Soc. Am. B 17, 729–740 (2000).
    [CrossRef]
  20. A. Tanaka, J. Nishide, and H. Sasabe, “Asymmetric energy transfer in photorefractive polymer composites under non-electric field,” Mol. Cryst. Liq. Cryst. 504, 44–51 (2009).
    [CrossRef]
  21. J. Nishide, H. Kimura-Suda, T. Imai, H. Sasabe, and Y. Kawabe, “Photorefractive polymer with high optical gain under non-electric field,” J. Nonlinear Opt. Phys. Mater. 19, 629–635 (2010).
    [CrossRef]
  22. Z. Li, J. Li, and J. Qin, “Synthesis of polyphosphazenes as potential photorefractive materials,” React. Funct. Polym. 48, 113–118 (2001).
    [CrossRef]
  23. L. Zhang, M. Huang, Z. Jiang, Z. Yang, Z. Chen, Q. Gong, and S. Cao, “A carbazole-based photorefractive polyphosphazene prepared via post-azo-coupling reaction,” React. Funct. Polym. 66, 1401–1410 (2006).
    [CrossRef]
  24. L. Zhang, J. Shi, Z. Yang, M. Huang, Z. Chen, G. Gong, and S. Cao, “Photorefractive properties of polyphosphazenes containing carbazole-based multifunctional chromophores,” Polymer 49, 2107–2114 (2008).
    [CrossRef]
  25. H. Li, R. Termine, L. Angiolini, L. Giorgini, F. Mauriello, and A. Golemme, “High Tg, nonpoled photorefractive polymer,” Chem. Mater. 21, 2403–2409 (2009).
    [CrossRef]
  26. N. Tsutsumi, K. Kinashi, W. Sakai, J. Nishide, Y. Kawabe, and H. Sasabe, “Real-time three-dimensional holographic display using a monolithic organic compound dispersed film,” Opt. Mater. Express 2, 1003–1010 (2012).
    [CrossRef]
  27. P. Yeh, Introduction to Photorefractive Nonlinear Optics(Wiley, 1993).
  28. W. Zhang, S. Bian, S. I. Kim, and M. G. Kuzyk, “High-efficiency holographic volume index gratings in DR1-doped poly(methyl methacrylate),” Opt. Lett. 27, 1105–1107 (2002).
    [CrossRef]
  29. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969), http://adsabs.harvard.edu/abs/1969BSTJ...48.2909K .
  30. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).
  31. P. Hariharan, Optical Holography (Cambridge University, 1984).
  32. A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. 13, 233–253 (1977).
    [CrossRef]

2012

2011

S. Köber, M. Salvador, and K. Meeholz, “Organic photorefractive materials and applications,” Adv. Mater. 23, 4725–4763 (2011).
[CrossRef]

2010

D. L. Silva, E. Schab-Balcerzak, and A. Miniewicz, “Grating translation technique as a tool for monitoring phase shifts during holographic recording in azo-polymers,” J. Appl. Phys. 108, 083540 (2010).
[CrossRef]

J. Nishide, H. Kimura-Suda, T. Imai, H. Sasabe, and Y. Kawabe, “Photorefractive polymer with high optical gain under non-electric field,” J. Nonlinear Opt. Phys. Mater. 19, 629–635 (2010).
[CrossRef]

2009

A. Tanaka, J. Nishide, and H. Sasabe, “Asymmetric energy transfer in photorefractive polymer composites under non-electric field,” Mol. Cryst. Liq. Cryst. 504, 44–51 (2009).
[CrossRef]

H. Li, R. Termine, L. Angiolini, L. Giorgini, F. Mauriello, and A. Golemme, “High Tg, nonpoled photorefractive polymer,” Chem. Mater. 21, 2403–2409 (2009).
[CrossRef]

2008

L. Zhang, J. Shi, Z. Yang, M. Huang, Z. Chen, G. Gong, and S. Cao, “Photorefractive properties of polyphosphazenes containing carbazole-based multifunctional chromophores,” Polymer 49, 2107–2114 (2008).
[CrossRef]

J. Nishide, A. Tanaka, Y. Hirama, and H. Sasabe, “Non-electric field photorefractive effect using polymer composites,” Mol. Cryst. Liq. Cryst. 491, 217–222 (2008).
[CrossRef]

F. Gallego-Gómez, F. Del Monte, and K. Meerholz, “Optical gain by a simple photoisomerization process,” Nat. Mater. 7, 490–497 (2008).
[CrossRef]

2007

J. Mysliwiec, A. Miniewicz, S. Nespurek, M. Studenovsky, and Z. Seldakova, “Efficient holographic recording in novel azo-containing polymer,” Opt. Mater. 29, 1756–1762 (2007).
[CrossRef]

A. Sobolewska and A. Miniewicz, “Analysis of the kinetics of diffraction efficiency during the holographic grating recording in azobenzene functionalized polymers,” J. Phys. Chem. B 111, 1536–1544 (2007).
[CrossRef]

2006

L. Zhang, M. Huang, Z. Jiang, Z. Yang, Z. Chen, Q. Gong, and S. Cao, “A carbazole-based photorefractive polyphosphazene prepared via post-azo-coupling reaction,” React. Funct. Polym. 66, 1401–1410 (2006).
[CrossRef]

2004

R. Raschellà, I.-G. Marino, P. P. Lottici, D. Bersani, A. Lorenzi, and A. Montenero, “Photorefractive gratings in DR1-doped hybrid sol-gel films,” Opt. Mater. 25, 419–423 (2004).
[CrossRef]

