Abstract

A kind of magnetic field sensing system based on capillary tube filled with magnetic fluids is developed in this work. The analytical expressions for the sensing system are derived in detail. The sensitivity and other sensing properties of the system are investigated numerically and experimentally. The focal line position of the emergent light after the capillary is related with the strength of the externally applied magnetic fields and recorded and judged by the CCD to sense the magnetic field indirectly. The sensing mechanism is analyzed and ascribed to the magnetically tunable refractive index of magnetic fluids. This kind of sensing unit has the advantages of miniaturization of device, easy operation, and lower dosage of sensing media.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. E. Rosensweig, Ferrohydrodynamics (Cambridge University, 1985).
  2. S. S. Papell, “Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles,” U. S. patent 3,215,572 (2 November 1965).
  3. H. Ji, S. Pu, X. Wang, and G. Yu, “Magnetic field sensing based on V-shaped groove filled with magnetic fluids,” Appl. Opt. 51, 1010–1020 (2012).
    [CrossRef]
  4. Y. Zhao, R. Lv, Y. Ying, and Q. Wang, “Hollow-core photonic crystal fiber Fabry-Perot sensor for magnetic field measurement based on magnetic fluid,” Opt. Laser Technol. 44, 899–902 (2012).
    [CrossRef]
  5. P. Zu, C. C. Chan, W. S. Lew, L. Hu, Y. Jin, H. F. Liew, L. H. Chen, W. C. Wong, and X. Dong, “Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber,” IEEE Photon. J. 4, 494–498 (2012).
    [CrossRef]
  6. Y. Zhao, Y. Zhang, Q. Wang, and R. Lv, “Photonic crystal fibers Bragg grating filled magnetic fluid for magnetic fields sensing,” Sens. Lett. 10, 465–470 (2012).
    [CrossRef]
  7. J. Li, Y. Lin, X. Liu, Q. Zhang, H. Miao, J. Fu, and L. Lin, “A magnetic field-dependent modulation effect tends to stabilize light transmission through binary ferrofluids,” Opt. Commun. 285, 3111–3115 (2012).
    [CrossRef]
  8. J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photon. 5, 234–238 (2011).
    [CrossRef]
  9. P. Zu, C. C. Chan, L. W. Siang, Y. Jin, Y. Zhang, L. H. Fen, L. Chen, and X. Dong, “Magneto-optic fiber Sagnac modulator based on magnetic fluids,” Opt. Lett. 36, 1425–1427 (2011).
    [CrossRef]
  10. J. J. Chieh, C.-Y. Hong, S. Y. Yang, H. E. Horng, and H. C. Yang, “Study on magnetic fluid optical fiber devices for optical logic operations by characteristics of superparamagnetic nanoparticles and magnetic fluids,” J. Nanopart. Res. 12, 293–300 (2010).
    [CrossRef]
  11. R. Patel, and R. V. Mehta, “Ferrodispersion: a promising candidate for an optical capacitor,” Appl. Opt. 50, G17–G22 (2011).
    [CrossRef]
  12. A. Candiani, W. Margulis, C. Sterner, M. Konstantaki, and S. Pissadakis, “Phase-shifted Bragg microstructured optical fiber gratings utilizing infiltrated ferrofluids,” Opt. Lett. 36, 2548–2550 (2011).
    [CrossRef]
  13. D. Zablotsky and E. Blums, “Magnetically driven microconvective instability of optically induced concentration grating in ferrofluids,” Phys. Rev. E 84, 026319 (2011).
    [CrossRef]
  14. S. Xia, J. Wang, Z. Lu, and F. Zhang, “Birefringence and magneto-optical properties in oleic acid coated Fe3O4 nanoparticles: application for optical switch,” Int. J. Nanosci. 10, 515–520 (2011).
    [CrossRef]
  15. S. Y. Park, H. Handa, and A. Sandhu, “High speed magneto-optical valve: Rapid control of the optical transmittance of aqueous solutions by magnetically induced self-assembly of superparamagnetic particle chains,” J. Appl. Phys. 105, 07B526 (2009).
    [CrossRef]
  16. C. Z. Fan, E. J. Liang, and J. P. Huang, “Optical properties in the soft photonic crystals based on ferrofluids,” J. Phys. D 44, 325003 (2011).
    [CrossRef]
  17. S. Pu and M. Liu, “Tunable photonic crystals based on MnFe2O4 magnetic fluids by magnetic fields,” J. Alloys Compd. 481, 851–854 (2009).
    [CrossRef]
