Abstract

Outdoor visible light communication (VLC) between an LED traffic light and an automobile has been proposed for intelligent transportation system development. An unobstructed line-of-sight (LOS) channel has to be guaranteed for this communication system. In this paper, an analytical LOS path loss model is proposed and validated by the measurement results. Commercial-off-the-shelf (COTS) LED traffic lights are characterized for use as transmitters and possible interference sources are studied, such as background solar radiation and artificial lighting. Accordingly, the performance of an outdoor VLC system is evaluated using different modulation schemes.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Akanegawa, Y. Tanaka, and M. Nakagawa, “Basic study on traffic information system using LED traffic lights,” IEEE Trans. Intell. Transp. Syst. 2, 197–203 (2001).
    [CrossRef]
  2. H. Binti Che Wook, T. Komine, S. Haruyama, and M. Nakagawa, “Visible light communication with LED-based traffic lights using 2-dimensional image sensor,” in Proceedings of Consumer Communications and Networking Conference (CCNC) (IEEE, 2006), pp. 243–247.
  3. S. Iwasaki, C. Premachandra, T. Endo, T. Fujii, M. Tanimoto, and Y. Kimura, “Visible light road-to-vehicle communication using high-speed camera,” in Proceedings of Intelligent Vehicles Symposium (IEEE, 2008), pp. 13–18.
  4. N. Kumar, L. N. Alves, and R. L. Aguiar, “Design and analysis of the basic parameters for traffic information transmission using VLC,” in Proceedings of Wireless Communication, Vehicular Technology, Information Theory and Aerospace and Electronic Systems Technology VITAE (IEEE, 2009), pp. 798–802.
  5. I. E. Lee, M. L. Sim, and F. W. L. Kung, “Performance enhancement of outdoor visible-light communication system using selective combining receiver,” IET Optoelectron 3, 30–39 (2009).
    [CrossRef]
  6. R. Roberts, P. Gopalakrishnan, and S. Rathi, “Visible light positioning: Automotive use case,” in Proceedings of Vehicular Networking Conference (VNC) (IEEE, 2010), pp. 309–314.
  7. C. G. Lee, S. Park, and M. Kang, “Proposal of car-to-car message delivery over optical wireless communication link,” Rev. Laser Eng. 36, 1320–1322 (2008).
    [CrossRef]
  8. T. Matsumura, “Visible light communication using image sensor,” in IEEE 802.15.7 VLC standard meeting, no. 802.15-09-0502-00-0007, 2009.
  9. S. Okada, T. Yendo, T. Yamazato, T. Fujii, M. Tanimoto, and Y. Kimura, “On vehicle receiver for distant light road-to-vehicle communication,” in Proceedings of Intelligent Vehicles Symposium (IEEE, 2009), pp. 1033–1038.
  10. R. E. Bird, and C. Riordan, “Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the Earth’s surface for cloudless atmospheres,” J. Clim. Appl. Meteorol. 25, 87–97 (1986).
    [CrossRef]
  11. A. J. C. Moreira, R. T. Valadas, and A. M. Duarte, “Characterisation and modelling of artificial light interference in optical wireless communication systems,” in Proceedings of the IEEE 6th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’95) (IEEE1995), pp. 326–331.
  12. A. J. C. Moreira, R. T. Valadas, and A. M. Duarte, “Optical interference produced by artificial light,” Wireless Netw. 3, 131–140 (1997).
    [CrossRef]
  13. R. Narasimhan, M. D. Audeh, and J. M. Kahn, “Effect of electronic-ballast fluorescent lighting on wireless infrared links,” IEE Proc. Optoelectron. 143, 347–354 (1996).
    [CrossRef]
  14. C. Chang, Y. Su, U. Kurokawa, and B. Choi, “Interference rejection using filter-based sensor array in VLC systems,” IEEE Sensor J. 12, 1025–1032 (2012).
    [CrossRef]
  15. R. Perez-Jimenez, J. A. Rabadan, and F. J. Lopez-Hernandez, “Filtered modulation schemes for short distance infrared wireless communications,” IEEE Trans. Consum. Electron. 46, 275–282 (2000).
    [CrossRef]
  16. H. Elgala, and R. Mesleh, “Non-linearity effects and predistortion in optical ofdm wireless transmission using leds,” Intern. J. Ultra Wideband Commun. Syst. 1, 143–150 (2009).
    [CrossRef]
  17. E. F. Schubert, Light-Emitting Diodes (Cambridge University, 2006).
  18. T. Lee, and A. Dentai, “Power and modulation bandwidth of GaAs-AlGaAs high-radiance LED’s for optical communication systems,” J. Quantum Electron. QE-14, 150–159 (1978).
    [CrossRef]
  19. H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “80  Mbit/s visible light communications using pre-equalized white LED,” in Proceedings of the 34th European Conference on Optical Communication ECOC (IEEE, 2008), pp. 1–2.
  20. D. O’Brien, G. Faulkner, Z. Lubin, L. Kyungwoo, and J. Daekwang, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20, 1243–1245 (2008).
    [CrossRef]
  21. K. Cui, G. Chen, Z. Xu, and R. D. Roberts, “Line-of-sight visible light communication system design and demonstration,” in Proceedings of 2010 7th International Symposium on Communication Systems Networks and Digital Signal Processing (CSNDSP) (IEEE, 2010), pp. 621–625.
  22. N. Araki, and H. Yashima, “A channel model of optical wireless communication during rainfall,” in Proceedings of the 2nd International Symposium on Wireless Communication Systems (IEEE, 2005), pp. 205–209.
  23. M. A. Naboulsi, H. Sizun, and F. Fornel, “Fog attenuation prediction for optical and infrared waves,” Opt. Eng. 43, 319–329 (2004).
    [CrossRef]
  24. M. Araki, K. Ogawa, K. Wakamori, K. Kodate, and S. Ito, “Measurement and simulation of the effect of snowfall on free-space optical propagation,” Appl. Opt. 47, 5736–5743 (2008).
    [CrossRef]
  25. S. B. Alexander, Optical Communication Receiver Design (SPIE Optical Engineering, 1997).
  26. M. D. Audeh, and J. M. Kahn, “Performance evaluation of L-pulse-position modulation on non-directed indoor infrared channels,” in Proceedings of the IEEE International Conference on Communications (SUPERCOMM/ICC) (IEEE, 1994), pp. 660–664.
  27. Joint ISO/CIE Standard, ISO 16508:1999/CIE S006.1/E-1998, “Road Traffic Lights—Photometric Properties of 200 mm Roundel Signals.”