N. Tsutsumi and Y. Shimizu, “Asymmetric two-beam coupling with high optical gain and high beam diffraction in external-electric-field free polymer composites,” Jpn. J. Appl. Phys. 43, 3466–3472 (2004).
[CrossRef]

C. Cojocariu and P. Rochon, “Light-induced motions in azobenzene-containing polymers,” Pure Appl. Chem. 76, 1479–1497 (2004).
[CrossRef]

O. Ostroverkhova and W. E. Moener, “Organic photorefractives: mechanism, materials, and applications,” Chem. Rev. 104, 3267–3314 (2004).
[CrossRef]

2003

J. Jeong, K. Ohnishi, H. Sato, and K. Ogino, “Observation of pseudo-photorefractivity in monolithic molecular glass,” Jpn. J. Appl. Phys. 42, L179–L181 (2003).
[CrossRef]

2002

2001

Z. Li, J. Li, and J. Qin, “Synthesis of polyphosphazenes as potential photorefractive materials,” React. Funct. Polym. 48, 113–118 (2001).
[CrossRef]

2000

P.-A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jérôme, “Photoinduced birefringence and diffraction efficiency in azo dye doped or grafted polymers; theory versus experiment of the temperature influence,” J. Opt. Soc. Am. B 17, 729–740 (2000).
[CrossRef]

P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, “A photorefractive organically modified silica glass with high optical gain,” Nature 408, 64–67 (2000).
[CrossRef]

1998

I. Naydenova, Tz. Petrova, T. Tomova, V. Dragostinova, L. Nikolova, and T. Todorov, “Polarization holographic gratings with surface relief in amorphous azobenzene containing methacrylic copolymers,” Pure Appl. Opt. 7, 723–731(1998).
[CrossRef]

1997

C.-J. Chang, H.-C. Wang, G.-Y. Liao, W.-T. Whang, J.-M. Liu, and K.-Y. Hsu, “The effect of laser wavelength on the photorefractive characteristics of PMDA-DR19 based photorefractive polymeric materials,” Polymer 38, 5063–5071(1997).
[CrossRef]

1994

Y. M. Chen, Z. H. Peng, W. K. Chen, and L. P. Yu, “New photorefractive polymer based on multifunctional polyurethane,” Appl. Phys. Lett. 64, 1195–1197 (1994).
[CrossRef]

1977

A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. 13, 233–253 (1977).
[CrossRef]

1969

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969), http://adsabs.harvard.edu/abs/1969BSTJ...48.2909K .

Angiolini, L.

H. Li, R. Termine, L. Angiolini, L. Giorgini, F. Mauriello, and A. Golemme, “High Tg, nonpoled photorefractive polymer,” Chem. Mater. 21, 2403–2409 (2009).
[CrossRef]

Bersani, D.

R. Raschellà, I.-G. Marino, P. P. Lottici, D. Bersani, A. Lorenzi, and A. Montenero, “Photorefractive gratings in DR1-doped hybrid sol-gel films,” Opt. Mater. 25, 419–423 (2004).
[CrossRef]

Bian, S.

Blanche, P.-A.

Burckhardt, C. B.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

Cao, S.

L. Zhang, J. Shi, Z. Yang, M. Huang, Z. Chen, G. Gong, and S. Cao, “Photorefractive properties of polyphosphazenes containing carbazole-based multifunctional chromophores,” Polymer 49, 2107–2114 (2008).
[CrossRef]

L. Zhang, M. Huang, Z. Jiang, Z. Yang, Z. Chen, Q. Gong, and S. Cao, “A carbazole-based photorefractive polyphosphazene prepared via post-azo-coupling reaction,” React. Funct. Polym. 66, 1401–1410 (2006).
[CrossRef]

Carlsson, D. J.

P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, “A photorefractive organically modified silica glass with high optical gain,” Nature 408, 64–67 (2000).
[CrossRef]

Chang, C.-J.

C.-J. Chang, H.-C. Wang, G.-Y. Liao, W.-T. Whang, J.-M. Liu, and K.-Y. Hsu, “The effect of laser wavelength on the photorefractive characteristics of PMDA-DR19 based photorefractive polymeric materials,” Polymer 38, 5063–5071(1997).
[CrossRef]

Cheben, P.

P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, “A photorefractive organically modified silica glass with high optical gain,” Nature 408, 64–67 (2000).
[CrossRef]

Chen, W. K.

Y. M. Chen, Z. H. Peng, W. K. Chen, and L. P. Yu, “New photorefractive polymer based on multifunctional polyurethane,” Appl. Phys. Lett. 64, 1195–1197 (1994).
[CrossRef]

Chen, Y. M.

Y. M. Chen, Z. H. Peng, W. K. Chen, and L. P. Yu, “New photorefractive polymer based on multifunctional polyurethane,” Appl. Phys. Lett. 64, 1195–1197 (1994).
[CrossRef]

Chen, Z.

L. Zhang, J. Shi, Z. Yang, M. Huang, Z. Chen, G. Gong, and S. Cao, “Photorefractive properties of polyphosphazenes containing carbazole-based multifunctional chromophores,” Polymer 49, 2107–2114 (2008).
[CrossRef]

L. Zhang, M. Huang, Z. Jiang, Z. Yang, Z. Chen, Q. Gong, and S. Cao, “A carbazole-based photorefractive polyphosphazene prepared via post-azo-coupling reaction,” React. Funct. Polym. 66, 1401–1410 (2006).
[CrossRef]

Cojocariu, C.

