Abstract

Wheel polishing, a new optical fabrication technique, is proposed for super-smooth surface fabrication of optical components in high-precision optical instruments. The machining mechanism and the removal function contours are investigated in detail. The elastohydrodynamic lubrication theory is adopted to analyze the deformation of the wheel head, the pressure distribution, and the fluid film thickness distribution in the narrow machining zone. The pressure and the shear stress distributions at the interface between the slurry and the sample are numerically simulated. Practical polishing experiments are arranged to analyze the relationship between the wheel–sample distance and the machining rate. It is demonstrated in this paper that the wheel–sample distance will directly influence the removal function contours. Moreover, ripples on the wheel surface will eventually induce the transverse prints on the removal function contours. The surface roughness of fused silicon is reduced to less than 0.5 nm (rms) from initial 1.267 nm (rms). The wheel polishing technique is feasible for super-smooth surface fabrication.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription