Abstract

A novel application of electrowetting devices has been simulated: wavefront correction using an array of electrowetting lenses and prisms. Five waves of distortion can be corrected with Strehl ratios of 0.9 or higher, utilizing piston, tip–tilt, and curvature corrections from arrays of 19 elements and fill factors as low as 40%. Effective control of piston can be achieved by placing the liquid lens array at the focus of two microlens arrays. Seven waves of piston delay can be generated with variation in focal length between 1.5 and 500 mm.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. S. Kopeika, “A System Engineering Approach to Imaging,” (SPIE, 1998).
  2. R. K. Tyson, “Principles of Adaptive Optics,” (CRC Press, 2011).
  3. F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matt. 17, R705–R774 (2005).
    [CrossRef]
  4. F. Krogmann, W. Moench, and H. Zappe, “A MEMS-based variable micro-lens system,” J. Opt. A 8, S330–S336 (2006).
    [CrossRef]
  5. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
    [CrossRef]
  6. W. Han, J. W. Haus, P. McManamon, J. Heikenfeld, N. Smith, and J. Yang, “Transmissive beam steering through electrowetting microprism arrays,” Opt. Commun. 283, 1174–1181 (2010).
    [CrossRef]
  7. G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517–1524 (1997).
    [CrossRef]
  8. C. Warde, A. D. Fisher, D. M. Cocco, and M. Y. Burmawi, “Microchannel spatial light modulator,” Opt. Lett. 3, 196–198 (1978).
    [CrossRef]
  9. T. Weyrauch, M. A. Vorontsov, T. G. Bifano, A. Tuantranont, V. M. Bright, J. Karpinksy, and J. Hammer, “Performance evaluation of micromachined mirror arrays for adaptive optics,” Proc. SPIE 4124, 32–41 (2000).
    [CrossRef]
  10. L. Z. Schatzberg, T. Bifano, S. Cornelissen, J. Stewart, and Z. Bleier, “Secure optical communication system utilizing deformable MEMS mirrors,” Proc. SPIE 7209, 72090C (2009).
    [CrossRef]
  11. M. C. Roggemann, V. M. Bright, B. M. Welsh, W. D. Cowan, and M. Lett, “Micro-electro-mechanical deformable mirrors for aberration control in optical systems,” Opt. Quantum Electron. 31, 451–468 (1999).
    [CrossRef]
  12. W. D. Cowan, M. K. Lee, B. M. Welsh, V. M. Bright, and M. C. Roggemann, “Surface micromachined segmented mirrors for adaptive optics,” IEEE J. Sel. Top. Quantum Electron. 5, 90–101 (1999).
    [CrossRef]
  13. M. A. Ealey and J. A. Wellman, “Deformable mirrors: design fundamentals, key performance specifications, and parametric trades,” Proc. SPIE 1543, 36–51 (1992).
    [CrossRef]
  14. H. Ren, D. Fox, P. A. Anderson, B. Wu, and S.-T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031–8036 (2006).
    [CrossRef]
  15. Y. Hongbin, Z. Guangya, C. F. Siong, and L. Feiwen, “Optofluidic variable aperture,” Opt. Lett. 33, 548–550(2008).
    [CrossRef]
  16. D.-Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y.-H. Lo, “High-performance fluidic adaptive lenses,” Appl. Opt. 43, 783–787 (2004).
    [CrossRef]
  17. J. Y. Chen, A. Kutana, C. P. Collier, and K. P. Giapis, “Electrowetting in carbon nanotubes,” Science 310, 1480–1483 (2005).
    [CrossRef]
  18. N. R. Smith, L. Zhou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Disp. Technol. 5, 411–413 (2009).
    [CrossRef]
  19. S. Berry, J. Kedzierski, and B. Abedian, “Low voltage electrowetting using thin fluoropolymer films,” J. Colloid Interface Sci. 303, 517 (2006).
    [CrossRef]
  20. A. A. Kornysheve, A. R. Kucernak, M. Marinescu, C. W. Monroe, A. E. S. Sleightholme, and M. Urbakh, “Ultra-low-voltage electrowetting,” J. Phys. Chem. 114, 14885 (2010).
    [CrossRef]
  21. S.-L. Lee and C.-F. Yang, “Numerical simulation for meniscus shape and optical performance of a MEMS-based liquid micro-lens,” Opt. Express 16, 19995–20007 (2008).
    [CrossRef]
  22. R. D. Niederriter, A. M. Watson, R. N. Zahreddine, C. J. Cogswell, R. H. Cormack, V. M. Bright, and J. T. Gopinath, “Individually addressable electrowetting lens arrays for adaptive optics,” submitted to Opt. Express. (June2012)
  23. J. E. Kansky, C. X. Yu, D. V. Murphy, S. E. J. Shaw, R. C. Lawrence, and C. Higgs, “Beam control of a 2D polarization maintaining fiber optic phased array with high-fiber count,” Proc. SPIE 6306, 63060G (2006).
    [CrossRef]
  24. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207 (1976).
    [CrossRef]