2012 (1)

C. Chang, Y. Su, U. Kurokawa, and B. Choi, “Interference rejection using filter-based sensor array in VLC systems,” IEEE Sensor J. 12, 1025–1032 (2012).
[CrossRef]

2009 (2)

H. Elgala, and R. Mesleh, “Non-linearity effects and predistortion in optical ofdm wireless transmission using leds,” Intern. J. Ultra Wideband Commun. Syst. 1, 143–150 (2009).
[CrossRef]

I. E. Lee, M. L. Sim, and F. W. L. Kung, “Performance enhancement of outdoor visible-light communication system using selective combining receiver,” IET Optoelectron 3, 30–39 (2009).
[CrossRef]

2008 (3)

C. G. Lee, S. Park, and M. Kang, “Proposal of car-to-car message delivery over optical wireless communication link,” Rev. Laser Eng. 36, 1320–1322 (2008).
[CrossRef]

D. O’Brien, G. Faulkner, Z. Lubin, L. Kyungwoo, and J. Daekwang, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20, 1243–1245 (2008).
[CrossRef]

M. Araki, K. Ogawa, K. Wakamori, K. Kodate, and S. Ito, “Measurement and simulation of the effect of snowfall on free-space optical propagation,” Appl. Opt. 47, 5736–5743 (2008).
[CrossRef]

2004 (1)

M. A. Naboulsi, H. Sizun, and F. Fornel, “Fog attenuation prediction for optical and infrared waves,” Opt. Eng. 43, 319–329 (2004).
[CrossRef]

2001 (1)

M. Akanegawa, Y. Tanaka, and M. Nakagawa, “Basic study on traffic information system using LED traffic lights,” IEEE Trans. Intell. Transp. Syst. 2, 197–203 (2001).
[CrossRef]

2000 (1)

R. Perez-Jimenez, J. A. Rabadan, and F. J. Lopez-Hernandez, “Filtered modulation schemes for short distance infrared wireless communications,” IEEE Trans. Consum. Electron. 46, 275–282 (2000).
[CrossRef]

1997 (1)

A. J. C. Moreira, R. T. Valadas, and A. M. Duarte, “Optical interference produced by artificial light,” Wireless Netw. 3, 131–140 (1997).
[CrossRef]

1996 (1)

R. Narasimhan, M. D. Audeh, and J. M. Kahn, “Effect of electronic-ballast fluorescent lighting on wireless infrared links,” IEE Proc. Optoelectron. 143, 347–354 (1996).
[CrossRef]

1986 (1)

R. E. Bird, and C. Riordan, “Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the Earth’s surface for cloudless atmospheres,” J. Clim. Appl. Meteorol. 25, 87–97 (1986).
[CrossRef]

1978 (1)

T. Lee, and A. Dentai, “Power and modulation bandwidth of GaAs-AlGaAs high-radiance LED’s for optical communication systems,” J. Quantum Electron. QE-14, 150–159 (1978).
[CrossRef]

Aguiar, R. L.