C. Cojocariu and P. Rochon, “Light-induced motions in azobenzene-containing polymers,” Pure Appl. Chem. 76, 1479–1497 (2004).
[CrossRef]

Collier, R. J.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

Del Monte, F.

F. Gallego-Gómez, F. Del Monte, and K. Meerholz, “Optical gain by a simple photoisomerization process,” Nat. Mater. 7, 490–497 (2008).
[CrossRef]

P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, “A photorefractive organically modified silica glass with high optical gain,” Nature 408, 64–67 (2000).
[CrossRef]

Dragostinova, V.

I. Naydenova, Tz. Petrova, T. Tomova, V. Dragostinova, L. Nikolova, and T. Todorov, “Polarization holographic gratings with surface relief in amorphous azobenzene containing methacrylic copolymers,” Pure Appl. Opt. 7, 723–731(1998).
[CrossRef]

Dubois, P.

Gallego-Gómez, F.

F. Gallego-Gómez, F. Del Monte, and K. Meerholz, “Optical gain by a simple photoisomerization process,” Nat. Mater. 7, 490–497 (2008).
[CrossRef]

Giorgini, L.

H. Li, R. Termine, L. Angiolini, L. Giorgini, F. Mauriello, and A. Golemme, “High Tg, nonpoled photorefractive polymer,” Chem. Mater. 21, 2403–2409 (2009).
[CrossRef]

Golemme, A.

H. Li, R. Termine, L. Angiolini, L. Giorgini, F. Mauriello, and A. Golemme, “High Tg, nonpoled photorefractive polymer,” Chem. Mater. 21, 2403–2409 (2009).
[CrossRef]

Gong, G.

L. Zhang, J. Shi, Z. Yang, M. Huang, Z. Chen, G. Gong, and S. Cao, “Photorefractive properties of polyphosphazenes containing carbazole-based multifunctional chromophores,” Polymer 49, 2107–2114 (2008).
[CrossRef]

Gong, Q.

L. Zhang, M. Huang, Z. Jiang, Z. Yang, Z. Chen, Q. Gong, and S. Cao, “A carbazole-based photorefractive polyphosphazene prepared via post-azo-coupling reaction,” React. Funct. Polym. 66, 1401–1410 (2006).
[CrossRef]

Grover, C. P.

P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, “A photorefractive organically modified silica glass with high optical gain,” Nature 408, 64–67 (2000).
[CrossRef]

Hariharan, P.

P. Hariharan, Optical Holography (Cambridge University, 1984).

Hirama, Y.

J. Nishide, A. Tanaka, Y. Hirama, and H. Sasabe, “Non-electric field photorefractive effect using polymer composites,” Mol. Cryst. Liq. Cryst. 491, 217–222 (2008).
[CrossRef]

Hsu, K.-Y.

C.-J. Chang, H.-C. Wang, G.-Y. Liao, W.-T. Whang, J.-M. Liu, and K.-Y. Hsu, “The effect of laser wavelength on the photorefractive characteristics of PMDA-DR19 based photorefractive polymeric materials,” Polymer 38, 5063–5071(1997).
[CrossRef]

Huang, M.

L. Zhang, J. Shi, Z. Yang, M. Huang, Z. Chen, G. Gong, and S. Cao, “Photorefractive properties of polyphosphazenes containing carbazole-based multifunctional chromophores,” Polymer 49, 2107–2114 (2008).
[CrossRef]

L. Zhang, M. Huang, Z. Jiang, Z. Yang, Z. Chen, Q. Gong, and S. Cao, “A carbazole-based photorefractive polyphosphazene prepared via post-azo-coupling reaction,” React. Funct. Polym. 66, 1401–1410 (2006).
[CrossRef]

Imai, T.

J. Nishide, H. Kimura-Suda, T. Imai, H. Sasabe, and Y. Kawabe, “Photorefractive polymer with high optical gain under non-electric field,” J. Nonlinear Opt. Phys. Mater. 19, 629–635 (2010).
[CrossRef]

Jeong, J.

J. Jeong, K. Ohnishi, H. Sato, and K. Ogino, “Observation of pseudo-photorefractivity in monolithic molecular glass,” Jpn. J. Appl. Phys. 42, L179–L181 (2003).
[CrossRef]

Jérôme, R.

Jiang, Z.

L. Zhang, M. Huang, Z. Jiang, Z. Yang, Z. Chen, Q. Gong, and S. Cao, “A carbazole-based photorefractive polyphosphazene prepared via post-azo-coupling reaction,” React. Funct. Polym. 66, 1401–1410 (2006).
[CrossRef]

Kawabe, Y.

N. Tsutsumi, K. Kinashi, W. Sakai, J. Nishide, Y. Kawabe, and H. Sasabe, “Real-time three-dimensional holographic display using a monolithic organic compound dispersed film,” Opt. Mater. Express 2, 1003–1010 (2012).
[CrossRef]

J. Nishide, H. Kimura-Suda, T. Imai, H. Sasabe, and Y. Kawabe, “Photorefractive polymer with high optical gain under non-electric field,” J. Nonlinear Opt. Phys. Mater. 19, 629–635 (2010).
[CrossRef]

Kim, S. I.

Kimura-Suda, H.