2010 (2)

W. Han, J. W. Haus, P. McManamon, J. Heikenfeld, N. Smith, and J. Yang, “Transmissive beam steering through electrowetting microprism arrays,” Opt. Commun. 283, 1174–1181 (2010).
[CrossRef]

A. A. Kornysheve, A. R. Kucernak, M. Marinescu, C. W. Monroe, A. E. S. Sleightholme, and M. Urbakh, “Ultra-low-voltage electrowetting,” J. Phys. Chem. 114, 14885 (2010).
[CrossRef]

2009 (2)

N. R. Smith, L. Zhou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Disp. Technol. 5, 411–413 (2009).
[CrossRef]

L. Z. Schatzberg, T. Bifano, S. Cornelissen, J. Stewart, and Z. Bleier, “Secure optical communication system utilizing deformable MEMS mirrors,” Proc. SPIE 7209, 72090C (2009).
[CrossRef]

2008 (2)

2006 (4)

H. Ren, D. Fox, P. A. Anderson, B. Wu, and S.-T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031–8036 (2006).
[CrossRef]

F. Krogmann, W. Moench, and H. Zappe, “A MEMS-based variable micro-lens system,” J. Opt. A 8, S330–S336 (2006).
[CrossRef]

S. Berry, J. Kedzierski, and B. Abedian, “Low voltage electrowetting using thin fluoropolymer films,” J. Colloid Interface Sci. 303, 517 (2006).
[CrossRef]

J. E. Kansky, C. X. Yu, D. V. Murphy, S. E. J. Shaw, R. C. Lawrence, and C. Higgs, “Beam control of a 2D polarization maintaining fiber optic phased array with high-fiber count,” Proc. SPIE 6306, 63060G (2006).
[CrossRef]

2005 (2)

F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matt. 17, R705–R774 (2005).
[CrossRef]

J. Y. Chen, A. Kutana, C. P. Collier, and K. P. Giapis, “Electrowetting in carbon nanotubes,” Science 310, 1480–1483 (2005).
[CrossRef]

2004 (2)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

D.-Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y.-H. Lo, “High-performance fluidic adaptive lenses,” Appl. Opt. 43, 783–787 (2004).
[CrossRef]

2000 (1)

T. Weyrauch, M. A. Vorontsov, T. G. Bifano, A. Tuantranont, V. M. Bright, J. Karpinksy, and J. Hammer, “Performance evaluation of micromachined mirror arrays for adaptive optics,” Proc. SPIE 4124, 32–41 (2000).
[CrossRef]

1999 (2)

M. C. Roggemann, V. M. Bright, B. M. Welsh, W. D. Cowan, and M. Lett, “Micro-electro-mechanical deformable mirrors for aberration control in optical systems,” Opt. Quantum Electron. 31, 451–468 (1999).
[CrossRef]

W. D. Cowan, M. K. Lee, B. M. Welsh, V. M. Bright, and M. C. Roggemann, “Surface micromachined segmented mirrors for adaptive optics,” IEEE J. Sel. Top. Quantum Electron. 5, 90–101 (1999).
[CrossRef]

1997 (1)

1992 (1)

M. A. Ealey and J. A. Wellman, “Deformable mirrors: design fundamentals, key performance specifications, and parametric trades,” Proc. SPIE 1543, 36–51 (1992).
[CrossRef]

1978 (1)

1976 (1)

Abedian, B.