N. Kumar, L. N. Alves, and R. L. Aguiar, “Design and analysis of the basic parameters for traffic information transmission using VLC,” in Proceedings of Wireless Communication, Vehicular Technology, Information Theory and Aerospace and Electronic Systems Technology VITAE (IEEE, 2009), pp. 798–802.

Akanegawa, M.

M. Akanegawa, Y. Tanaka, and M. Nakagawa, “Basic study on traffic information system using LED traffic lights,” IEEE Trans. Intell. Transp. Syst. 2, 197–203 (2001).
[CrossRef]

Alexander, S. B.

S. B. Alexander, Optical Communication Receiver Design (SPIE Optical Engineering, 1997).

Alves, L. N.

N. Kumar, L. N. Alves, and R. L. Aguiar, “Design and analysis of the basic parameters for traffic information transmission using VLC,” in Proceedings of Wireless Communication, Vehicular Technology, Information Theory and Aerospace and Electronic Systems Technology VITAE (IEEE, 2009), pp. 798–802.

Araki, M.

Araki, N.

N. Araki, and H. Yashima, “A channel model of optical wireless communication during rainfall,” in Proceedings of the 2nd International Symposium on Wireless Communication Systems (IEEE, 2005), pp. 205–209.

Audeh, M. D.

R. Narasimhan, M. D. Audeh, and J. M. Kahn, “Effect of electronic-ballast fluorescent lighting on wireless infrared links,” IEE Proc. Optoelectron. 143, 347–354 (1996).
[CrossRef]

M. D. Audeh, and J. M. Kahn, “Performance evaluation of L-pulse-position modulation on non-directed indoor infrared channels,” in Proceedings of the IEEE International Conference on Communications (SUPERCOMM/ICC) (IEEE, 1994), pp. 660–664.

Binti Che Wook, H.

H. Binti Che Wook, T. Komine, S. Haruyama, and M. Nakagawa, “Visible light communication with LED-based traffic lights using 2-dimensional image sensor,” in Proceedings of Consumer Communications and Networking Conference (CCNC) (IEEE, 2006), pp. 243–247.

Bird, R. E.

R. E. Bird, and C. Riordan, “Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the Earth’s surface for cloudless atmospheres,” J. Clim. Appl. Meteorol. 25, 87–97 (1986).
[CrossRef]

Chang, C.

C. Chang, Y. Su, U. Kurokawa, and B. Choi, “Interference rejection using filter-based sensor array in VLC systems,” IEEE Sensor J. 12, 1025–1032 (2012).
[CrossRef]

Chen, G.

K. Cui, G. Chen, Z. Xu, and R. D. Roberts, “Line-of-sight visible light communication system design and demonstration,” in Proceedings of 2010 7th International Symposium on Communication Systems Networks and Digital Signal Processing (CSNDSP) (IEEE, 2010), pp. 621–625.

Choi, B.

C. Chang, Y. Su, U. Kurokawa, and B. Choi, “Interference rejection using filter-based sensor array in VLC systems,” IEEE Sensor J. 12, 1025–1032 (2012).
[CrossRef]

Cui, K.

K. Cui, G. Chen, Z. Xu, and R. D. Roberts, “Line-of-sight visible light communication system design and demonstration,” in Proceedings of 2010 7th International Symposium on Communication Systems Networks and Digital Signal Processing (CSNDSP) (IEEE, 2010), pp. 621–625.

Daekwang, J.

D. O’Brien, G. Faulkner, Z. Lubin, L. Kyungwoo, and J. Daekwang, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20, 1243–1245 (2008).
[CrossRef]

Dentai, A.

T. Lee, and A. Dentai, “Power and modulation bandwidth of GaAs-AlGaAs high-radiance LED’s for optical communication systems,” J. Quantum Electron. QE-14, 150–159 (1978).
[CrossRef]

Duarte, A. M.

A. J. C. Moreira, R. T. Valadas, and A. M. Duarte, “Optical interference produced by artificial light,” Wireless Netw. 3, 131–140 (1997).
[CrossRef]

A. J. C. Moreira, R. T. Valadas, and A. M. Duarte, “Characterisation and modelling of artificial light interference in optical wireless communication systems,” in Proceedings of the IEEE 6th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’95) (IEEE1995), pp. 326–331.

Elgala, H.

H. Elgala, and R. Mesleh, “Non-linearity effects and predistortion in optical ofdm wireless transmission using leds,” Intern. J. Ultra Wideband Commun. Syst. 1, 143–150 (2009).
[CrossRef]

Endo, T.

S. Iwasaki, C. Premachandra, T. Endo, T. Fujii, M. Tanimoto, and Y. Kimura, “Visible light road-to-vehicle communication using high-speed camera,” in Proceedings of Intelligent Vehicles Symposium (IEEE, 2008), pp. 13–18.

Faulkner, G.