J. Nishide, H. Kimura-Suda, T. Imai, H. Sasabe, and Y. Kawabe, “Photorefractive polymer with high optical gain under non-electric field,” J. Nonlinear Opt. Phys. Mater. 19, 629–635 (2010).
[CrossRef]

Kinashi, K.

Köber, S.

S. Köber, M. Salvador, and K. Meeholz, “Organic photorefractive materials and applications,” Adv. Mater. 23, 4725–4763 (2011).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969), http://adsabs.harvard.edu/abs/1969BSTJ...48.2909K .

Kuzyk, M. G.

Lemaire, Ph. C.

Li, H.

H. Li, R. Termine, L. Angiolini, L. Giorgini, F. Mauriello, and A. Golemme, “High Tg, nonpoled photorefractive polymer,” Chem. Mater. 21, 2403–2409 (2009).
[CrossRef]

Li, J.

Z. Li, J. Li, and J. Qin, “Synthesis of polyphosphazenes as potential photorefractive materials,” React. Funct. Polym. 48, 113–118 (2001).
[CrossRef]

Li, Z.

Z. Li, J. Li, and J. Qin, “Synthesis of polyphosphazenes as potential photorefractive materials,” React. Funct. Polym. 48, 113–118 (2001).
[CrossRef]

Liao, G.-Y.

C.-J. Chang, H.-C. Wang, G.-Y. Liao, W.-T. Whang, J.-M. Liu, and K.-Y. Hsu, “The effect of laser wavelength on the photorefractive characteristics of PMDA-DR19 based photorefractive polymeric materials,” Polymer 38, 5063–5071(1997).
[CrossRef]

Lin, L. H.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

Liu, J.-M.

C.-J. Chang, H.-C. Wang, G.-Y. Liao, W.-T. Whang, J.-M. Liu, and K.-Y. Hsu, “The effect of laser wavelength on the photorefractive characteristics of PMDA-DR19 based photorefractive polymeric materials,” Polymer 38, 5063–5071(1997).
[CrossRef]

Lorenzi, A.

R. Raschellà, I.-G. Marino, P. P. Lottici, D. Bersani, A. Lorenzi, and A. Montenero, “Photorefractive gratings in DR1-doped hybrid sol-gel films,” Opt. Mater. 25, 419–423 (2004).
[CrossRef]

Lottici, P. P.

R. Raschellà, I.-G. Marino, P. P. Lottici, D. Bersani, A. Lorenzi, and A. Montenero, “Photorefractive gratings in DR1-doped hybrid sol-gel films,” Opt. Mater. 25, 419–423 (2004).
[CrossRef]

Mackenzie, J. D.

P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, “A photorefractive organically modified silica glass with high optical gain,” Nature 408, 64–67 (2000).
[CrossRef]

Maertens, C.

Marino, I.-G.

R. Raschellà, I.-G. Marino, P. P. Lottici, D. Bersani, A. Lorenzi, and A. Montenero, “Photorefractive gratings in DR1-doped hybrid sol-gel films,” Opt. Mater. 25, 419–423 (2004).
[CrossRef]

Mauriello, F.

H. Li, R. Termine, L. Angiolini, L. Giorgini, F. Mauriello, and A. Golemme, “High Tg, nonpoled photorefractive polymer,” Chem. Mater. 21, 2403–2409 (2009).
[CrossRef]

Meeholz, K.

S. Köber, M. Salvador, and K. Meeholz, “Organic photorefractive materials and applications,” Adv. Mater. 23, 4725–4763 (2011).
[CrossRef]

Meerholz, K.

F. Gallego-Gómez, F. Del Monte, and K. Meerholz, “Optical gain by a simple photoisomerization process,” Nat. Mater. 7, 490–497 (2008).
[CrossRef]

Miniewicz, A.

D. L. Silva, E. Schab-Balcerzak, and A. Miniewicz, “Grating translation technique as a tool for monitoring phase shifts during holographic recording in azo-polymers,” J. Appl. Phys. 108, 083540 (2010).
[CrossRef]

A. Sobolewska and A. Miniewicz, “Analysis of the kinetics of diffraction efficiency during the holographic grating recording in azobenzene functionalized polymers,” J. Phys. Chem. B 111, 1536–1544 (2007).
[CrossRef]

J. Mysliwiec, A. Miniewicz, S. Nespurek, M. Studenovsky, and Z. Seldakova, “Efficient holographic recording in novel azo-containing polymer,” Opt. Mater. 29, 1756–1762 (2007).
[CrossRef]

D. Sek, E. Schab-Balcerzak, M. Solyga, and A. Miniewicz, “Polarisation-sensitive holographic recording in polyimide-containing azo-dye,” Synth. Met. 127, 89–93 (2002).
[CrossRef]

Moener, W. E.

O. Ostroverkhova and W. E. Moener, “Organic photorefractives: mechanism, materials, and applications,” Chem. Rev. 104, 3267–3314 (2004).
[CrossRef]

Montenero, A.

R. Raschellà, I.-G. Marino, P. P. Lottici, D. Bersani, A. Lorenzi, and A. Montenero, “Photorefractive gratings in DR1-doped hybrid sol-gel films,” Opt. Mater. 25, 419–423 (2004).
[CrossRef]

Mysliwiec, J.

J. Mysliwiec, A. Miniewicz, S. Nespurek, M. Studenovsky, and Z. Seldakova, “Efficient holographic recording in novel azo-containing polymer,” Opt. Mater. 29, 1756–1762 (2007).
[CrossRef]

Nakamura, M.