S. Berry, J. Kedzierski, and B. Abedian, “Low voltage electrowetting using thin fluoropolymer films,” J. Colloid Interface Sci. 303, 517 (2006).
[CrossRef]

Anderson, P. A.

Baret, J.-C.

F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matt. 17, R705–R774 (2005).
[CrossRef]

Berdichevsky, Y.

Berry, S.

S. Berry, J. Kedzierski, and B. Abedian, “Low voltage electrowetting using thin fluoropolymer films,” J. Colloid Interface Sci. 303, 517 (2006).
[CrossRef]

Bifano, T.

L. Z. Schatzberg, T. Bifano, S. Cornelissen, J. Stewart, and Z. Bleier, “Secure optical communication system utilizing deformable MEMS mirrors,” Proc. SPIE 7209, 72090C (2009).
[CrossRef]

Bifano, T. G.

T. Weyrauch, M. A. Vorontsov, T. G. Bifano, A. Tuantranont, V. M. Bright, J. Karpinksy, and J. Hammer, “Performance evaluation of micromachined mirror arrays for adaptive optics,” Proc. SPIE 4124, 32–41 (2000).
[CrossRef]

Bleier, Z.

L. Z. Schatzberg, T. Bifano, S. Cornelissen, J. Stewart, and Z. Bleier, “Secure optical communication system utilizing deformable MEMS mirrors,” Proc. SPIE 7209, 72090C (2009).
[CrossRef]

Bright, V. M.

T. Weyrauch, M. A. Vorontsov, T. G. Bifano, A. Tuantranont, V. M. Bright, J. Karpinksy, and J. Hammer, “Performance evaluation of micromachined mirror arrays for adaptive optics,” Proc. SPIE 4124, 32–41 (2000).
[CrossRef]

W. D. Cowan, M. K. Lee, B. M. Welsh, V. M. Bright, and M. C. Roggemann, “Surface micromachined segmented mirrors for adaptive optics,” IEEE J. Sel. Top. Quantum Electron. 5, 90–101 (1999).
[CrossRef]

M. C. Roggemann, V. M. Bright, B. M. Welsh, W. D. Cowan, and M. Lett, “Micro-electro-mechanical deformable mirrors for aberration control in optical systems,” Opt. Quantum Electron. 31, 451–468 (1999).
[CrossRef]

R. D. Niederriter, A. M. Watson, R. N. Zahreddine, C. J. Cogswell, R. H. Cormack, V. M. Bright, and J. T. Gopinath, “Individually addressable electrowetting lens arrays for adaptive optics,” submitted to Opt. Express. (June2012)

Burmawi, M. Y.

Chen, J. Y.

J. Y. Chen, A. Kutana, C. P. Collier, and K. P. Giapis, “Electrowetting in carbon nanotubes,” Science 310, 1480–1483 (2005).
[CrossRef]

Cocco, D. M.

Cogswell, C. J.

R. D. Niederriter, A. M. Watson, R. N. Zahreddine, C. J. Cogswell, R. H. Cormack, V. M. Bright, and J. T. Gopinath, “Individually addressable electrowetting lens arrays for adaptive optics,” submitted to Opt. Express. (June2012)

Collier, C. P.

J. Y. Chen, A. Kutana, C. P. Collier, and K. P. Giapis, “Electrowetting in carbon nanotubes,” Science 310, 1480–1483 (2005).
[CrossRef]

Cormack, R. H.

R. D. Niederriter, A. M. Watson, R. N. Zahreddine, C. J. Cogswell, R. H. Cormack, V. M. Bright, and J. T. Gopinath, “Individually addressable electrowetting lens arrays for adaptive optics,” submitted to Opt. Express. (June2012)

Cornelissen, S.

L. Z. Schatzberg, T. Bifano, S. Cornelissen, J. Stewart, and Z. Bleier, “Secure optical communication system utilizing deformable MEMS mirrors,” Proc. SPIE 7209, 72090C (2009).
[CrossRef]

Cowan, W. D.