D. O’Brien, G. Faulkner, Z. Lubin, L. Kyungwoo, and J. Daekwang, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20, 1243–1245 (2008).
[CrossRef]

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “80  Mbit/s visible light communications using pre-equalized white LED,” in Proceedings of the 34th European Conference on Optical Communication ECOC (IEEE, 2008), pp. 1–2.

Fornel, F.

M. A. Naboulsi, H. Sizun, and F. Fornel, “Fog attenuation prediction for optical and infrared waves,” Opt. Eng. 43, 319–329 (2004).
[CrossRef]

Fujii, T.

S. Okada, T. Yendo, T. Yamazato, T. Fujii, M. Tanimoto, and Y. Kimura, “On vehicle receiver for distant light road-to-vehicle communication,” in Proceedings of Intelligent Vehicles Symposium (IEEE, 2009), pp. 1033–1038.

S. Iwasaki, C. Premachandra, T. Endo, T. Fujii, M. Tanimoto, and Y. Kimura, “Visible light road-to-vehicle communication using high-speed camera,” in Proceedings of Intelligent Vehicles Symposium (IEEE, 2008), pp. 13–18.

Gopalakrishnan, P.

R. Roberts, P. Gopalakrishnan, and S. Rathi, “Visible light positioning: Automotive use case,” in Proceedings of Vehicular Networking Conference (VNC) (IEEE, 2010), pp. 309–314.

Haruyama, S.

H. Binti Che Wook, T. Komine, S. Haruyama, and M. Nakagawa, “Visible light communication with LED-based traffic lights using 2-dimensional image sensor,” in Proceedings of Consumer Communications and Networking Conference (CCNC) (IEEE, 2006), pp. 243–247.

Ito, S.

Iwasaki, S.

S. Iwasaki, C. Premachandra, T. Endo, T. Fujii, M. Tanimoto, and Y. Kimura, “Visible light road-to-vehicle communication using high-speed camera,” in Proceedings of Intelligent Vehicles Symposium (IEEE, 2008), pp. 13–18.

Jung, D.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “80  Mbit/s visible light communications using pre-equalized white LED,” in Proceedings of the 34th European Conference on Optical Communication ECOC (IEEE, 2008), pp. 1–2.

Kahn, J. M.

R. Narasimhan, M. D. Audeh, and J. M. Kahn, “Effect of electronic-ballast fluorescent lighting on wireless infrared links,” IEE Proc. Optoelectron. 143, 347–354 (1996).
[CrossRef]

M. D. Audeh, and J. M. Kahn, “Performance evaluation of L-pulse-position modulation on non-directed indoor infrared channels,” in Proceedings of the IEEE International Conference on Communications (SUPERCOMM/ICC) (IEEE, 1994), pp. 660–664.

Kang, M.

C. G. Lee, S. Park, and M. Kang, “Proposal of car-to-car message delivery over optical wireless communication link,” Rev. Laser Eng. 36, 1320–1322 (2008).
[CrossRef]

Kimura, Y.

S. Iwasaki, C. Premachandra, T. Endo, T. Fujii, M. Tanimoto, and Y. Kimura, “Visible light road-to-vehicle communication using high-speed camera,” in Proceedings of Intelligent Vehicles Symposium (IEEE, 2008), pp. 13–18.

S. Okada, T. Yendo, T. Yamazato, T. Fujii, M. Tanimoto, and Y. Kimura, “On vehicle receiver for distant light road-to-vehicle communication,” in Proceedings of Intelligent Vehicles Symposium (IEEE, 2009), pp. 1033–1038.

Kodate, K.

Komine, T.

H. Binti Che Wook, T. Komine, S. Haruyama, and M. Nakagawa, “Visible light communication with LED-based traffic lights using 2-dimensional image sensor,” in Proceedings of Consumer Communications and Networking Conference (CCNC) (IEEE, 2006), pp. 243–247.

Kumar, N.

N. Kumar, L. N. Alves, and R. L. Aguiar, “Design and analysis of the basic parameters for traffic information transmission using VLC,” in Proceedings of Wireless Communication, Vehicular Technology, Information Theory and Aerospace and Electronic Systems Technology VITAE (IEEE, 2009), pp. 798–802.

Kung, F. W. L.

I. E. Lee, M. L. Sim, and F. W. L. Kung, “Performance enhancement of outdoor visible-light communication system using selective combining receiver,” IET Optoelectron 3, 30–39 (2009).
[CrossRef]

Kurokawa, U.

C. Chang, Y. Su, U. Kurokawa, and B. Choi, “Interference rejection using filter-based sensor array in VLC systems,” IEEE Sensor J. 12, 1025–1032 (2012).
[CrossRef]

Kyungwoo, L.

D. O’Brien, G. Faulkner, Z. Lubin, L. Kyungwoo, and J. Daekwang, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20, 1243–1245 (2008).
[CrossRef]

Lee, C. G.