A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. 13, 233–253 (1977).
[CrossRef]

Naydenova, I.

I. Naydenova, Tz. Petrova, T. Tomova, V. Dragostinova, L. Nikolova, and T. Todorov, “Polarization holographic gratings with surface relief in amorphous azobenzene containing methacrylic copolymers,” Pure Appl. Opt. 7, 723–731(1998).
[CrossRef]

Nespurek, S.

J. Mysliwiec, A. Miniewicz, S. Nespurek, M. Studenovsky, and Z. Seldakova, “Efficient holographic recording in novel azo-containing polymer,” Opt. Mater. 29, 1756–1762 (2007).
[CrossRef]

Nikolova, L.

I. Naydenova, Tz. Petrova, T. Tomova, V. Dragostinova, L. Nikolova, and T. Todorov, “Polarization holographic gratings with surface relief in amorphous azobenzene containing methacrylic copolymers,” Pure Appl. Opt. 7, 723–731(1998).
[CrossRef]

Nishide, J.

N. Tsutsumi, K. Kinashi, W. Sakai, J. Nishide, Y. Kawabe, and H. Sasabe, “Real-time three-dimensional holographic display using a monolithic organic compound dispersed film,” Opt. Mater. Express 2, 1003–1010 (2012).
[CrossRef]

J. Nishide, H. Kimura-Suda, T. Imai, H. Sasabe, and Y. Kawabe, “Photorefractive polymer with high optical gain under non-electric field,” J. Nonlinear Opt. Phys. Mater. 19, 629–635 (2010).
[CrossRef]

A. Tanaka, J. Nishide, and H. Sasabe, “Asymmetric energy transfer in photorefractive polymer composites under non-electric field,” Mol. Cryst. Liq. Cryst. 504, 44–51 (2009).
[CrossRef]

J. Nishide, A. Tanaka, Y. Hirama, and H. Sasabe, “Non-electric field photorefractive effect using polymer composites,” Mol. Cryst. Liq. Cryst. 491, 217–222 (2008).
[CrossRef]

Ogino, K.

J. Jeong, K. Ohnishi, H. Sato, and K. Ogino, “Observation of pseudo-photorefractivity in monolithic molecular glass,” Jpn. J. Appl. Phys. 42, L179–L181 (2003).
[CrossRef]

Ohnishi, K.

J. Jeong, K. Ohnishi, H. Sato, and K. Ogino, “Observation of pseudo-photorefractivity in monolithic molecular glass,” Jpn. J. Appl. Phys. 42, L179–L181 (2003).
[CrossRef]

Ostroverkhova, O.

O. Ostroverkhova and W. E. Moener, “Organic photorefractives: mechanism, materials, and applications,” Chem. Rev. 104, 3267–3314 (2004).
[CrossRef]

Peng, Z. H.

Y. M. Chen, Z. H. Peng, W. K. Chen, and L. P. Yu, “New photorefractive polymer based on multifunctional polyurethane,” Appl. Phys. Lett. 64, 1195–1197 (1994).
[CrossRef]

Petrova, Tz.

I. Naydenova, Tz. Petrova, T. Tomova, V. Dragostinova, L. Nikolova, and T. Todorov, “Polarization holographic gratings with surface relief in amorphous azobenzene containing methacrylic copolymers,” Pure Appl. Opt. 7, 723–731(1998).
[CrossRef]

Qin, J.

Z. Li, J. Li, and J. Qin, “Synthesis of polyphosphazenes as potential photorefractive materials,” React. Funct. Polym. 48, 113–118 (2001).
[CrossRef]

Raschellà, R.

R. Raschellà, I.-G. Marino, P. P. Lottici, D. Bersani, A. Lorenzi, and A. Montenero, “Photorefractive gratings in DR1-doped hybrid sol-gel films,” Opt. Mater. 25, 419–423 (2004).
[CrossRef]

Rochon, P.

C. Cojocariu and P. Rochon, “Light-induced motions in azobenzene-containing polymers,” Pure Appl. Chem. 76, 1479–1497 (2004).
[CrossRef]

Sakai, W.

Salvador, M.

S. Köber, M. Salvador, and K. Meeholz, “Organic photorefractive materials and applications,” Adv. Mater. 23, 4725–4763 (2011).
[CrossRef]

Sasabe, H.

N. Tsutsumi, K. Kinashi, W. Sakai, J. Nishide, Y. Kawabe, and H. Sasabe, “Real-time three-dimensional holographic display using a monolithic organic compound dispersed film,” Opt. Mater. Express 2, 1003–1010 (2012).
[CrossRef]

J. Nishide, H. Kimura-Suda, T. Imai, H. Sasabe, and Y. Kawabe, “Photorefractive polymer with high optical gain under non-electric field,” J. Nonlinear Opt. Phys. Mater. 19, 629–635 (2010).
[CrossRef]

A. Tanaka, J. Nishide, and H. Sasabe, “Asymmetric energy transfer in photorefractive polymer composites under non-electric field,” Mol. Cryst. Liq. Cryst. 504, 44–51 (2009).
[CrossRef]

J. Nishide, A. Tanaka, Y. Hirama, and H. Sasabe, “Non-electric field photorefractive effect using polymer composites,” Mol. Cryst. Liq. Cryst. 491, 217–222 (2008).
[CrossRef]

Sato, H.