  18. R.-P. Pan, C.-C. Shih, T.-T. Tang, Y.-G. Wang, H.-Y. Wu, C.-J. Lin, and C.-L. Pan, “Magnetically tunable metallic photonic crystals immersed in liquid crystal for terahertz wave,” Proc. SPIE 8279, 82790J (2012).
    [CrossRef]
  19. J. M. Laskar, S. Brojabasi, B. Raj, and J. Philip, “Comparison of light scattering from self assembled array of nanoparticle chains with cylinders,” Opt. Commun. 285, 1242–1247 (2012).
    [CrossRef]
  20. H. Bhatt, R. Patel, and R. V. Mehta, “Magnetically induced Mie resonance in a magnetic sphere suspended in a ferrofluid,” J. Opt. Soc. Am. A 27, 873–877 (2010).
    [CrossRef]
  21. Y. Zhao, Y. Zhang, R. Lv, and Q. Wang, “Novel optical devices based on the tunable refractive index of magnetic fluid and their characteristics,” J. Magn. Magn. Mater. 323, 2987–2996(2011).
    [CrossRef]
  22. C.-Y. Hong, H. E. Horng, and S. Y. Yang, “Tunable refractive index of magnetic fluids and its applications,” Phys. Status Solidi C 1, 1604–1609 (2004).
    [CrossRef]
  23. S. Pu, X. Chen, Y. Chen, W. Liao, L. Chen, and Y. Xia, “Measurement of the refractive index of a magnetic fluid by the retroreflection on the fiber-optic end face,” Appl. Phys. Lett. 86, 171904 (2005).
    [CrossRef]
  24. S. Malynych and I. Moroz, “Time dependent magnetically induced variations in optical transmission of magnetite nanoparticle aqueous suspension,” Central Eur. J. Phys. 10, 159–165 (2012).
    [CrossRef]
  25. M. Chung and C. Fu, “Optical transmittance and dynamic properties of ferrofluids (Fe3O4) under DC-biased magnetic fields,” IEEE Trans. Magn. 47, 3170–3172 (2011).
    [CrossRef]
  26. Y. Zhao, R. Lv, Y. Zhang, and Q. Wang, “Novel optical devices based on the transmission properties of magnetic fluid and their characteristics,” Opt. Lasers Eng. 50, 1177–1184 (2012).
    [CrossRef]
  27. T. W. Cease and P. Johnston, “A magneto-optic current transducer,” IEEE Trans. Power Deliv. 5, 548–555 (1990).
    [CrossRef]
  28. T. Verbiest and J. Wouters, “Magnetic field sensing based on Faraday rotation in inorganic/polymer hybrid materials,” Proc. SPIE 7467, 74670B (2009).
    [CrossRef]
  29. C. D. Perciante and J. A. Ferrari, “Faraday current sensor with temperature monitoring,” Appl. Opt. 44, 6910–6912 (2005).
    [CrossRef]
  30. H. Zhang, Y. Dong, J. Leeson, L. Chen, and X. Bao, “High sensitivity optical fiber current sensor based on polarization diversity and a Faraday rotation mirror cavity,” Appl. Opt. 50, 924–929 (2011).
    [CrossRef]
  31. Y. Ding, Y. Dong, J. Zhu, B. Zheng, D. Zhang, and W. Hu, “Linear birefringence and imperfect quarter wave plate effects on optic-fiber current sensor,” Proc. SPIE 8311, 83112C (2011).
    [CrossRef]
  32. T. Hu, Y. Zhao, X. Li, J. Chen, and Z. Lu, “Novel optical fiber current sensor based on magnetic fluid,” Chin. Opt. Lett. 8, 392–394 (2010).
    [CrossRef]
  33. T. Liu, X. Chen, Z. Di, and J. Zhang, “Tunable magneto-optical wavelength filter of long-period fiber grating with magnetic fluids,” Appl. Phys. Lett. 91, 121116 (2007).
    [CrossRef]
  34. W. Liao, X. Chen, Y. Chen, S. Pu, Y. Xia, and Q. Li, “Tunable optical fiber filters with magnetic fluids,” Appl. Phys. Lett. 87, 151122 (2005).
    [CrossRef]
  35. T. Liu, X. Chen, Z. Di, J. Zhang, X. Li, and J. Chen, “Measurement of the magnetic field-dependent refractive index of magnetic fluids in bulk,” Chin. Opt. Lett. 6, 195–197 (2008).
  36. R. V. Mehta, R. J. Patel, B. N. Chudasama, H. B. Desai, and R. V. Upadhyay, “Effect of dielectric and magnetic contrast on the photonic band gap in ferrodispersion,” Magnetohydrodynamics 44, 69–74 (2008).
  37. S. Y. Yang, Y. F. Chen, Y. H. Ke, W. S. Tse, H. E. Horng, C.-Y. Hong, and H. C. Yang, “Effect of temperature on the structure formation in the magnetic fluid film subjected to perpendicular magnetic fields,” J. Magn. Magn. Mater. 252, 290–292 (2002).
    [CrossRef]
  38. C.-Y. Hong, Y. S. Yeh, S. Y. Yang, H. E. Horng, and H. C. Yang, “Ordered structures with point-like defects of various shapes in magnetic fluid films,” J. Magn. Magn. Mater. 283, 22–27 (2004).
    [CrossRef]