C. G. Lee, S. Park, and M. Kang, “Proposal of car-to-car message delivery over optical wireless communication link,” Rev. Laser Eng. 36, 1320–1322 (2008).
[CrossRef]

Lee, I. E.

I. E. Lee, M. L. Sim, and F. W. L. Kung, “Performance enhancement of outdoor visible-light communication system using selective combining receiver,” IET Optoelectron 3, 30–39 (2009).
[CrossRef]

Lee, K.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “80  Mbit/s visible light communications using pre-equalized white LED,” in Proceedings of the 34th European Conference on Optical Communication ECOC (IEEE, 2008), pp. 1–2.

Lee, T.

T. Lee, and A. Dentai, “Power and modulation bandwidth of GaAs-AlGaAs high-radiance LED’s for optical communication systems,” J. Quantum Electron. QE-14, 150–159 (1978).
[CrossRef]

Lopez-Hernandez, F. J.

R. Perez-Jimenez, J. A. Rabadan, and F. J. Lopez-Hernandez, “Filtered modulation schemes for short distance infrared wireless communications,” IEEE Trans. Consum. Electron. 46, 275–282 (2000).
[CrossRef]

Lubin, Z.

D. O’Brien, G. Faulkner, Z. Lubin, L. Kyungwoo, and J. Daekwang, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20, 1243–1245 (2008).
[CrossRef]

Matsumura, T.

T. Matsumura, “Visible light communication using image sensor,” in IEEE 802.15.7 VLC standard meeting, no. 802.15-09-0502-00-0007, 2009.

Mesleh, R.

H. Elgala, and R. Mesleh, “Non-linearity effects and predistortion in optical ofdm wireless transmission using leds,” Intern. J. Ultra Wideband Commun. Syst. 1, 143–150 (2009).
[CrossRef]

Minh, H. L.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “80  Mbit/s visible light communications using pre-equalized white LED,” in Proceedings of the 34th European Conference on Optical Communication ECOC (IEEE, 2008), pp. 1–2.

Moreira, A. J. C.

A. J. C. Moreira, R. T. Valadas, and A. M. Duarte, “Optical interference produced by artificial light,” Wireless Netw. 3, 131–140 (1997).
[CrossRef]

A. J. C. Moreira, R. T. Valadas, and A. M. Duarte, “Characterisation and modelling of artificial light interference in optical wireless communication systems,” in Proceedings of the IEEE 6th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’95) (IEEE1995), pp. 326–331.

Naboulsi, M. A.

M. A. Naboulsi, H. Sizun, and F. Fornel, “Fog attenuation prediction for optical and infrared waves,” Opt. Eng. 43, 319–329 (2004).
[CrossRef]

Nakagawa, M.

M. Akanegawa, Y. Tanaka, and M. Nakagawa, “Basic study on traffic information system using LED traffic lights,” IEEE Trans. Intell. Transp. Syst. 2, 197–203 (2001).
[CrossRef]

H. Binti Che Wook, T. Komine, S. Haruyama, and M. Nakagawa, “Visible light communication with LED-based traffic lights using 2-dimensional image sensor,” in Proceedings of Consumer Communications and Networking Conference (CCNC) (IEEE, 2006), pp. 243–247.

Narasimhan, R.

R. Narasimhan, M. D. Audeh, and J. M. Kahn, “Effect of electronic-ballast fluorescent lighting on wireless infrared links,” IEE Proc. Optoelectron. 143, 347–354 (1996).
[CrossRef]

O’Brien, D.

D. O’Brien, G. Faulkner, Z. Lubin, L. Kyungwoo, and J. Daekwang, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20, 1243–1245 (2008).
[CrossRef]

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “80  Mbit/s visible light communications using pre-equalized white LED,” in Proceedings of the 34th European Conference on Optical Communication ECOC (IEEE, 2008), pp. 1–2.

Ogawa, K.

Oh, Y.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “80  Mbit/s visible light communications using pre-equalized white LED,” in Proceedings of the 34th European Conference on Optical Communication ECOC (IEEE, 2008), pp. 1–2.

Okada, S.

S. Okada, T. Yendo, T. Yamazato, T. Fujii, M. Tanimoto, and Y. Kimura, “On vehicle receiver for distant light road-to-vehicle communication,” in Proceedings of Intelligent Vehicles Symposium (IEEE, 2009), pp. 1033–1038.

Park, S.

C. G. Lee, S. Park, and M. Kang, “Proposal of car-to-car message delivery over optical wireless communication link,” Rev. Laser Eng. 36, 1320–1322 (2008).
[CrossRef]

Perez-Jimenez, R.