J. Jeong, K. Ohnishi, H. Sato, and K. Ogino, “Observation of pseudo-photorefractivity in monolithic molecular glass,” Jpn. J. Appl. Phys. 42, L179–L181 (2003).
[CrossRef]

Schab-Balcerzak, E.

D. L. Silva, E. Schab-Balcerzak, and A. Miniewicz, “Grating translation technique as a tool for monitoring phase shifts during holographic recording in azo-polymers,” J. Appl. Phys. 108, 083540 (2010).
[CrossRef]

D. Sek, E. Schab-Balcerzak, M. Solyga, and A. Miniewicz, “Polarisation-sensitive holographic recording in polyimide-containing azo-dye,” Synth. Met. 127, 89–93 (2002).
[CrossRef]

Sek, D.

D. Sek, E. Schab-Balcerzak, M. Solyga, and A. Miniewicz, “Polarisation-sensitive holographic recording in polyimide-containing azo-dye,” Synth. Met. 127, 89–93 (2002).
[CrossRef]

Seldakova, Z.

J. Mysliwiec, A. Miniewicz, S. Nespurek, M. Studenovsky, and Z. Seldakova, “Efficient holographic recording in novel azo-containing polymer,” Opt. Mater. 29, 1756–1762 (2007).
[CrossRef]

Shi, J.

L. Zhang, J. Shi, Z. Yang, M. Huang, Z. Chen, G. Gong, and S. Cao, “Photorefractive properties of polyphosphazenes containing carbazole-based multifunctional chromophores,” Polymer 49, 2107–2114 (2008).
[CrossRef]

Shimizu, Y.

N. Tsutsumi and Y. Shimizu, “Asymmetric two-beam coupling with high optical gain and high beam diffraction in external-electric-field free polymer composites,” Jpn. J. Appl. Phys. 43, 3466–3472 (2004).
[CrossRef]

Silva, D. L.

D. L. Silva, E. Schab-Balcerzak, and A. Miniewicz, “Grating translation technique as a tool for monitoring phase shifts during holographic recording in azo-polymers,” J. Appl. Phys. 108, 083540 (2010).
[CrossRef]

Sobolewska, A.

A. Sobolewska and A. Miniewicz, “Analysis of the kinetics of diffraction efficiency during the holographic grating recording in azobenzene functionalized polymers,” J. Phys. Chem. B 111, 1536–1544 (2007).
[CrossRef]

Solyga, M.

D. Sek, E. Schab-Balcerzak, M. Solyga, and A. Miniewicz, “Polarisation-sensitive holographic recording in polyimide-containing azo-dye,” Synth. Met. 127, 89–93 (2002).
[CrossRef]

Studenovsky, M.

J. Mysliwiec, A. Miniewicz, S. Nespurek, M. Studenovsky, and Z. Seldakova, “Efficient holographic recording in novel azo-containing polymer,” Opt. Mater. 29, 1756–1762 (2007).
[CrossRef]

Tanaka, A.

A. Tanaka, J. Nishide, and H. Sasabe, “Asymmetric energy transfer in photorefractive polymer composites under non-electric field,” Mol. Cryst. Liq. Cryst. 504, 44–51 (2009).
[CrossRef]

J. Nishide, A. Tanaka, Y. Hirama, and H. Sasabe, “Non-electric field photorefractive effect using polymer composites,” Mol. Cryst. Liq. Cryst. 491, 217–222 (2008).
[CrossRef]

Termine, R.

H. Li, R. Termine, L. Angiolini, L. Giorgini, F. Mauriello, and A. Golemme, “High Tg, nonpoled photorefractive polymer,” Chem. Mater. 21, 2403–2409 (2009).
[CrossRef]

Todorov, T.

I. Naydenova, Tz. Petrova, T. Tomova, V. Dragostinova, L. Nikolova, and T. Todorov, “Polarization holographic gratings with surface relief in amorphous azobenzene containing methacrylic copolymers,” Pure Appl. Opt. 7, 723–731(1998).
[CrossRef]

Tomova, T.

I. Naydenova, Tz. Petrova, T. Tomova, V. Dragostinova, L. Nikolova, and T. Todorov, “Polarization holographic gratings with surface relief in amorphous azobenzene containing methacrylic copolymers,” Pure Appl. Opt. 7, 723–731(1998).
[CrossRef]

Tsutsumi, N.

N. Tsutsumi, K. Kinashi, W. Sakai, J. Nishide, Y. Kawabe, and H. Sasabe, “Real-time three-dimensional holographic display using a monolithic organic compound dispersed film,” Opt. Mater. Express 2, 1003–1010 (2012).
[CrossRef]

N. Tsutsumi and Y. Shimizu, “Asymmetric two-beam coupling with high optical gain and high beam diffraction in external-electric-field free polymer composites,” Jpn. J. Appl. Phys. 43, 3466–3472 (2004).
[CrossRef]

Wang, H.-C.

C.-J. Chang, H.-C. Wang, G.-Y. Liao, W.-T. Whang, J.-M. Liu, and K.-Y. Hsu, “The effect of laser wavelength on the photorefractive characteristics of PMDA-DR19 based photorefractive polymeric materials,” Polymer 38, 5063–5071(1997).
[CrossRef]

Whang, W.-T.

C.-J. Chang, H.-C. Wang, G.-Y. Liao, W.-T. Whang, J.-M. Liu, and K.-Y. Hsu, “The effect of laser wavelength on the photorefractive characteristics of PMDA-DR19 based photorefractive polymeric materials,” Polymer 38, 5063–5071(1997).
[CrossRef]

Worsfold, D. J.