2012 (9)

Y. Zhao, R. Lv, Y. Ying, and Q. Wang, “Hollow-core photonic crystal fiber Fabry-Perot sensor for magnetic field measurement based on magnetic fluid,” Opt. Laser Technol. 44, 899–902 (2012).
[CrossRef]

P. Zu, C. C. Chan, W. S. Lew, L. Hu, Y. Jin, H. F. Liew, L. H. Chen, W. C. Wong, and X. Dong, “Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber,” IEEE Photon. J. 4, 494–498 (2012).
[CrossRef]

Y. Zhao, Y. Zhang, Q. Wang, and R. Lv, “Photonic crystal fibers Bragg grating filled magnetic fluid for magnetic fields sensing,” Sens. Lett. 10, 465–470 (2012).
[CrossRef]

J. Li, Y. Lin, X. Liu, Q. Zhang, H. Miao, J. Fu, and L. Lin, “A magnetic field-dependent modulation effect tends to stabilize light transmission through binary ferrofluids,” Opt. Commun. 285, 3111–3115 (2012).
[CrossRef]

R.-P. Pan, C.-C. Shih, T.-T. Tang, Y.-G. Wang, H.-Y. Wu, C.-J. Lin, and C.-L. Pan, “Magnetically tunable metallic photonic crystals immersed in liquid crystal for terahertz wave,” Proc. SPIE 8279, 82790J (2012).
[CrossRef]

J. M. Laskar, S. Brojabasi, B. Raj, and J. Philip, “Comparison of light scattering from self assembled array of nanoparticle chains with cylinders,” Opt. Commun. 285, 1242–1247 (2012).
[CrossRef]

S. Malynych and I. Moroz, “Time dependent magnetically induced variations in optical transmission of magnetite nanoparticle aqueous suspension,” Central Eur. J. Phys. 10, 159–165 (2012).
[CrossRef]

Y. Zhao, R. Lv, Y. Zhang, and Q. Wang, “Novel optical devices based on the transmission properties of magnetic fluid and their characteristics,” Opt. Lasers Eng. 50, 1177–1184 (2012).
[CrossRef]

H. Ji, S. Pu, X. Wang, and G. Yu, “Magnetic field sensing based on V-shaped groove filled with magnetic fluids,” Appl. Opt. 51, 1010–1020 (2012).
[CrossRef]

2011 (11)

H. Zhang, Y. Dong, J. Leeson, L. Chen, and X. Bao, “High sensitivity optical fiber current sensor based on polarization diversity and a Faraday rotation mirror cavity,” Appl. Opt. 50, 924–929 (2011).
[CrossRef]

P. Zu, C. C. Chan, L. W. Siang, Y. Jin, Y. Zhang, L. H. Fen, L. Chen, and X. Dong, “Magneto-optic fiber Sagnac modulator based on magnetic fluids,” Opt. Lett. 36, 1425–1427 (2011).
[CrossRef]

A. Candiani, W. Margulis, C. Sterner, M. Konstantaki, and S. Pissadakis, “Phase-shifted Bragg microstructured optical fiber gratings utilizing infiltrated ferrofluids,” Opt. Lett. 36, 2548–2550 (2011).
[CrossRef]

R. Patel, and R. V. Mehta, “Ferrodispersion: a promising candidate for an optical capacitor,” Appl. Opt. 50, G17–G22 (2011).
[CrossRef]

Y. Ding, Y. Dong, J. Zhu, B. Zheng, D. Zhang, and W. Hu, “Linear birefringence and imperfect quarter wave plate effects on optic-fiber current sensor,” Proc. SPIE 8311, 83112C (2011).
[CrossRef]

