Abstract

We propose a novel optical dispersion measurement system using dual-heterodyne mixing to measure the relative phase. The system can realize parallel measurement of the relative phases between adjacent frequencies by introducing optical modulators to generate optical sidebands from a laser light source and an arrayed waveguide grating to separate the sidebands. To realize a wide dispersion range, different frequency intervals for the adjacent frequencies were combined in the system. One is the three-frequency optical dispersion measurement system (three-frequency measurement), which has been developed to measure the relative phase between adjacent peaks of an optical frequency spectrum with intervals of 25 GHz generated without any frequency scanning. The other is the four-frequency optical dispersion measurement system (four-frequency measurement) with intervals of 2 GHz generated from the three-frequency sets to expand the measurement range. The experimental results using single-mode optical fibers of different lengths from 0 to 90 km indicated the dispersion slope to be 16.8ps/nm/km with a measurement range of 2500ps/nm and an uncertainty of less than 1ps/nm. The proposed system provides advantages to enable parallel measurement on a frequency axis without a high-speed (GHz) photodetector, even though GHz spacing on the optical scale is used, thus reflecting the dual-heterodyne mixing.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Rosinski, J. W. D. Chi, P. Grosso, and J. Le Bihan, “Multichannel transmission of a multicore fiber coupled with vertical-cavity surface-emitting lasers,” J. Lightwave Technol. 17, 807–810 (1999).
    [CrossRef]
  2. P. Guan, H. C. H. Mulvad, Y. Tomiyama, T. Hirano, T. Hirooka, and M. Nakazawa, “1.28  Tbit/s/channel single-polarization DQPSK trans- mission over 525 km using ultrafast time-domain optical Fourier trans-formation,” in Proceedings of 36th European Conference and Exhibition on Optical Communication (ECOC) (2010).
  3. S. Ferber, C. Schubert, R. Ludwig, C. Boerner, C. Schmidt-Langhorst, and H. G. Weber, “640  Gbit/s DQPSK single wavelength channel trans-mission over 480 km fibre link,” Electron. Lett. 41, 1236–1237 (2005).
    [CrossRef]
  4. M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE Quantum Electron. 17, 404–407 (1981).
    [CrossRef]
  5. A. V. Belov, A. S. Kurkov, V. A. Semenov, and A. V. Chicolini, “The measurement of chromatic dispersion in single-mode fibers by interferometric loop,” IEEE J. Lightwave Technol. 7, 863–868 (1989).
    [CrossRef]
  6. T. Shioda and T. Yamazaki, “Proposal of dual-heterodyne-mixing method and application to high-speed waveform measurement using low-speed equipment,” Opt. Commun. 283, 4733–4740 (2010).
    [CrossRef]
  7. T. Shioda and T. Yamazaki, “Spectral waveform measurement of 2 THz optical frequency comb by dual-heterodyne mixing,” J. Opt. Soc. Am. B 29, 1707–1711 (2012).
    [CrossRef]

2012 (1)

2010 (1)

T. Shioda and T. Yamazaki, “Proposal of dual-heterodyne-mixing method and application to high-speed waveform measurement using low-speed equipment,” Opt. Commun. 283, 4733–4740 (2010).
[CrossRef]

2005 (1)

S. Ferber, C. Schubert, R. Ludwig, C. Boerner, C. Schmidt-Langhorst, and H. G. Weber, “640  Gbit/s DQPSK single wavelength channel trans-mission over 480 km fibre link,” Electron. Lett. 41, 1236–1237 (2005).
[CrossRef]

1999 (1)

1989 (1)

A. V. Belov, A. S. Kurkov, V. A. Semenov, and A. V. Chicolini, “The measurement of chromatic dispersion in single-mode fibers by interferometric loop,” IEEE J. Lightwave Technol. 7, 863–868 (1989).
[CrossRef]

1981 (1)

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE Quantum Electron. 17, 404–407 (1981).
[CrossRef]

Belov, A. V.

A. V. Belov, A. S. Kurkov, V. A. Semenov, and A. V. Chicolini, “The measurement of chromatic dispersion in single-mode fibers by interferometric loop,” IEEE J. Lightwave Technol. 7, 863–868 (1989).
[CrossRef]

Boerner, C.

S. Ferber, C. Schubert, R. Ludwig, C. Boerner, C. Schmidt-Langhorst, and H. G. Weber, “640  Gbit/s DQPSK single wavelength channel trans-mission over 480 km fibre link,” Electron. Lett. 41, 1236–1237 (2005).
[CrossRef]

Chi, J. W. D.

Chicolini, A. V.

A. V. Belov, A. S. Kurkov, V. A. Semenov, and A. V. Chicolini, “The measurement of chromatic dispersion in single-mode fibers by interferometric loop,” IEEE J. Lightwave Technol. 7, 863–868 (1989).
[CrossRef]

Ferber, S.

S. Ferber, C. Schubert, R. Ludwig, C. Boerner, C. Schmidt-Langhorst, and H. G. Weber, “640  Gbit/s DQPSK single wavelength channel trans-mission over 480 km fibre link,” Electron. Lett. 41, 1236–1237 (2005).
[CrossRef]

Grosso, P.