R. Perez-Jimenez, J. A. Rabadan, and F. J. Lopez-Hernandez, “Filtered modulation schemes for short distance infrared wireless communications,” IEEE Trans. Consum. Electron. 46, 275–282 (2000).
[CrossRef]

Premachandra, C.

S. Iwasaki, C. Premachandra, T. Endo, T. Fujii, M. Tanimoto, and Y. Kimura, “Visible light road-to-vehicle communication using high-speed camera,” in Proceedings of Intelligent Vehicles Symposium (IEEE, 2008), pp. 13–18.

Rabadan, J. A.

R. Perez-Jimenez, J. A. Rabadan, and F. J. Lopez-Hernandez, “Filtered modulation schemes for short distance infrared wireless communications,” IEEE Trans. Consum. Electron. 46, 275–282 (2000).
[CrossRef]

Rathi, S.

R. Roberts, P. Gopalakrishnan, and S. Rathi, “Visible light positioning: Automotive use case,” in Proceedings of Vehicular Networking Conference (VNC) (IEEE, 2010), pp. 309–314.

Riordan, C.

R. E. Bird, and C. Riordan, “Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the Earth’s surface for cloudless atmospheres,” J. Clim. Appl. Meteorol. 25, 87–97 (1986).
[CrossRef]

Roberts, R.

R. Roberts, P. Gopalakrishnan, and S. Rathi, “Visible light positioning: Automotive use case,” in Proceedings of Vehicular Networking Conference (VNC) (IEEE, 2010), pp. 309–314.

Roberts, R. D.

K. Cui, G. Chen, Z. Xu, and R. D. Roberts, “Line-of-sight visible light communication system design and demonstration,” in Proceedings of 2010 7th International Symposium on Communication Systems Networks and Digital Signal Processing (CSNDSP) (IEEE, 2010), pp. 621–625.

Schubert, E. F.

E. F. Schubert, Light-Emitting Diodes (Cambridge University, 2006).

Sim, M. L.

I. E. Lee, M. L. Sim, and F. W. L. Kung, “Performance enhancement of outdoor visible-light communication system using selective combining receiver,” IET Optoelectron 3, 30–39 (2009).
[CrossRef]

Sizun, H.

M. A. Naboulsi, H. Sizun, and F. Fornel, “Fog attenuation prediction for optical and infrared waves,” Opt. Eng. 43, 319–329 (2004).
[CrossRef]

Su, Y.

C. Chang, Y. Su, U. Kurokawa, and B. Choi, “Interference rejection using filter-based sensor array in VLC systems,” IEEE Sensor J. 12, 1025–1032 (2012).
[CrossRef]

Tanaka, Y.

M. Akanegawa, Y. Tanaka, and M. Nakagawa, “Basic study on traffic information system using LED traffic lights,” IEEE Trans. Intell. Transp. Syst. 2, 197–203 (2001).
[CrossRef]

Tanimoto, M.

S. Okada, T. Yendo, T. Yamazato, T. Fujii, M. Tanimoto, and Y. Kimura, “On vehicle receiver for distant light road-to-vehicle communication,” in Proceedings of Intelligent Vehicles Symposium (IEEE, 2009), pp. 1033–1038.

S. Iwasaki, C. Premachandra, T. Endo, T. Fujii, M. Tanimoto, and Y. Kimura, “Visible light road-to-vehicle communication using high-speed camera,” in Proceedings of Intelligent Vehicles Symposium (IEEE, 2008), pp. 13–18.

Valadas, R. T.

A. J. C. Moreira, R. T. Valadas, and A. M. Duarte, “Optical interference produced by artificial light,” Wireless Netw. 3, 131–140 (1997).
[CrossRef]

A. J. C. Moreira, R. T. Valadas, and A. M. Duarte, “Characterisation and modelling of artificial light interference in optical wireless communication systems,” in Proceedings of the IEEE 6th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’95) (IEEE1995), pp. 326–331.

Wakamori, K.

Xu, Z.

K. Cui, G. Chen, Z. Xu, and R. D. Roberts, “Line-of-sight visible light communication system design and demonstration,” in Proceedings of 2010 7th International Symposium on Communication Systems Networks and Digital Signal Processing (CSNDSP) (IEEE, 2010), pp. 621–625.

Yamazato, T.

S. Okada, T. Yendo, T. Yamazato, T. Fujii, M. Tanimoto, and Y. Kimura, “On vehicle receiver for distant light road-to-vehicle communication,” in Proceedings of Intelligent Vehicles Symposium (IEEE, 2009), pp. 1033–1038.

Yashima, H.

N. Araki, and H. Yashima, “A channel model of optical wireless communication during rainfall,” in Proceedings of the 2nd International Symposium on Wireless Communication Systems (IEEE, 2005), pp. 205–209.

Yendo, T.