M. Chung and C. Fu, “Optical transmittance and dynamic properties of ferrofluids (Fe3O4) under DC-biased magnetic fields,” IEEE Trans. Magn. 47, 3170–3172 (2011).
[CrossRef]

Y. Zhao, Y. Zhang, R. Lv, and Q. Wang, “Novel optical devices based on the tunable refractive index of magnetic fluid and their characteristics,” J. Magn. Magn. Mater. 323, 2987–2996(2011).
[CrossRef]

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photon. 5, 234–238 (2011).
[CrossRef]

D. Zablotsky and E. Blums, “Magnetically driven microconvective instability of optically induced concentration grating in ferrofluids,” Phys. Rev. E 84, 026319 (2011).
[CrossRef]

S. Xia, J. Wang, Z. Lu, and F. Zhang, “Birefringence and magneto-optical properties in oleic acid coated Fe3O4 nanoparticles: application for optical switch,” Int. J. Nanosci. 10, 515–520 (2011).
[CrossRef]

C. Z. Fan, E. J. Liang, and J. P. Huang, “Optical properties in the soft photonic crystals based on ferrofluids,” J. Phys. D 44, 325003 (2011).
[CrossRef]

2010 (3)

J. J. Chieh, C.-Y. Hong, S. Y. Yang, H. E. Horng, and H. C. Yang, “Study on magnetic fluid optical fiber devices for optical logic operations by characteristics of superparamagnetic nanoparticles and magnetic fluids,” J. Nanopart. Res. 12, 293–300 (2010).
[CrossRef]

H. Bhatt, R. Patel, and R. V. Mehta, “Magnetically induced Mie resonance in a magnetic sphere suspended in a ferrofluid,” J. Opt. Soc. Am. A 27, 873–877 (2010).
[CrossRef]

T. Hu, Y. Zhao, X. Li, J. Chen, and Z. Lu, “Novel optical fiber current sensor based on magnetic fluid,” Chin. Opt. Lett. 8, 392–394 (2010).
[CrossRef]

2009 (3)

T. Verbiest and J. Wouters, “Magnetic field sensing based on Faraday rotation in inorganic/polymer hybrid materials,” Proc. SPIE 7467, 74670B (2009).
[CrossRef]

S. Pu and M. Liu, “Tunable photonic crystals based on MnFe2O4 magnetic fluids by magnetic fields,” J. Alloys Compd. 481, 851–854 (2009).
[CrossRef]

S. Y. Park, H. Handa, and A. Sandhu, “High speed magneto-optical valve: Rapid control of the optical transmittance of aqueous solutions by magnetically induced self-assembly of superparamagnetic particle chains,” J. Appl. Phys. 105, 07B526 (2009).
[CrossRef]

2008 (2)

R. V. Mehta, R. J. Patel, B. N. Chudasama, H. B. Desai, and R. V. Upadhyay, “Effect of dielectric and magnetic contrast on the photonic band gap in ferrodispersion,” Magnetohydrodynamics 44, 69–74 (2008).

T. Liu, X. Chen, Z. Di, J. Zhang, X. Li, and J. Chen, “Measurement of the magnetic field-dependent refractive index of magnetic fluids in bulk,” Chin. Opt. Lett. 6, 195–197 (2008).

2007 (1)

T. Liu, X. Chen, Z. Di, and J. Zhang, “Tunable magneto-optical wavelength filter of long-period fiber grating with magnetic fluids,” Appl. Phys. Lett. 91, 121116 (2007).
[CrossRef]

2005 (3)

W. Liao, X. Chen, Y. Chen, S. Pu, Y. Xia, and Q. Li, “Tunable optical fiber filters with magnetic fluids,” Appl. Phys. Lett. 87, 151122 (2005).
[CrossRef]

S. Pu, X. Chen, Y. Chen, W. Liao, L. Chen, and Y. Xia, “Measurement of the refractive index of a magnetic fluid by the retroreflection on the fiber-optic end face,” Appl. Phys. Lett. 86, 171904 (2005).
[CrossRef]

C. D. Perciante and J. A. Ferrari, “Faraday current sensor with temperature monitoring,” Appl. Opt. 44, 6910–6912 (2005).
[CrossRef]

2004 (2)

C.-Y. Hong, Y. S. Yeh, S. Y. Yang, H. E. Horng, and H. C. Yang, “Ordered structures with point-like defects of various shapes in magnetic fluid films,” J. Magn. Magn. Mater. 283, 22–27 (2004).
[CrossRef]