Guan, P.

P. Guan, H. C. H. Mulvad, Y. Tomiyama, T. Hirano, T. Hirooka, and M. Nakazawa, “1.28  Tbit/s/channel single-polarization DQPSK trans- mission over 525 km using ultrafast time-domain optical Fourier trans-formation,” in Proceedings of 36th European Conference and Exhibition on Optical Communication (ECOC) (2010).

Hirano, T.

P. Guan, H. C. H. Mulvad, Y. Tomiyama, T. Hirano, T. Hirooka, and M. Nakazawa, “1.28  Tbit/s/channel single-polarization DQPSK trans- mission over 525 km using ultrafast time-domain optical Fourier trans-formation,” in Proceedings of 36th European Conference and Exhibition on Optical Communication (ECOC) (2010).

Hirooka, T.

P. Guan, H. C. H. Mulvad, Y. Tomiyama, T. Hirano, T. Hirooka, and M. Nakazawa, “1.28  Tbit/s/channel single-polarization DQPSK trans- mission over 525 km using ultrafast time-domain optical Fourier trans-formation,” in Proceedings of 36th European Conference and Exhibition on Optical Communication (ECOC) (2010).

Kurkov, A. S.

A. V. Belov, A. S. Kurkov, V. A. Semenov, and A. V. Chicolini, “The measurement of chromatic dispersion in single-mode fibers by interferometric loop,” IEEE J. Lightwave Technol. 7, 863–868 (1989).
[CrossRef]

Le Bihan, J.

Ludwig, R.

S. Ferber, C. Schubert, R. Ludwig, C. Boerner, C. Schmidt-Langhorst, and H. G. Weber, “640  Gbit/s DQPSK single wavelength channel trans-mission over 480 km fibre link,” Electron. Lett. 41, 1236–1237 (2005).
[CrossRef]

Mulvad, H. C. H.

P. Guan, H. C. H. Mulvad, Y. Tomiyama, T. Hirano, T. Hirooka, and M. Nakazawa, “1.28  Tbit/s/channel single-polarization DQPSK trans- mission over 525 km using ultrafast time-domain optical Fourier trans-formation,” in Proceedings of 36th European Conference and Exhibition on Optical Communication (ECOC) (2010).

Nakazawa, M.

P. Guan, H. C. H. Mulvad, Y. Tomiyama, T. Hirano, T. Hirooka, and M. Nakazawa, “1.28  Tbit/s/channel single-polarization DQPSK trans- mission over 525 km using ultrafast time-domain optical Fourier trans-formation,” in Proceedings of 36th European Conference and Exhibition on Optical Communication (ECOC) (2010).

Rosinski, B.

Schmidt-Langhorst, C.

S. Ferber, C. Schubert, R. Ludwig, C. Boerner, C. Schmidt-Langhorst, and H. G. Weber, “640  Gbit/s DQPSK single wavelength channel trans-mission over 480 km fibre link,” Electron. Lett. 41, 1236–1237 (2005).
[CrossRef]

Schubert, C.

S. Ferber, C. Schubert, R. Ludwig, C. Boerner, C. Schmidt-Langhorst, and H. G. Weber, “640  Gbit/s DQPSK single wavelength channel trans-mission over 480 km fibre link,” Electron. Lett. 41, 1236–1237 (2005).
[CrossRef]

Seikai, S.

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE Quantum Electron. 17, 404–407 (1981).
[CrossRef]

Semenov, V. A.

A. V. Belov, A. S. Kurkov, V. A. Semenov, and A. V. Chicolini, “The measurement of chromatic dispersion in single-mode fibers by interferometric loop,” IEEE J. Lightwave Technol. 7, 863–868 (1989).
[CrossRef]

Shibata, N.

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE Quantum Electron. 17, 404–407 (1981).
[CrossRef]

Shioda, T.

T. Shioda and T. Yamazaki, “Spectral waveform measurement of 2 THz optical frequency comb by dual-heterodyne mixing,” J. Opt. Soc. Am. B 29, 1707–1711 (2012).
[CrossRef]

T. Shioda and T. Yamazaki, “Proposal of dual-heterodyne-mixing method and application to high-speed waveform measurement using low-speed equipment,” Opt. Commun. 283, 4733–4740 (2010).
[CrossRef]

Tateda, M.

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE Quantum Electron. 17, 404–407 (1981).
[CrossRef]

Tomiyama, Y.

P. Guan, H. C. H. Mulvad, Y. Tomiyama, T. Hirano, T. Hirooka, and M. Nakazawa, “1.28  Tbit/s/channel single-polarization DQPSK trans- mission over 525 km using ultrafast time-domain optical Fourier trans-formation,” in Proceedings of 36th European Conference and Exhibition on Optical Communication (ECOC) (2010).

Weber, H. G.

S. Ferber, C. Schubert, R. Ludwig, C. Boerner, C. Schmidt-Langhorst, and H. G. Weber, “640  Gbit/s DQPSK single wavelength channel trans-mission over 480 km fibre link,” Electron. Lett. 41, 1236–1237 (2005).
[CrossRef]

Yamazaki, T.