P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, “A photorefractive organically modified silica glass with high optical gain,” Nature 408, 64–67 (2000).
[CrossRef]

Yang, Z.

L. Zhang, J. Shi, Z. Yang, M. Huang, Z. Chen, G. Gong, and S. Cao, “Photorefractive properties of polyphosphazenes containing carbazole-based multifunctional chromophores,” Polymer 49, 2107–2114 (2008).
[CrossRef]

L. Zhang, M. Huang, Z. Jiang, Z. Yang, Z. Chen, Q. Gong, and S. Cao, “A carbazole-based photorefractive polyphosphazene prepared via post-azo-coupling reaction,” React. Funct. Polym. 66, 1401–1410 (2006).
[CrossRef]

Yariv, A.

A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. 13, 233–253 (1977).
[CrossRef]

Yeh, P.

P. Yeh, Introduction to Photorefractive Nonlinear Optics(Wiley, 1993).

Yu, L. P.

Y. M. Chen, Z. H. Peng, W. K. Chen, and L. P. Yu, “New photorefractive polymer based on multifunctional polyurethane,” Appl. Phys. Lett. 64, 1195–1197 (1994).
[CrossRef]

Zhang, L.

L. Zhang, J. Shi, Z. Yang, M. Huang, Z. Chen, G. Gong, and S. Cao, “Photorefractive properties of polyphosphazenes containing carbazole-based multifunctional chromophores,” Polymer 49, 2107–2114 (2008).
[CrossRef]

L. Zhang, M. Huang, Z. Jiang, Z. Yang, Z. Chen, Q. Gong, and S. Cao, “A carbazole-based photorefractive polyphosphazene prepared via post-azo-coupling reaction,” React. Funct. Polym. 66, 1401–1410 (2006).
[CrossRef]

Zhang, W.

Adv. Mater.

S. Köber, M. Salvador, and K. Meeholz, “Organic photorefractive materials and applications,” Adv. Mater. 23, 4725–4763 (2011).
[CrossRef]

Appl. Phys. Lett.

Y. M. Chen, Z. H. Peng, W. K. Chen, and L. P. Yu, “New photorefractive polymer based on multifunctional polyurethane,” Appl. Phys. Lett. 64, 1195–1197 (1994).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969), http://adsabs.harvard.edu/abs/1969BSTJ...48.2909K .

Chem. Mater.

H. Li, R. Termine, L. Angiolini, L. Giorgini, F. Mauriello, and A. Golemme, “High Tg, nonpoled photorefractive polymer,” Chem. Mater. 21, 2403–2409 (2009).
[CrossRef]

Chem. Rev.

O. Ostroverkhova and W. E. Moener, “Organic photorefractives: mechanism, materials, and applications,” Chem. Rev. 104, 3267–3314 (2004).
[CrossRef]

IEEE J. Quantum Electron.

A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. 13, 233–253 (1977).
[CrossRef]

J. Appl. Phys.

D. L. Silva, E. Schab-Balcerzak, and A. Miniewicz, “Grating translation technique as a tool for monitoring phase shifts during holographic recording in azo-polymers,” J. Appl. Phys. 108, 083540 (2010).
[CrossRef]

J. Nonlinear Opt. Phys. Mater.

J. Nishide, H. Kimura-Suda, T. Imai, H. Sasabe, and Y. Kawabe, “Photorefractive polymer with high optical gain under non-electric field,” J. Nonlinear Opt. Phys. Mater. 19, 629–635 (2010).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

A. Sobolewska and A. Miniewicz, “Analysis of the kinetics of diffraction efficiency during the holographic grating recording in azobenzene functionalized polymers,” J. Phys. Chem. B 111, 1536–1544 (2007).
[CrossRef]

Jpn. J. Appl. Phys.

J. Jeong, K. Ohnishi, H. Sato, and K. Ogino, “Observation of pseudo-photorefractivity in monolithic molecular glass,” Jpn. J. Appl. Phys. 42, L179–L181 (2003).
[CrossRef]

N. Tsutsumi and Y. Shimizu, “Asymmetric two-beam coupling with high optical gain and high beam diffraction in external-electric-field free polymer composites,” Jpn. J. Appl. Phys. 43, 3466–3472 (2004).
[CrossRef]

Mol. Cryst. Liq. Cryst.

J. Nishide, A. Tanaka, Y. Hirama, and H. Sasabe, “Non-electric field photorefractive effect using polymer composites,” Mol. Cryst. Liq. Cryst. 491, 217–222 (2008).
[CrossRef]

A. Tanaka, J. Nishide, and H. Sasabe, “Asymmetric energy transfer in photorefractive polymer composites under non-electric field,” Mol. Cryst. Liq. Cryst. 504, 44–51 (2009).
[CrossRef]

Nat. Mater.

F. Gallego-Gómez, F. Del Monte, and K. Meerholz, “Optical gain by a simple photoisomerization process,” Nat. Mater. 7, 490–497 (2008).
[CrossRef]

Nature

P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, “A photorefractive organically modified silica glass with high optical gain,” Nature 408, 64–67 (2000).
[CrossRef]

Opt. Lett.

Opt. Mater.

