Abstract

One-step gray-tone lithography is the most effective approach to making three-dimensional (3D) micro-optical elements (MOEs). Metal-transparent-metallic-oxide (MTMO) grayscale masks are novel and quite cost effective. In this paper, through the successful fabrication of 3D SiO2 MOEs by gray-tone lithography and reactive ion etching, we thoroughly investigate the practical technique needs of MTMO grayscale masks on metallic nanofilms. Design calibration, pattern transfer, resolution, lifetime, and mask protection of grayscale masks have been verified. This work shows that the MTMO grayscale photomask has good practical applicability in the laboratory and in industry.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
    [CrossRef]
  2. J. D. Rogers, A. H. O. Kärkkäinen, T. Tkaczyk, J. T. Rantala, and M. R. Descour, “Realization of refractive microoptics through grayscale lithographic patterning of photosensitive hybrid glass,” Opt. Express 12, 1294–1303 (2004).
    [CrossRef]
  3. M. Christophersen and B. F. Phlips, “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92, 194102 (2008).
    [CrossRef]
  4. M. C. Gather, N. M. Kronenberg, and K. Meerholz, “Monolithic integration of multi-color organic LEDs by grayscale lithography,” Adv. Mater. 22, 4634–4638 (2010).
    [CrossRef]
  5. H. C. Yeh, Y. C. Kuo, S. H. Lin, J. D. Lin, T. S. Mo, and S. Y. Huang, “Optically controllable and focus-tunable Fresnel lens in azo-dye-doped liquid crystals using a Sagnac interferometer,” Opt. Lett. 36, 1311–1313 (2011).
    [CrossRef]
  6. W. X. Yu, X. C. Yuan, N. Q. Ngo, W. X. Que, W. C. Cheong, and V. Koudriachov, “Single-step fabrication of continuous surface relief micro-optical elements in hybrid sol-gel glass by laser direct writing,” Opt. Express 10, 443–448 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-10-443 .
  7. L. Li and A. Y. Yi, “Design and fabrication of a freeform microlens array for a compact large-field-of-view compound-eye camera,” Appl. Opt. 51, 1843–1852 (2012).
    [CrossRef]
  8. C. H. Chu, C. D. Shiue, H. W. Cheng, M. L. Tseng, H. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express 18, 18383–18393 (2010).
    [CrossRef]
  9. H. Xi, Q. Liu, Y. Tian, Y. Wang, S. Guo, and M. Chu, “Ge2Sb1.5Bi0.5Te5 thin film as inorganic photoresist,” Opt. Mater. Express 2, 461–468 (2012).
    [CrossRef]
  10. Y. Wang, R. Wang, C. Guo, J. Miao, Y. Tian, T. Ren, and Q. Liu, “Path-directed and maskless fabrication of ordered TiO2nanoribbons,” Nanoscale 4, 1545–1548 (2012).
    [CrossRef]
  11. C. F. Guo, S. Cao, P. Jiang, Y. Fang, J. Zhang, Y. Fan, Y. Wang, W. Xu, Z. Zhao, and Q. Liu, “Grayscale photomask fabricated by laser direct writing in metallic nano-films,” Opt. Express 17, 19981–19987 (2009).
    [CrossRef]
  12. C. K. Wu, “Method of making high energy beam sensitive glasses,” U.S. patent 5,078,771 (7Jan.1992).
  13. C. K. Wu, “Gray scale all-glass photomasks,” U.S. patent application 20050053844 A1 (10March2005).
  14. G. Gal, “Method for fabricating microlenses,” U.S. patent 5,310,623 (10May1994).
  15. C. F. Guo, J. Zhang, J. Miao, Y. Fan, and Q. Liu, “MTMO grayscale photomask,” Opt. Express 18, 2621–2631 (2009).
    [CrossRef]
  16. C. M. Waits, A. Modafe, and R. Ghodssi, “Investigation of gray-scale technology for large area 3D silicon MEMS structures,” J. Micromech. Microeng. 13, 170–177 (2003).
    [CrossRef]
  17. C. Chen, D. Hirdes, and A. Folch, “Gray-scale photolithography using microfluidic photomasks,” Proc. Natl. Acad. Sci. USA 100, 1499–1504 (2003).
    [CrossRef]
  18. X. Dong, C. Du, S. Li, C. Wang, and Y. Fu, “Control approach for form accuracy of microlenses with continuous relief,” Opt. Express 13, 1353–1360 (2005).
    [CrossRef]
  19. T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photon. Rev. 4, 123–143 (2010).
    [CrossRef]
  20. Y. Lin, M. H. Hong, and T. C. Chong, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 041108 (2006).
    [CrossRef]
  21. S. K. Lin, I. C. Lin, and D. P. Tsai, “Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks,” Opt. Express 14, 4452–4458 (2006).
    [CrossRef]
  22. C. F. Guo, Z. Zhang, S. Cao, and Q. Liu, “Laser direct writing of nanoreliefs in Sn nanofilms,” Opt. Lett. 34, 2820–2822 (2009).
    [CrossRef]