S. Okada, T. Yendo, T. Yamazato, T. Fujii, M. Tanimoto, and Y. Kimura, “On vehicle receiver for distant light road-to-vehicle communication,” in Proceedings of Intelligent Vehicles Symposium (IEEE, 2009), pp. 1033–1038.

Zeng, L.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “80  Mbit/s visible light communications using pre-equalized white LED,” in Proceedings of the 34th European Conference on Optical Communication ECOC (IEEE, 2008), pp. 1–2.

Appl. Opt. (1)

IEE Proc. Optoelectron. (1)

R. Narasimhan, M. D. Audeh, and J. M. Kahn, “Effect of electronic-ballast fluorescent lighting on wireless infrared links,” IEE Proc. Optoelectron. 143, 347–354 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. O’Brien, G. Faulkner, Z. Lubin, L. Kyungwoo, and J. Daekwang, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20, 1243–1245 (2008).
[CrossRef]

IEEE Sensor J. (1)

C. Chang, Y. Su, U. Kurokawa, and B. Choi, “Interference rejection using filter-based sensor array in VLC systems,” IEEE Sensor J. 12, 1025–1032 (2012).
[CrossRef]

IEEE Trans. Consum. Electron. (1)

R. Perez-Jimenez, J. A. Rabadan, and F. J. Lopez-Hernandez, “Filtered modulation schemes for short distance infrared wireless communications,” IEEE Trans. Consum. Electron. 46, 275–282 (2000).
[CrossRef]

IEEE Trans. Intell. Transp. Syst. (1)

M. Akanegawa, Y. Tanaka, and M. Nakagawa, “Basic study on traffic information system using LED traffic lights,” IEEE Trans. Intell. Transp. Syst. 2, 197–203 (2001).
[CrossRef]

IET Optoelectron (1)

I. E. Lee, M. L. Sim, and F. W. L. Kung, “Performance enhancement of outdoor visible-light communication system using selective combining receiver,” IET Optoelectron 3, 30–39 (2009).
[CrossRef]

Intern. J. Ultra Wideband Commun. Syst. (1)

H. Elgala, and R. Mesleh, “Non-linearity effects and predistortion in optical ofdm wireless transmission using leds,” Intern. J. Ultra Wideband Commun. Syst. 1, 143–150 (2009).
[CrossRef]

J. Clim. Appl. Meteorol. (1)

R. E. Bird, and C. Riordan, “Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the Earth’s surface for cloudless atmospheres,” J. Clim. Appl. Meteorol. 25, 87–97 (1986).
[CrossRef]

J. Quantum Electron. (1)

T. Lee, and A. Dentai, “Power and modulation bandwidth of GaAs-AlGaAs high-radiance LED’s for optical communication systems,” J. Quantum Electron. QE-14, 150–159 (1978).
[CrossRef]

Opt. Eng. (1)

M. A. Naboulsi, H. Sizun, and F. Fornel, “Fog attenuation prediction for optical and infrared waves,” Opt. Eng. 43, 319–329 (2004).
[CrossRef]

Rev. Laser Eng. (1)

C. G. Lee, S. Park, and M. Kang, “Proposal of car-to-car message delivery over optical wireless communication link,” Rev. Laser Eng. 36, 1320–1322 (2008).
[CrossRef]

Wireless Netw. (1)

A. J. C. Moreira, R. T. Valadas, and A. M. Duarte, “Optical interference produced by artificial light,” Wireless Netw. 3, 131–140 (1997).
[CrossRef]

Other (14)

K. Cui, G. Chen, Z. Xu, and R. D. Roberts, “Line-of-sight visible light communication system design and demonstration,” in Proceedings of 2010 7th International Symposium on Communication Systems Networks and Digital Signal Processing (CSNDSP) (IEEE, 2010), pp. 621–625.

N. Araki, and H. Yashima, “A channel model of optical wireless communication during rainfall,” in Proceedings of the 2nd International Symposium on Wireless Communication Systems (IEEE, 2005), pp. 205–209.

S. B. Alexander, Optical Communication Receiver Design (SPIE Optical Engineering, 1997).

M. D. Audeh, and J. M. Kahn, “Performance evaluation of L-pulse-position modulation on non-directed indoor infrared channels,” in Proceedings of the IEEE International Conference on Communications (SUPERCOMM/ICC) (IEEE, 1994), pp. 660–664.

Joint ISO/CIE Standard, ISO 16508:1999/CIE S006.1/E-1998, “Road Traffic Lights—Photometric Properties of 200 mm Roundel Signals.”

T. Matsumura, “Visible light communication using image sensor,” in IEEE 802.15.7 VLC standard meeting, no. 802.15-09-0502-00-0007, 2009.

S. Okada, T. Yendo, T. Yamazato, T. Fujii, M. Tanimoto, and Y. Kimura, “On vehicle receiver for distant light road-to-vehicle communication,” in Proceedings of Intelligent Vehicles Symposium (IEEE, 2009), pp. 1033–1038.