M. C. Roggemann, V. M. Bright, B. M. Welsh, W. D. Cowan, and M. Lett, “Micro-electro-mechanical deformable mirrors for aberration control in optical systems,” Opt. Quantum Electron. 31, 451–468 (1999).
[CrossRef]

W. D. Cowan, M. K. Lee, B. M. Welsh, V. M. Bright, and M. C. Roggemann, “Surface micromachined segmented mirrors for adaptive optics,” IEEE J. Sel. Top. Quantum Electron. 5, 90–101 (1999).
[CrossRef]

Ealey, M. A.

M. A. Ealey and J. A. Wellman, “Deformable mirrors: design fundamentals, key performance specifications, and parametric trades,” Proc. SPIE 1543, 36–51 (1992).
[CrossRef]

Feiwen, L.

Fisher, A. D.

Fox, D.

Giapis, K. P.

J. Y. Chen, A. Kutana, C. P. Collier, and K. P. Giapis, “Electrowetting in carbon nanotubes,” Science 310, 1480–1483 (2005).
[CrossRef]

Gopinath, J. T.

R. D. Niederriter, A. M. Watson, R. N. Zahreddine, C. J. Cogswell, R. H. Cormack, V. M. Bright, and J. T. Gopinath, “Individually addressable electrowetting lens arrays for adaptive optics,” submitted to Opt. Express. (June2012)

Guangya, Z.

Hammer, J.

T. Weyrauch, M. A. Vorontsov, T. G. Bifano, A. Tuantranont, V. M. Bright, J. Karpinksy, and J. Hammer, “Performance evaluation of micromachined mirror arrays for adaptive optics,” Proc. SPIE 4124, 32–41 (2000).
[CrossRef]

Han, W.

W. Han, J. W. Haus, P. McManamon, J. Heikenfeld, N. Smith, and J. Yang, “Transmissive beam steering through electrowetting microprism arrays,” Opt. Commun. 283, 1174–1181 (2010).
[CrossRef]

Haus, J. W.

W. Han, J. W. Haus, P. McManamon, J. Heikenfeld, N. Smith, and J. Yang, “Transmissive beam steering through electrowetting microprism arrays,” Opt. Commun. 283, 1174–1181 (2010).
[CrossRef]

Heikenfeld, J.

W. Han, J. W. Haus, P. McManamon, J. Heikenfeld, N. Smith, and J. Yang, “Transmissive beam steering through electrowetting microprism arrays,” Opt. Commun. 283, 1174–1181 (2010).
[CrossRef]

N. R. Smith, L. Zhou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Disp. Technol. 5, 411–413 (2009).
[CrossRef]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Higgs, C.

J. E. Kansky, C. X. Yu, D. V. Murphy, S. E. J. Shaw, R. C. Lawrence, and C. Higgs, “Beam control of a 2D polarization maintaining fiber optic phased array with high-fiber count,” Proc. SPIE 6306, 63060G (2006).
[CrossRef]

Hongbin, Y.

Justis, N.

Kansky, J. E.

J. E. Kansky, C. X. Yu, D. V. Murphy, S. E. J. Shaw, R. C. Lawrence, and C. Higgs, “Beam control of a 2D polarization maintaining fiber optic phased array with high-fiber count,” Proc. SPIE 6306, 63060G (2006).
[CrossRef]

Karpinksy, J.

T. Weyrauch, M. A. Vorontsov, T. G. Bifano, A. Tuantranont, V. M. Bright, J. Karpinksy, and J. Hammer, “Performance evaluation of micromachined mirror arrays for adaptive optics,” Proc. SPIE 4124, 32–41 (2000).
[CrossRef]

Kedzierski, J.

S. Berry, J. Kedzierski, and B. Abedian, “Low voltage electrowetting using thin fluoropolymer films,” J. Colloid Interface Sci. 303, 517 (2006).
[CrossRef]

Kopeika, N. S.

N. S. Kopeika, “A System Engineering Approach to Imaging,” (SPIE, 1998).

Kornysheve, A. A.