C.-Y. Hong, H. E. Horng, and S. Y. Yang, “Tunable refractive index of magnetic fluids and its applications,” Phys. Status Solidi C 1, 1604–1609 (2004).
[CrossRef]

2002 (1)

S. Y. Yang, Y. F. Chen, Y. H. Ke, W. S. Tse, H. E. Horng, C.-Y. Hong, and H. C. Yang, “Effect of temperature on the structure formation in the magnetic fluid film subjected to perpendicular magnetic fields,” J. Magn. Magn. Mater. 252, 290–292 (2002).
[CrossRef]

1990 (1)

T. W. Cease and P. Johnston, “A magneto-optic current transducer,” IEEE Trans. Power Deliv. 5, 548–555 (1990).
[CrossRef]

Bao, X.

Bhatt, H.

Blums, E.

D. Zablotsky and E. Blums, “Magnetically driven microconvective instability of optically induced concentration grating in ferrofluids,” Phys. Rev. E 84, 026319 (2011).
[CrossRef]

Brojabasi, S.

J. M. Laskar, S. Brojabasi, B. Raj, and J. Philip, “Comparison of light scattering from self assembled array of nanoparticle chains with cylinders,” Opt. Commun. 285, 1242–1247 (2012).
[CrossRef]

Candiani, A.

Cease, T. W.

T. W. Cease and P. Johnston, “A magneto-optic current transducer,” IEEE Trans. Power Deliv. 5, 548–555 (1990).
[CrossRef]

Chan, C. C.

P. Zu, C. C. Chan, W. S. Lew, L. Hu, Y. Jin, H. F. Liew, L. H. Chen, W. C. Wong, and X. Dong, “Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber,” IEEE Photon. J. 4, 494–498 (2012).
[CrossRef]

P. Zu, C. C. Chan, L. W. Siang, Y. Jin, Y. Zhang, L. H. Fen, L. Chen, and X. Dong, “Magneto-optic fiber Sagnac modulator based on magnetic fluids,” Opt. Lett. 36, 1425–1427 (2011).
[CrossRef]

Chen, J.

Chen, L.

Chen, L. H.

P. Zu, C. C. Chan, W. S. Lew, L. Hu, Y. Jin, H. F. Liew, L. H. Chen, W. C. Wong, and X. Dong, “Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber,” IEEE Photon. J. 4, 494–498 (2012).
[CrossRef]

Chen, X.

T. Liu, X. Chen, Z. Di, J. Zhang, X. Li, and J. Chen, “Measurement of the magnetic field-dependent refractive index of magnetic fluids in bulk,” Chin. Opt. Lett. 6, 195–197 (2008).

T. Liu, X. Chen, Z. Di, and J. Zhang, “Tunable magneto-optical wavelength filter of long-period fiber grating with magnetic fluids,” Appl. Phys. Lett. 91, 121116 (2007).
[CrossRef]

W. Liao, X. Chen, Y. Chen, S. Pu, Y. Xia, and Q. Li, “Tunable optical fiber filters with magnetic fluids,” Appl. Phys. Lett. 87, 151122 (2005).
[CrossRef]

S. Pu, X. Chen, Y. Chen, W. Liao, L. Chen, and Y. Xia, “Measurement of the refractive index of a magnetic fluid by the retroreflection on the fiber-optic end face,” Appl. Phys. Lett. 86, 171904 (2005).
[CrossRef]

Chen, Y.

S. Pu, X. Chen, Y. Chen, W. Liao, L. Chen, and Y. Xia, “Measurement of the refractive index of a magnetic fluid by the retroreflection on the fiber-optic end face,” Appl. Phys. Lett. 86, 171904 (2005).
[CrossRef]

W. Liao, X. Chen, Y. Chen, S. Pu, Y. Xia, and Q. Li, “Tunable optical fiber filters with magnetic fluids,” Appl. Phys. Lett. 87, 151122 (2005).
[CrossRef]

Chen, Y. F.

S. Y. Yang, Y. F. Chen, Y. H. Ke, W. S. Tse, H. E. Horng, C.-Y. Hong, and H. C. Yang, “Effect of temperature on the structure formation in the magnetic fluid film subjected to perpendicular magnetic fields,” J. Magn. Magn. Mater. 252, 290–292 (2002).
[CrossRef]

Chieh, J. J.