2012 (3)

2011 (1)

2010 (3)

C. H. Chu, C. D. Shiue, H. W. Cheng, M. L. Tseng, H. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express 18, 18383–18393 (2010).
[CrossRef]

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photon. Rev. 4, 123–143 (2010).
[CrossRef]

M. C. Gather, N. M. Kronenberg, and K. Meerholz, “Monolithic integration of multi-color organic LEDs by grayscale lithography,” Adv. Mater. 22, 4634–4638 (2010).
[CrossRef]

2009 (3)

2008 (1)

M. Christophersen and B. F. Phlips, “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92, 194102 (2008).
[CrossRef]

2006 (2)

2005 (1)

2004 (1)

2003 (2)

C. M. Waits, A. Modafe, and R. Ghodssi, “Investigation of gray-scale technology for large area 3D silicon MEMS structures,” J. Micromech. Microeng. 13, 170–177 (2003).
[CrossRef]

C. Chen, D. Hirdes, and A. Folch, “Gray-scale photolithography using microfluidic photomasks,” Proc. Natl. Acad. Sci. USA 100, 1499–1504 (2003).
[CrossRef]

2002 (1)

1997 (1)

K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[CrossRef]

Cao, S.

Chen, C.

C. Chen, D. Hirdes, and A. Folch, “Gray-scale photolithography using microfluidic photomasks,” Proc. Natl. Acad. Sci. USA 100, 1499–1504 (2003).
[CrossRef]

Cheng, H. W.

Cheong, W. C.

Chiang, H.

Chong, T. C.

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photon. Rev. 4, 123–143 (2010).
[CrossRef]

Y. Lin, M. H. Hong, and T. C. Chong, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 041108 (2006).
[CrossRef]

Christophersen, M.

M. Christophersen and B. F. Phlips, “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92, 194102 (2008).
[CrossRef]

Chu, C. H.

Chu, M.

Descour, M. R.

Dong, X.

Du, C.

Fan, Y.

Fang, Y.

Folch, A.

C. Chen, D. Hirdes, and A. Folch, “Gray-scale photolithography using microfluidic photomasks,” Proc. Natl. Acad. Sci. USA 100, 1499–1504 (2003).
[CrossRef]

Fu, Y.

Gal, G.

G. Gal, “Method for fabricating microlenses,” U.S. patent 5,310,623 (10May1994).

Gather, M. C.

M. C. Gather, N. M. Kronenberg, and K. Meerholz, “Monolithic integration of multi-color organic LEDs by grayscale lithography,” Adv. Mater. 22, 4634–4638 (2010).
[CrossRef]

Ghodssi, R.

C. M. Waits, A. Modafe, and R. Ghodssi, “Investigation of gray-scale technology for large area 3D silicon MEMS structures,” J. Micromech. Microeng. 13, 170–177 (2003).
[CrossRef]

Guo, C.

Y. Wang, R. Wang, C. Guo, J. Miao, Y. Tian, T. Ren, and Q. Liu, “Path-directed and maskless fabrication of ordered TiO2nanoribbons,” Nanoscale 4, 1545–1548 (2012).
[CrossRef]

Guo, C. F.

Guo, S.

Hirdes, D.

C. Chen, D. Hirdes, and A. Folch, “Gray-scale photolithography using microfluidic photomasks,” Proc. Natl. Acad. Sci. USA 100, 1499–1504 (2003).
[CrossRef]

Hong, M. H.

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photon. Rev. 4, 123–143 (2010).
[CrossRef]

Y. Lin, M. H. Hong, and T. C. Chong, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 041108 (2006).
[CrossRef]

Huang, S. Y.

Jiang, P.

Jürss, M.

K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[CrossRef]

Kärkkäinen, A. H. O.

Koudriachov, V.

Kronenberg, N. M.

M. C. Gather, N. M. Kronenberg, and K. Meerholz, “Monolithic integration of multi-color organic LEDs by grayscale lithography,” Adv. Mater. 22, 4634–4638 (2010).
[CrossRef]

Kuo, Y. C.