A. A. Kornysheve, A. R. Kucernak, M. Marinescu, C. W. Monroe, A. E. S. Sleightholme, and M. Urbakh, “Ultra-low-voltage electrowetting,” J. Phys. Chem. 114, 14885 (2010).
[CrossRef]

Krogmann, F.

F. Krogmann, W. Moench, and H. Zappe, “A MEMS-based variable micro-lens system,” J. Opt. A 8, S330–S336 (2006).
[CrossRef]

Kucernak, A. R.

A. A. Kornysheve, A. R. Kucernak, M. Marinescu, C. W. Monroe, A. E. S. Sleightholme, and M. Urbakh, “Ultra-low-voltage electrowetting,” J. Phys. Chem. 114, 14885 (2010).
[CrossRef]

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Kutana, A.

J. Y. Chen, A. Kutana, C. P. Collier, and K. P. Giapis, “Electrowetting in carbon nanotubes,” Science 310, 1480–1483 (2005).
[CrossRef]

Lawrence, R. C.

J. E. Kansky, C. X. Yu, D. V. Murphy, S. E. J. Shaw, R. C. Lawrence, and C. Higgs, “Beam control of a 2D polarization maintaining fiber optic phased array with high-fiber count,” Proc. SPIE 6306, 63060G (2006).
[CrossRef]

Lee, M. K.

W. D. Cowan, M. K. Lee, B. M. Welsh, V. M. Bright, and M. C. Roggemann, “Surface micromachined segmented mirrors for adaptive optics,” IEEE J. Sel. Top. Quantum Electron. 5, 90–101 (1999).
[CrossRef]

Lee, S.-L.

Lett, M.

M. C. Roggemann, V. M. Bright, B. M. Welsh, W. D. Cowan, and M. Lett, “Micro-electro-mechanical deformable mirrors for aberration control in optical systems,” Opt. Quantum Electron. 31, 451–468 (1999).
[CrossRef]

Lien, V.

Lo, Y.-H.

Love, G. D.

Marinescu, M.

A. A. Kornysheve, A. R. Kucernak, M. Marinescu, C. W. Monroe, A. E. S. Sleightholme, and M. Urbakh, “Ultra-low-voltage electrowetting,” J. Phys. Chem. 114, 14885 (2010).
[CrossRef]

McManamon, P.

W. Han, J. W. Haus, P. McManamon, J. Heikenfeld, N. Smith, and J. Yang, “Transmissive beam steering through electrowetting microprism arrays,” Opt. Commun. 283, 1174–1181 (2010).
[CrossRef]

Moench, W.

F. Krogmann, W. Moench, and H. Zappe, “A MEMS-based variable micro-lens system,” J. Opt. A 8, S330–S336 (2006).
[CrossRef]

Monroe, C. W.

A. A. Kornysheve, A. R. Kucernak, M. Marinescu, C. W. Monroe, A. E. S. Sleightholme, and M. Urbakh, “Ultra-low-voltage electrowetting,” J. Phys. Chem. 114, 14885 (2010).
[CrossRef]

Mugele, F.

F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matt. 17, R705–R774 (2005).
[CrossRef]

Murphy, D. V.

J. E. Kansky, C. X. Yu, D. V. Murphy, S. E. J. Shaw, R. C. Lawrence, and C. Higgs, “Beam control of a 2D polarization maintaining fiber optic phased array with high-fiber count,” Proc. SPIE 6306, 63060G (2006).
[CrossRef]

Niederriter, R. D.

R. D. Niederriter, A. M. Watson, R. N. Zahreddine, C. J. Cogswell, R. H. Cormack, V. M. Bright, and J. T. Gopinath, “Individually addressable electrowetting lens arrays for adaptive optics,” submitted to Opt. Express. (June2012)

Noll, R. J.

Ren, H.

Roggemann, M. C.