J. J. Chieh, C.-Y. Hong, S. Y. Yang, H. E. Horng, and H. C. Yang, “Study on magnetic fluid optical fiber devices for optical logic operations by characteristics of superparamagnetic nanoparticles and magnetic fluids,” J. Nanopart. Res. 12, 293–300 (2010).
[CrossRef]

Chudasama, B. N.

R. V. Mehta, R. J. Patel, B. N. Chudasama, H. B. Desai, and R. V. Upadhyay, “Effect of dielectric and magnetic contrast on the photonic band gap in ferrodispersion,” Magnetohydrodynamics 44, 69–74 (2008).

Chung, M.

M. Chung and C. Fu, “Optical transmittance and dynamic properties of ferrofluids (Fe3O4) under DC-biased magnetic fields,” IEEE Trans. Magn. 47, 3170–3172 (2011).
[CrossRef]

Cuennet, J. G.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photon. 5, 234–238 (2011).
[CrossRef]

De Sio, L.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photon. 5, 234–238 (2011).
[CrossRef]

Desai, H. B.

R. V. Mehta, R. J. Patel, B. N. Chudasama, H. B. Desai, and R. V. Upadhyay, “Effect of dielectric and magnetic contrast on the photonic band gap in ferrodispersion,” Magnetohydrodynamics 44, 69–74 (2008).

Di, Z.

T. Liu, X. Chen, Z. Di, J. Zhang, X. Li, and J. Chen, “Measurement of the magnetic field-dependent refractive index of magnetic fluids in bulk,” Chin. Opt. Lett. 6, 195–197 (2008).

T. Liu, X. Chen, Z. Di, and J. Zhang, “Tunable magneto-optical wavelength filter of long-period fiber grating with magnetic fluids,” Appl. Phys. Lett. 91, 121116 (2007).
[CrossRef]

Ding, Y.

Y. Ding, Y. Dong, J. Zhu, B. Zheng, D. Zhang, and W. Hu, “Linear birefringence and imperfect quarter wave plate effects on optic-fiber current sensor,” Proc. SPIE 8311, 83112C (2011).
[CrossRef]

Dong, X.

P. Zu, C. C. Chan, W. S. Lew, L. Hu, Y. Jin, H. F. Liew, L. H. Chen, W. C. Wong, and X. Dong, “Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber,” IEEE Photon. J. 4, 494–498 (2012).
[CrossRef]

P. Zu, C. C. Chan, L. W. Siang, Y. Jin, Y. Zhang, L. H. Fen, L. Chen, and X. Dong, “Magneto-optic fiber Sagnac modulator based on magnetic fluids,” Opt. Lett. 36, 1425–1427 (2011).
[CrossRef]

Dong, Y.

H. Zhang, Y. Dong, J. Leeson, L. Chen, and X. Bao, “High sensitivity optical fiber current sensor based on polarization diversity and a Faraday rotation mirror cavity,” Appl. Opt. 50, 924–929 (2011).
[CrossRef]

Y. Ding, Y. Dong, J. Zhu, B. Zheng, D. Zhang, and W. Hu, “Linear birefringence and imperfect quarter wave plate effects on optic-fiber current sensor,” Proc. SPIE 8311, 83112C (2011).
[CrossRef]

Fan, C. Z.

C. Z. Fan, E. J. Liang, and J. P. Huang, “Optical properties in the soft photonic crystals based on ferrofluids,” J. Phys. D 44, 325003 (2011).
[CrossRef]

Fen, L. H.

Ferrari, J. A.

Fu, C.

M. Chung and C. Fu, “Optical transmittance and dynamic properties of ferrofluids (Fe3O4) under DC-biased magnetic fields,” IEEE Trans. Magn. 47, 3170–3172 (2011).
[CrossRef]

Fu, J.

J. Li, Y. Lin, X. Liu, Q. Zhang, H. Miao, J. Fu, and L. Lin, “A magnetic field-dependent modulation effect tends to stabilize light transmission through binary ferrofluids,” Opt. Commun. 285, 3111–3115 (2012).
[CrossRef]

Handa, H.

S. Y. Park, H. Handa, and A. Sandhu, “High speed magneto-optical valve: Rapid control of the optical transmittance of aqueous solutions by magnetically induced self-assembly of superparamagnetic particle chains,” J. Appl. Phys. 105, 07B526 (2009).
[CrossRef]

Hong, C.-Y.