Li, L.

Li, S.

Lin, I. C.

Lin, J. D.

Lin, S. H.

Lin, S. K.

Lin, Y.

Y. Lin, M. H. Hong, and T. C. Chong, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 041108 (2006).
[CrossRef]

Liu, Q.

Mansuripur, M.

Meerholz, K.

M. C. Gather, N. M. Kronenberg, and K. Meerholz, “Monolithic integration of multi-color organic LEDs by grayscale lithography,” Adv. Mater. 22, 4634–4638 (2010).
[CrossRef]

Miao, J.

Y. Wang, R. Wang, C. Guo, J. Miao, Y. Tian, T. Ren, and Q. Liu, “Path-directed and maskless fabrication of ordered TiO2nanoribbons,” Nanoscale 4, 1545–1548 (2012).
[CrossRef]

C. F. Guo, J. Zhang, J. Miao, Y. Fan, and Q. Liu, “MTMO grayscale photomask,” Opt. Express 18, 2621–2631 (2009).
[CrossRef]

Mo, T. S.

Modafe, A.

C. M. Waits, A. Modafe, and R. Ghodssi, “Investigation of gray-scale technology for large area 3D silicon MEMS structures,” J. Micromech. Microeng. 13, 170–177 (2003).
[CrossRef]

Ngo, N. Q.

Phlips, B. F.

M. Christophersen and B. F. Phlips, “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92, 194102 (2008).
[CrossRef]

Que, W. X.

Quenzer, H. J.

K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[CrossRef]

Rantala, J. T.

Reimer, K.

K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[CrossRef]

Ren, T.

Y. Wang, R. Wang, C. Guo, J. Miao, Y. Tian, T. Ren, and Q. Liu, “Path-directed and maskless fabrication of ordered TiO2nanoribbons,” Nanoscale 4, 1545–1548 (2012).
[CrossRef]

Rogers, J. D.

Shi, L. P.

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photon. Rev. 4, 123–143 (2010).
[CrossRef]

Shiue, C. D.

Tian, Y.

Y. Wang, R. Wang, C. Guo, J. Miao, Y. Tian, T. Ren, and Q. Liu, “Path-directed and maskless fabrication of ordered TiO2nanoribbons,” Nanoscale 4, 1545–1548 (2012).
[CrossRef]

H. Xi, Q. Liu, Y. Tian, Y. Wang, S. Guo, and M. Chu, “Ge2Sb1.5Bi0.5Te5 thin film as inorganic photoresist,” Opt. Mater. Express 2, 461–468 (2012).
[CrossRef]

Tkaczyk, T.

Tsai, D. P.

Tseng, M. L.

Wagner, B.

K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[CrossRef]

Waits, C. M.

C. M. Waits, A. Modafe, and R. Ghodssi, “Investigation of gray-scale technology for large area 3D silicon MEMS structures,” J. Micromech. Microeng. 13, 170–177 (2003).
[CrossRef]

Wang, C.

Wang, R.

Y. Wang, R. Wang, C. Guo, J. Miao, Y. Tian, T. Ren, and Q. Liu, “Path-directed and maskless fabrication of ordered TiO2nanoribbons,” Nanoscale 4, 1545–1548 (2012).
[CrossRef]

Wang, Y.

Wu, C. K.

C. K. Wu, “Method of making high energy beam sensitive glasses,” U.S. patent 5,078,771 (7Jan.1992).

C. K. Wu, “Gray scale all-glass photomasks,” U.S. patent application 20050053844 A1 (10March2005).

Xi, H.

Xu, W.

Yeh, H. C.

Yi, A. Y.

Yu, W. X.

Yuan, X. C.

Zhang, J.

Zhang, Z.

Zhao, Z.

Adv. Mater. (1)

M. C. Gather, N. M. Kronenberg, and K. Meerholz, “Monolithic integration of multi-color organic LEDs by grayscale lithography,” Adv. Mater. 22, 4634–4638 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. Christophersen and B. F. Phlips, “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92, 194102 (2008).
[CrossRef]

Y. Lin, M. H. Hong, and T. C. Chong, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 041108 (2006).
[CrossRef]

J. Micromech. Microeng. (1)

C. M. Waits, A. Modafe, and R. Ghodssi, “Investigation of gray-scale technology for large area 3D silicon MEMS structures,” J. Micromech. Microeng. 13, 170–177 (2003).
[CrossRef]

Laser Photon. Rev. (1)

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photon. Rev. 4, 123–143 (2010).
[CrossRef]

Nanoscale (1)

Y. Wang, R. Wang, C. Guo, J. Miao, Y. Tian, T. Ren, and Q. Liu, “Path-directed and maskless fabrication of ordered TiO2nanoribbons,” Nanoscale 4, 1545–1548 (2012).
[CrossRef]

Opt. Express (7)

W. X. Yu, X. C. Yuan, N. Q. Ngo, W. X. Que, W. C. Cheong, and V. Koudriachov, “Single-step fabrication of continuous surface relief micro-optical elements in hybrid sol-gel glass by laser direct writing,” Opt. Express 10, 443–448 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-10-443 .