M. C. Roggemann, V. M. Bright, B. M. Welsh, W. D. Cowan, and M. Lett, “Micro-electro-mechanical deformable mirrors for aberration control in optical systems,” Opt. Quantum Electron. 31, 451–468 (1999).
[CrossRef]

W. D. Cowan, M. K. Lee, B. M. Welsh, V. M. Bright, and M. C. Roggemann, “Surface micromachined segmented mirrors for adaptive optics,” IEEE J. Sel. Top. Quantum Electron. 5, 90–101 (1999).
[CrossRef]

Schatzberg, L. Z.

L. Z. Schatzberg, T. Bifano, S. Cornelissen, J. Stewart, and Z. Bleier, “Secure optical communication system utilizing deformable MEMS mirrors,” Proc. SPIE 7209, 72090C (2009).
[CrossRef]

Shaw, S. E. J.

J. E. Kansky, C. X. Yu, D. V. Murphy, S. E. J. Shaw, R. C. Lawrence, and C. Higgs, “Beam control of a 2D polarization maintaining fiber optic phased array with high-fiber count,” Proc. SPIE 6306, 63060G (2006).
[CrossRef]

Siong, C. F.

Sleightholme, A. E. S.

A. A. Kornysheve, A. R. Kucernak, M. Marinescu, C. W. Monroe, A. E. S. Sleightholme, and M. Urbakh, “Ultra-low-voltage electrowetting,” J. Phys. Chem. 114, 14885 (2010).
[CrossRef]

Smith, N.

W. Han, J. W. Haus, P. McManamon, J. Heikenfeld, N. Smith, and J. Yang, “Transmissive beam steering through electrowetting microprism arrays,” Opt. Commun. 283, 1174–1181 (2010).
[CrossRef]

Smith, N. R.

N. R. Smith, L. Zhou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Disp. Technol. 5, 411–413 (2009).
[CrossRef]

Stewart, J.

L. Z. Schatzberg, T. Bifano, S. Cornelissen, J. Stewart, and Z. Bleier, “Secure optical communication system utilizing deformable MEMS mirrors,” Proc. SPIE 7209, 72090C (2009).
[CrossRef]

Tuantranont, A.

T. Weyrauch, M. A. Vorontsov, T. G. Bifano, A. Tuantranont, V. M. Bright, J. Karpinksy, and J. Hammer, “Performance evaluation of micromachined mirror arrays for adaptive optics,” Proc. SPIE 4124, 32–41 (2000).
[CrossRef]

Tyson, R. K.

R. K. Tyson, “Principles of Adaptive Optics,” (CRC Press, 2011).

Urbakh, M.

A. A. Kornysheve, A. R. Kucernak, M. Marinescu, C. W. Monroe, A. E. S. Sleightholme, and M. Urbakh, “Ultra-low-voltage electrowetting,” J. Phys. Chem. 114, 14885 (2010).
[CrossRef]

Vorontsov, M. A.

T. Weyrauch, M. A. Vorontsov, T. G. Bifano, A. Tuantranont, V. M. Bright, J. Karpinksy, and J. Hammer, “Performance evaluation of micromachined mirror arrays for adaptive optics,” Proc. SPIE 4124, 32–41 (2000).
[CrossRef]

Warde, C.

Watson, A. M.

R. D. Niederriter, A. M. Watson, R. N. Zahreddine, C. J. Cogswell, R. H. Cormack, V. M. Bright, and J. T. Gopinath, “Individually addressable electrowetting lens arrays for adaptive optics,” submitted to Opt. Express. (June2012)

Wellman, J. A.

M. A. Ealey and J. A. Wellman, “Deformable mirrors: design fundamentals, key performance specifications, and parametric trades,” Proc. SPIE 1543, 36–51 (1992).
[CrossRef]

Welsh, B. M.

M. C. Roggemann, V. M. Bright, B. M. Welsh, W. D. Cowan, and M. Lett, “Micro-electro-mechanical deformable mirrors for aberration control in optical systems,” Opt. Quantum Electron. 31, 451–468 (1999).
[CrossRef]

W. D. Cowan, M. K. Lee, B. M. Welsh, V. M. Bright, and M. C. Roggemann, “Surface micromachined segmented mirrors for adaptive optics,” IEEE J. Sel. Top. Quantum Electron. 5, 90–101 (1999).
[CrossRef]

Weyrauch, T.