J. J. Chieh, C.-Y. Hong, S. Y. Yang, H. E. Horng, and H. C. Yang, “Study on magnetic fluid optical fiber devices for optical logic operations by characteristics of superparamagnetic nanoparticles and magnetic fluids,” J. Nanopart. Res. 12, 293–300 (2010).
[CrossRef]

C.-Y. Hong, Y. S. Yeh, S. Y. Yang, H. E. Horng, and H. C. Yang, “Ordered structures with point-like defects of various shapes in magnetic fluid films,” J. Magn. Magn. Mater. 283, 22–27 (2004).
[CrossRef]

C.-Y. Hong, H. E. Horng, and S. Y. Yang, “Tunable refractive index of magnetic fluids and its applications,” Phys. Status Solidi C 1, 1604–1609 (2004).
[CrossRef]

S. Y. Yang, Y. F. Chen, Y. H. Ke, W. S. Tse, H. E. Horng, C.-Y. Hong, and H. C. Yang, “Effect of temperature on the structure formation in the magnetic fluid film subjected to perpendicular magnetic fields,” J. Magn. Magn. Mater. 252, 290–292 (2002).
[CrossRef]

Horng, H. E.

J. J. Chieh, C.-Y. Hong, S. Y. Yang, H. E. Horng, and H. C. Yang, “Study on magnetic fluid optical fiber devices for optical logic operations by characteristics of superparamagnetic nanoparticles and magnetic fluids,” J. Nanopart. Res. 12, 293–300 (2010).
[CrossRef]

C.-Y. Hong, Y. S. Yeh, S. Y. Yang, H. E. Horng, and H. C. Yang, “Ordered structures with point-like defects of various shapes in magnetic fluid films,” J. Magn. Magn. Mater. 283, 22–27 (2004).
[CrossRef]

C.-Y. Hong, H. E. Horng, and S. Y. Yang, “Tunable refractive index of magnetic fluids and its applications,” Phys. Status Solidi C 1, 1604–1609 (2004).
[CrossRef]

S. Y. Yang, Y. F. Chen, Y. H. Ke, W. S. Tse, H. E. Horng, C.-Y. Hong, and H. C. Yang, “Effect of temperature on the structure formation in the magnetic fluid film subjected to perpendicular magnetic fields,” J. Magn. Magn. Mater. 252, 290–292 (2002).
[CrossRef]

Hu, L.

P. Zu, C. C. Chan, W. S. Lew, L. Hu, Y. Jin, H. F. Liew, L. H. Chen, W. C. Wong, and X. Dong, “Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber,” IEEE Photon. J. 4, 494–498 (2012).
[CrossRef]

Hu, T.

Hu, W.

Y. Ding, Y. Dong, J. Zhu, B. Zheng, D. Zhang, and W. Hu, “Linear birefringence and imperfect quarter wave plate effects on optic-fiber current sensor,” Proc. SPIE 8311, 83112C (2011).
[CrossRef]

Huang, J. P.

C. Z. Fan, E. J. Liang, and J. P. Huang, “Optical properties in the soft photonic crystals based on ferrofluids,” J. Phys. D 44, 325003 (2011).
[CrossRef]

Ji, H.

Jin, Y.

P. Zu, C. C. Chan, W. S. Lew, L. Hu, Y. Jin, H. F. Liew, L. H. Chen, W. C. Wong, and X. Dong, “Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber,” IEEE Photon. J. 4, 494–498 (2012).
[CrossRef]

P. Zu, C. C. Chan, L. W. Siang, Y. Jin, Y. Zhang, L. H. Fen, L. Chen, and X. Dong, “Magneto-optic fiber Sagnac modulator based on magnetic fluids,” Opt. Lett. 36, 1425–1427 (2011).
[CrossRef]

Johnston, P.

T. W. Cease and P. Johnston, “A magneto-optic current transducer,” IEEE Trans. Power Deliv. 5, 548–555 (1990).
[CrossRef]

Ke, Y. H.

S. Y. Yang, Y. F. Chen, Y. H. Ke, W. S. Tse, H. E. Horng, C.-Y. Hong, and H. C. Yang, “Effect of temperature on the structure formation in the magnetic fluid film subjected to perpendicular magnetic fields,” J. Magn. Magn. Mater. 252, 290–292 (2002).
[CrossRef]

Konstantaki, M.

Laskar, J. M.

J. M. Laskar, S. Brojabasi, B. Raj, and J. Philip, “Comparison of light scattering from self assembled array of nanoparticle chains with cylinders,” Opt. Commun. 285, 1242–1247 (2012).
[CrossRef]

Leeson, J.