J. D. Rogers, A. H. O. Kärkkäinen, T. Tkaczyk, J. T. Rantala, and M. R. Descour, “Realization of refractive microoptics through grayscale lithographic patterning of photosensitive hybrid glass,” Opt. Express 12, 1294–1303 (2004).
[CrossRef]

X. Dong, C. Du, S. Li, C. Wang, and Y. Fu, “Control approach for form accuracy of microlenses with continuous relief,” Opt. Express 13, 1353–1360 (2005).
[CrossRef]

S. K. Lin, I. C. Lin, and D. P. Tsai, “Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks,” Opt. Express 14, 4452–4458 (2006).
[CrossRef]

C. F. Guo, S. Cao, P. Jiang, Y. Fang, J. Zhang, Y. Fan, Y. Wang, W. Xu, Z. Zhao, and Q. Liu, “Grayscale photomask fabricated by laser direct writing in metallic nano-films,” Opt. Express 17, 19981–19987 (2009).
[CrossRef]

C. F. Guo, J. Zhang, J. Miao, Y. Fan, and Q. Liu, “MTMO grayscale photomask,” Opt. Express 18, 2621–2631 (2009).
[CrossRef]

C. H. Chu, C. D. Shiue, H. W. Cheng, M. L. Tseng, H. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express 18, 18383–18393 (2010).
[CrossRef]

Opt. Lett. (2)

Opt. Mater. Express (1)

Proc. Natl. Acad. Sci. USA (1)

C. Chen, D. Hirdes, and A. Folch, “Gray-scale photolithography using microfluidic photomasks,” Proc. Natl. Acad. Sci. USA 100, 1499–1504 (2003).
[CrossRef]

Proc. SPIE (1)

K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[CrossRef]

Other (3)

C. K. Wu, “Method of making high energy beam sensitive glasses,” U.S. patent 5,078,771 (7Jan.1992).

C. K. Wu, “Gray scale all-glass photomasks,” U.S. patent application 20050053844 A1 (10March2005).

G. Gal, “Method for fabricating microlenses,” U.S. patent 5,310,623 (10May1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Comparison of two types of grayscale masks design. (a) Designed pattern and OD distribution without modification. (b) Pattern and OD distribution after modification.

Fig. 2.
Fig. 2.

(a) and (b) Optical images of grayscale patterns for Fresnel lenses fabricated in 20 nm Sn films.

Fig. 3.
Fig. 3.

(a) SEM image of the photoresist 3D structure, at a tilt angle of 60°. (b) CLSM image of 3D surface profile of Fresnel lens made of SiO2. (c) Profile curve of the 3D structure measured along radius of (b), showing the height (2.75 μm) and diameter (150 μm) of the Fresnel lens.

Fig. 4.
Fig. 4.

Optical microscopy images of micro lens array and single Fresnel lens fabricated on SiO2. (a) Morphology image, (b) focusing image of the lens array, and (c) letter “A” imaged through the micro lens array. (d)–(f) are the corresponding profile, imaging, and focusing of a single Fresnel lens, respectively. All these images demonstrate the practical performance of these DOEs.

Fig. 5.
Fig. 5.

(a) SEM image of the optical wedge structure made of photoresist, in which the line on the wedge indicates the path of surface profiler in measurement. (b) Data measured by surface profiler gives out the size and profile of the optical wedge: 122.40μm×1.85μm. (c) CLSM image of the central part of Fresnel lens made of SiO2. (d) Top line shows the line roughness and the rest a curve shows the profile of the lens along radius of (c).

Fig. 6.
Fig. 6.

Optical density data before and after accelerated aging experiments showed the stability of grayscale mask. (a) OD of unexposed mask (red curve) and OD (blue curve) of the mask exposed 20 times (10 h) under lithography I-line (365 nm). (b) OD value of grayscale masks at 365 nm after different time duration from 2 h to 10 h.

Tables (1)

Tables Icon

Table 1. RIE Etching Ratio Under Different Experiment Condition

Metrics