J. Mysliwiec, A. Miniewicz, S. Nespurek, M. Studenovsky, and Z. Seldakova, “Efficient holographic recording in novel azo-containing polymer,” Opt. Mater. 29, 1756–1762 (2007).
[CrossRef]

R. Raschellà, I.-G. Marino, P. P. Lottici, D. Bersani, A. Lorenzi, and A. Montenero, “Photorefractive gratings in DR1-doped hybrid sol-gel films,” Opt. Mater. 25, 419–423 (2004).
[CrossRef]

Opt. Mater. Express

Polymer

L. Zhang, J. Shi, Z. Yang, M. Huang, Z. Chen, G. Gong, and S. Cao, “Photorefractive properties of polyphosphazenes containing carbazole-based multifunctional chromophores,” Polymer 49, 2107–2114 (2008).
[CrossRef]

C.-J. Chang, H.-C. Wang, G.-Y. Liao, W.-T. Whang, J.-M. Liu, and K.-Y. Hsu, “The effect of laser wavelength on the photorefractive characteristics of PMDA-DR19 based photorefractive polymeric materials,” Polymer 38, 5063–5071(1997).
[CrossRef]

Pure Appl. Chem.

C. Cojocariu and P. Rochon, “Light-induced motions in azobenzene-containing polymers,” Pure Appl. Chem. 76, 1479–1497 (2004).
[CrossRef]

Pure Appl. Opt.

I. Naydenova, Tz. Petrova, T. Tomova, V. Dragostinova, L. Nikolova, and T. Todorov, “Polarization holographic gratings with surface relief in amorphous azobenzene containing methacrylic copolymers,” Pure Appl. Opt. 7, 723–731(1998).
[CrossRef]

React. Funct. Polym.

Z. Li, J. Li, and J. Qin, “Synthesis of polyphosphazenes as potential photorefractive materials,” React. Funct. Polym. 48, 113–118 (2001).
[CrossRef]

L. Zhang, M. Huang, Z. Jiang, Z. Yang, Z. Chen, Q. Gong, and S. Cao, “A carbazole-based photorefractive polyphosphazene prepared via post-azo-coupling reaction,” React. Funct. Polym. 66, 1401–1410 (2006).
[CrossRef]

Synth. Met.

D. Sek, E. Schab-Balcerzak, M. Solyga, and A. Miniewicz, “Polarisation-sensitive holographic recording in polyimide-containing azo-dye,” Synth. Met. 127, 89–93 (2002).
[CrossRef]

Other

P. Günter and J.-P. Huignard, eds. Photorefractive Materials and Their Applications (Springer, 2006), Vols. 1–3.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

P. Hariharan, Optical Holography (Cambridge University, 1984).

P. Yeh, Introduction to Photorefractive Nonlinear Optics(Wiley, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Schematic diagram of experimental setup and measurement procedure for two-beam coupling and related experiments at 633 nm. (b) Molecular structure of the compound for our standard samples. (c) Experimental setup for the measurements of writing and erasure of gratings at 532 nm.

Fig. 2.
Fig. 2.

Relationships among wave vectors of light beams interacting with grating vector K in a holographic medium and a phase mismatch (uncertainty) component ΔK.

Fig. 3.
Fig. 3.

(a) Typical result for output intensities of two beams involved in two-beam coupling experiment at 633 nm, showing energy transfer process in a time range of several minutes. (b) Fringe owing to a grating and its phase shift observed by a fast translation of the sample.

Fig. 4.
Fig. 4.

Decay curve of diffracted light from a grating formed by interfering two beams, and one of the beams was used as a light source for this trace. The inset is the same data plotted in a logarithmic scale, showing that the decay process cannot be explained by a single exponential function.

Fig. 5.
Fig. 5.

(a) Modulation of refractive index after a given grating inscription time. Closed squares were estimated from the two-beam coupling experiment and Eq. (3), and open circles were from one beam diffraction and Eq. (5). (b) Phase deviation from interference pattern of intensity observed after a given writing time. Values were estimated from Eq. (3).

Fig. 6.
Fig. 6.

Temporal evolution of the diffraction intensity observed at 633 nm, under the illumination of interfering 532 nm laser beams. (a) Shows the experimental result for growing process and a fitting by Eq. (6), (b) shows decaying processes with and without a noninterfering green beam.

Fig. 7.
Fig. 7.

(a) Temporal evolution of the gratings formed in DR1 and NACzHexOH doped PMMA films and decaying processes (b) with and (c) without erasing illumination for DR1, NACzHexOH, and NACzEtOH doped PMMA samples.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

n=n0+Δncos(Kx+φ).
R(z)+β2ρzκ0n0R(z)+β22ρzΔnn0(sinφ-icosφ)(rs)S(z)e-iΔKx=0,
S(z)+β2σzκ0n0S(z)-β22σzΔnn0(sinφ+icosφ)(rs)R(z)eiΔKx=0,
ISIR=1+sinφsin(2bz)1-sinφsin(2bz),
b=β2n0cosθΔn.
ISIR=tan2(bz).
I(t)=A{1-exp(-tτ)},
ΔE+4π2λ02{n02+2n0Δncos(Kx+φ)}E=0.
E=rR(z)exp(iρx)+sS(z)exp(iσx).
R+c11R=c12e-iΔKzS,
S+c22S=c21eiΔKzR.
[R(z)S(z)]=[(coshγz+βγsinhγz)e(α-iΔK2)zc12sinhγzγe(α-iΔK2)zc21sinhγzγe(α+iΔK2)z(coshγz-βγsinhγz)e(α+iΔK2)z][R(0)S(0)],
α=-c11+c222,
β=iΔK+c22-c112,
γ=β2+c12c21.

Metrics