R. Roberts, P. Gopalakrishnan, and S. Rathi, “Visible light positioning: Automotive use case,” in Proceedings of Vehicular Networking Conference (VNC) (IEEE, 2010), pp. 309–314.

H. Binti Che Wook, T. Komine, S. Haruyama, and M. Nakagawa, “Visible light communication with LED-based traffic lights using 2-dimensional image sensor,” in Proceedings of Consumer Communications and Networking Conference (CCNC) (IEEE, 2006), pp. 243–247.

S. Iwasaki, C. Premachandra, T. Endo, T. Fujii, M. Tanimoto, and Y. Kimura, “Visible light road-to-vehicle communication using high-speed camera,” in Proceedings of Intelligent Vehicles Symposium (IEEE, 2008), pp. 13–18.

N. Kumar, L. N. Alves, and R. L. Aguiar, “Design and analysis of the basic parameters for traffic information transmission using VLC,” in Proceedings of Wireless Communication, Vehicular Technology, Information Theory and Aerospace and Electronic Systems Technology VITAE (IEEE, 2009), pp. 798–802.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “80  Mbit/s visible light communications using pre-equalized white LED,” in Proceedings of the 34th European Conference on Optical Communication ECOC (IEEE, 2008), pp. 1–2.

A. J. C. Moreira, R. T. Valadas, and A. M. Duarte, “Characterisation and modelling of artificial light interference in optical wireless communication systems,” in Proceedings of the IEEE 6th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’95) (IEEE1995), pp. 326–331.

E. F. Schubert, Light-Emitting Diodes (Cambridge University, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

Diagram of an outdoor VLC system.

Fig. 2.
Fig. 2.

Vertical power variation within one day.

Fig. 3.
Fig. 3.

Measured maximum power variation within one day and comparison with the SPCTRAL2 model for the 500 nm band.

Fig. 4.
Fig. 4.

Typical artificial light sources and their power spectra.

Fig. 5.
Fig. 5.

Concatenation structures of different LED lamps.

Fig. 6.
Fig. 6.

Input current and output optical power relation of TRF108.

Fig. 7.
Fig. 7.

Input voltage and output current relation of typical LED traffic light lamps.

Fig. 8.
Fig. 8.

Experimental setup for the frequency response measurement.

Fig. 9.
Fig. 9.

Frequency responses of different LEDs and LED lamps and comparison with the model prediction.

Fig. 10.
Fig. 10.

Comparison of the shot noise and the preamplifier noise.

Fig. 11.
Fig. 11.

Experimental setup for outdoor C / N 0 measurement.

Fig. 12.
Fig. 12.

C / N 0 measurement results for different cases and comparison with the theoretical predication results.

Fig. 13.
Fig. 13.

LED traffic light transmission beam pattern without a plastic lens cover.

Fig. 14.
Fig. 14.

Power spectrum density of PPM and OOK.

Fig. 15.
Fig. 15.

BER performance of different M-PPM and 2-PPM at different bit rates.

Fig. 16.
Fig. 16.

BER performance of 2-PPM at 100 kbps under different background solar radiation levels.

Tables (1)

Tables Icon

Table 1. Parameters in the Measurement System

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

I d λ = H o λ D T r λ T a λ T w λ T o λ T u λ ,
P = I e · h ν · η int · η extraction ,
I = b 0 + b 1 ( V in V DC ) + b 2 ( V in V DC ) 2 + b 3 ( V in V DC ) 3 .
P ( ω ) = P ( 0 ) 1 + ( ω τ eff ) 2 ,
L L = g s ( β ) A r cos ( α ) D 2 0 θ max 2 π g s ( θ ) sin ( θ ) d θ .
L L = g s ( β , γ ) A r cos ( α ) D 2 0 2 π 0 π g s ( θ , φ ) sin ( θ ) d θ d φ ,
σ shot 2 = 2 q I ,
C N 0 = 1 2 ( R λ L P a ) 2 σ shot 2 + σ amp 2 ,
x k = P peak b ( t ) * h ( t ) * g ( t ) | t = k T / M .
S ( ω ) = | P ( ω ) | 2 [ S c ( ω ) + S d ( ω ) ] ,
S c ( ω ) = 1 T [ ( 1 1 M ) + 2 M k = 1 M 1 ( k M 1 ) cos ( k ω T M ) ] ,
S d ( ω ) = 2 π T 2 k = δ ( ω 2 π k M T ) .
SER = Q ( x 1 x 2 2 N 0 ) + Q ( x 1 x 3 2 N 0 ) + + Q ( x 1 x M 2 N 0 ) ,
BER M / 2 M 1 [ Q ( x 1 x 2 2 N 0 ) + + Q ( x 1 x M 2 N 0 ) ] .

Metrics