T. Weyrauch, M. A. Vorontsov, T. G. Bifano, A. Tuantranont, V. M. Bright, J. Karpinksy, and J. Hammer, “Performance evaluation of micromachined mirror arrays for adaptive optics,” Proc. SPIE 4124, 32–41 (2000).
[CrossRef]

Wu, B.

Wu, S.-T.

Yang, C.-F.

Yang, J.

W. Han, J. W. Haus, P. McManamon, J. Heikenfeld, N. Smith, and J. Yang, “Transmissive beam steering through electrowetting microprism arrays,” Opt. Commun. 283, 1174–1181 (2010).
[CrossRef]

Yu, C. X.

J. E. Kansky, C. X. Yu, D. V. Murphy, S. E. J. Shaw, R. C. Lawrence, and C. Higgs, “Beam control of a 2D polarization maintaining fiber optic phased array with high-fiber count,” Proc. SPIE 6306, 63060G (2006).
[CrossRef]

Zahreddine, R. N.

R. D. Niederriter, A. M. Watson, R. N. Zahreddine, C. J. Cogswell, R. H. Cormack, V. M. Bright, and J. T. Gopinath, “Individually addressable electrowetting lens arrays for adaptive optics,” submitted to Opt. Express. (June2012)

Zappe, H.

F. Krogmann, W. Moench, and H. Zappe, “A MEMS-based variable micro-lens system,” J. Opt. A 8, S330–S336 (2006).
[CrossRef]

Zhang, D.-Y.

Zhang, J.

N. R. Smith, L. Zhou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Disp. Technol. 5, 411–413 (2009).
[CrossRef]

Zhou, L.

N. R. Smith, L. Zhou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Disp. Technol. 5, 411–413 (2009).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

W. D. Cowan, M. K. Lee, B. M. Welsh, V. M. Bright, and M. C. Roggemann, “Surface micromachined segmented mirrors for adaptive optics,” IEEE J. Sel. Top. Quantum Electron. 5, 90–101 (1999).
[CrossRef]

J. Colloid Interface Sci. (1)

S. Berry, J. Kedzierski, and B. Abedian, “Low voltage electrowetting using thin fluoropolymer films,” J. Colloid Interface Sci. 303, 517 (2006).
[CrossRef]

J. Disp. Technol. (1)

N. R. Smith, L. Zhou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Disp. Technol. 5, 411–413 (2009).
[CrossRef]

J. Opt. A (1)

F. Krogmann, W. Moench, and H. Zappe, “A MEMS-based variable micro-lens system,” J. Opt. A 8, S330–S336 (2006).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. Chem. (1)

A. A. Kornysheve, A. R. Kucernak, M. Marinescu, C. W. Monroe, A. E. S. Sleightholme, and M. Urbakh, “Ultra-low-voltage electrowetting,” J. Phys. Chem. 114, 14885 (2010).
[CrossRef]

J. Phys. Condens. Matt. (1)

F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matt. 17, R705–R774 (2005).
[CrossRef]

Opt. Commun. (1)

W. Han, J. W. Haus, P. McManamon, J. Heikenfeld, N. Smith, and J. Yang, “Transmissive beam steering through electrowetting microprism arrays,” Opt. Commun. 283, 1174–1181 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

M. C. Roggemann, V. M. Bright, B. M. Welsh, W. D. Cowan, and M. Lett, “Micro-electro-mechanical deformable mirrors for aberration control in optical systems,” Opt. Quantum Electron. 31, 451–468 (1999).
[CrossRef]

Proc. SPIE (4)

M. A. Ealey and J. A. Wellman, “Deformable mirrors: design fundamentals, key performance specifications, and parametric trades,” Proc. SPIE 1543, 36–51 (1992).
[CrossRef]

J. E. Kansky, C. X. Yu, D. V. Murphy, S. E. J. Shaw, R. C. Lawrence, and C. Higgs, “Beam control of a 2D polarization maintaining fiber optic phased array with high-fiber count,” Proc. SPIE 6306, 63060G (2006).
[CrossRef]