T. Shioda and T. Yamazaki, “Spectral waveform measurement of 2 THz optical frequency comb by dual-heterodyne mixing,” J. Opt. Soc. Am. B 29, 1707–1711 (2012).
[CrossRef]

T. Shioda and T. Yamazaki, “Proposal of dual-heterodyne-mixing method and application to high-speed waveform measurement using low-speed equipment,” Opt. Commun. 283, 4733–4740 (2010).
[CrossRef]

Electron. Lett. (1)

S. Ferber, C. Schubert, R. Ludwig, C. Boerner, C. Schmidt-Langhorst, and H. G. Weber, “640  Gbit/s DQPSK single wavelength channel trans-mission over 480 km fibre link,” Electron. Lett. 41, 1236–1237 (2005).
[CrossRef]

IEEE J. Lightwave Technol. (1)

A. V. Belov, A. S. Kurkov, V. A. Semenov, and A. V. Chicolini, “The measurement of chromatic dispersion in single-mode fibers by interferometric loop,” IEEE J. Lightwave Technol. 7, 863–868 (1989).
[CrossRef]

IEEE Quantum Electron. (1)

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE Quantum Electron. 17, 404–407 (1981).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

T. Shioda and T. Yamazaki, “Proposal of dual-heterodyne-mixing method and application to high-speed waveform measurement using low-speed equipment,” Opt. Commun. 283, 4733–4740 (2010).
[CrossRef]

Other (1)

P. Guan, H. C. H. Mulvad, Y. Tomiyama, T. Hirano, T. Hirooka, and M. Nakazawa, “1.28  Tbit/s/channel single-polarization DQPSK trans- mission over 525 km using ultrafast time-domain optical Fourier trans-formation,” in Proceedings of 36th European Conference and Exhibition on Optical Communication (ECOC) (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Schematic principle of dual-heterodyne mixing.

Fig. 2.
Fig. 2.

Maximum dispersion, which can be obtained from the relative phases (Δϕ) between two pairs of optical signals as a function of Δf1 under the condition that Δf2 is fixed at 25 GHz.

Fig. 3.
Fig. 3.

Principle of operation for the Vernier scale measurement. The relative phases of two optical frequencies with frequency difference of δf can be simultaneously measured with a three-frequency light source. Dispersion can be obtained through the calculation procedure using Eq. (9). Fine resolution can be obtained by using a three-frequency light source with a long frequency distance.

Fig. 4.
Fig. 4.

Principle of operation for the main scale measurement. The relative phases of two optical frequencies with frequency difference of 2fm can be simultaneously measured with four of the frequencies in a three-frequency-pair light source. Dispersion can be obtained through the calculation procedure using Eq. (10). The narrow frequency difference of 2fm allows a wide dynamic range, expanding the measurement range without any additional uncertainty.

Fig. 5.
Fig. 5.

Experimental setup for simultaneous dispersion measurement on main and Vernier scales.

Fig. 6.
Fig. 6.

Optical spectra of three-frequency light sources for (a) signal and (b) reference frequencies.

Fig. 7.
Fig. 7.

Optical spectrum of four-frequency light source (signal).

Fig. 8.
Fig. 8.

AWG output optical spectra of the pairs of signal and reference frequencies (2 GHz interval) at (a) output port 1 and (b) output port 2 for the four-frequency measurement.

Fig. 9.
Fig. 9.

Measured VDC against the optical path length difference of ΔL.

Fig. 10.
Fig. 10.

Result of the four-frequency dispersion measurement (main scale).

Fig. 11.
Fig. 11.

AWG output spectra of three-frequency set from (a) output port 1 and (b) output port 2. Signal and reference spectra are shown.

Fig. 12.
Fig. 12.

Observed dispersion depending on the optical fiber length of the sample. Both results of the main (open circles) and Vernier (closed circles) scales are shown. The data of the Vernier scale is below the maximum limitation of approximately 201ps/nm.

Fig. 13.
Fig. 13.

Calibrated dispersion of the Vernier scale depending on the length of the optical fiber sample. The data of the Vernier scale were biased by a different amount corresponding to the optical fiber length, which was determined using the result of the main scale.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

D=f02cdτddf,
D=f022πcd2ϕdf2.
Df022πcΔϕ2/Δf1Δϕ1/Δf1Δf2=f022πcΔϕ2Δϕ1Δf1Δf2.
V1(t,ϕ1,L1)a1cos{2πδft+(ϕ1ϕr)+2πf1cL1},
V2(t,ϕ2,L2)a2cos{2πδft+(ϕ2ϕr)+2πf2cL2}.
VDC(Δϕ,ΔL)bias.+bcos{Δϕ+2πΔfcΔL},
Dmax=f022πc2πΔf1Δf2.
Duc=αf022πc2πΔf1Δf2.
DΔf=f022πcΔϕS2ΔϕS1Δf2.
Dfm=f022πcΔΦS2ΔΦS12fmΔf.

Metrics