T. Weyrauch, M. A. Vorontsov, T. G. Bifano, A. Tuantranont, V. M. Bright, J. Karpinksy, and J. Hammer, “Performance evaluation of micromachined mirror arrays for adaptive optics,” Proc. SPIE 4124, 32–41 (2000).
[CrossRef]

L. Z. Schatzberg, T. Bifano, S. Cornelissen, J. Stewart, and Z. Bleier, “Secure optical communication system utilizing deformable MEMS mirrors,” Proc. SPIE 7209, 72090C (2009).
[CrossRef]

Science (1)

J. Y. Chen, A. Kutana, C. P. Collier, and K. P. Giapis, “Electrowetting in carbon nanotubes,” Science 310, 1480–1483 (2005).
[CrossRef]

Other (3)

R. D. Niederriter, A. M. Watson, R. N. Zahreddine, C. J. Cogswell, R. H. Cormack, V. M. Bright, and J. T. Gopinath, “Individually addressable electrowetting lens arrays for adaptive optics,” submitted to Opt. Express. (June2012)

N. S. Kopeika, “A System Engineering Approach to Imaging,” (SPIE, 1998).

R. K. Tyson, “Principles of Adaptive Optics,” (CRC Press, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Concept of electrowetting. Applying a voltage to a conducting liquid changes the contact angle between the liquid and the conductive layer beneath. If the liquid is instead placed in a cylindrical (or tapered) chamber with contacts on both sides, an applied voltage changes the contact angle of the liquid to the side walls, producing a variable focus lens. (Left) Theory. (Right) Experiments performed using a droplet of deionized water mixed with 1% sodium dodecyl sulfate placed on Teflon. Two different voltages were applied, 0 V and 34 V, and show the broadening and flattening of the droplet with increasing voltage as predicted by theory. Note a portion of the voltage wire is shown protruding from the top of the droplet.

Fig. 2.
Fig. 2.

(a) Electrowetting lens schematic. The liquid is placed in a cylindrical aperture with contacts on the interior wall and top. An applied voltage determines the contact angle of the liquid to the side wall, allowing variable lens focus. (b) Electrowetting prism schematic. A square aperture design with contacts on opposing sides produces a prism shape that yields variable deflection angles when differing voltages are applied to the two sides.

Fig. 3.
Fig. 3.

Setups for simulations. (a) A distorted wave is input to a 19-element lens and prism array. A diagnostic lens focuses the resulting corrected wavefront, and the PSF of the lens array and Strehl ratio are measured. (b) Light is input to a telescope with an electrowetting element placed at the focus. This setup is used to evaluate the piston-adjustment capabilities of the electrowetting lens.

Fig. 4.
Fig. 4.

Output Strehl ratio versus input distortion in waves for a variety of different fill factors for a lens and prism array: 40% fill factor (red triangles), 58% fill factor (black circles), and 80% fill factor (blue squares). Simulation includes tip–tilt, curvature, and piston compensation. The arrays consist of 19 elements that are 2 mm in diameter and are filled with water and air.

Fig. 5.
Fig. 5.

Simulations of output Strehl ratio achievable versus rs/ro, the ratio of lens center spacing to the Fried parameter. The simulations were performed using Kolmogorov statistics, and each point is averaged. The green squares represent tip–tilt, curvature, and piston correction while the black triangles represent tip–tilt and curvature correction. The simulations were run for an array of 19 2 mm diameter lenses that are filled with water and air and arranged with a 58% fill factor.

Fig. 6.
Fig. 6.

Effect of focal length tuning on piston compensation for 1 mm diameter lenses with 2 mm thickness containing equal quantities of oil and water. As the lens curvature becomes flatter (corresponding to longer focal length), larger changes in focal length are needed to produce piston delay.

Tables (1)

Tables Icon

Table 1. Comparison of Adaptive Optic Technologies

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

γLGcosθ=γSGγSL,
γ=γo12cV2,
γSL=γo12εεodV2,
cosθ=cosθo+εεo2γLGdV2,
φ(k)=(0.023ro5/3)k11/3,

Metrics