Lew, W. S.

P. Zu, C. C. Chan, W. S. Lew, L. Hu, Y. Jin, H. F. Liew, L. H. Chen, W. C. Wong, and X. Dong, “Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber,” IEEE Photon. J. 4, 494–498 (2012).
[CrossRef]

Li, J.

J. Li, Y. Lin, X. Liu, Q. Zhang, H. Miao, J. Fu, and L. Lin, “A magnetic field-dependent modulation effect tends to stabilize light transmission through binary ferrofluids,” Opt. Commun. 285, 3111–3115 (2012).
[CrossRef]

Li, Q.

W. Liao, X. Chen, Y. Chen, S. Pu, Y. Xia, and Q. Li, “Tunable optical fiber filters with magnetic fluids,” Appl. Phys. Lett. 87, 151122 (2005).
[CrossRef]

Li, X.

Liang, E. J.

C. Z. Fan, E. J. Liang, and J. P. Huang, “Optical properties in the soft photonic crystals based on ferrofluids,” J. Phys. D 44, 325003 (2011).
[CrossRef]

Liao, W.

W. Liao, X. Chen, Y. Chen, S. Pu, Y. Xia, and Q. Li, “Tunable optical fiber filters with magnetic fluids,” Appl. Phys. Lett. 87, 151122 (2005).
[CrossRef]

S. Pu, X. Chen, Y. Chen, W. Liao, L. Chen, and Y. Xia, “Measurement of the refractive index of a magnetic fluid by the retroreflection on the fiber-optic end face,” Appl. Phys. Lett. 86, 171904 (2005).
[CrossRef]

Liew, H. F.

P. Zu, C. C. Chan, W. S. Lew, L. Hu, Y. Jin, H. F. Liew, L. H. Chen, W. C. Wong, and X. Dong, “Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber,” IEEE Photon. J. 4, 494–498 (2012).
[CrossRef]

Lin, C.-J.

R.-P. Pan, C.-C. Shih, T.-T. Tang, Y.-G. Wang, H.-Y. Wu, C.-J. Lin, and C.-L. Pan, “Magnetically tunable metallic photonic crystals immersed in liquid crystal for terahertz wave,” Proc. SPIE 8279, 82790J (2012).
[CrossRef]

Lin, L.

J. Li, Y. Lin, X. Liu, Q. Zhang, H. Miao, J. Fu, and L. Lin, “A magnetic field-dependent modulation effect tends to stabilize light transmission through binary ferrofluids,” Opt. Commun. 285, 3111–3115 (2012).
[CrossRef]

Lin, Y.

J. Li, Y. Lin, X. Liu, Q. Zhang, H. Miao, J. Fu, and L. Lin, “A magnetic field-dependent modulation effect tends to stabilize light transmission through binary ferrofluids,” Opt. Commun. 285, 3111–3115 (2012).
[CrossRef]

Liu, M.

S. Pu and M. Liu, “Tunable photonic crystals based on MnFe2O4 magnetic fluids by magnetic fields,” J. Alloys Compd. 481, 851–854 (2009).
[CrossRef]

Liu, T.

T. Liu, X. Chen, Z. Di, J. Zhang, X. Li, and J. Chen, “Measurement of the magnetic field-dependent refractive index of magnetic fluids in bulk,” Chin. Opt. Lett. 6, 195–197 (2008).

T. Liu, X. Chen, Z. Di, and J. Zhang, “Tunable magneto-optical wavelength filter of long-period fiber grating with magnetic fluids,” Appl. Phys. Lett. 91, 121116 (2007).
[CrossRef]

Liu, X.

J. Li, Y. Lin, X. Liu, Q. Zhang, H. Miao, J. Fu, and L. Lin, “A magnetic field-dependent modulation effect tends to stabilize light transmission through binary ferrofluids,” Opt. Commun. 285, 3111–3115 (2012).
[CrossRef]

Lu, Z.

S. Xia, J. Wang, Z. Lu, and F. Zhang, “Birefringence and magneto-optical properties in oleic acid coated Fe3O4 nanoparticles: application for optical switch,” Int. J. Nanosci. 10, 515–520 (2011).
[CrossRef]

T. Hu, Y. Zhao, X. Li, J. Chen, and Z. Lu, “Novel optical fiber current sensor based on magnetic fluid,” Chin. Opt. Lett. 8, 392–394 (2010).
[CrossRef]

Lv, R.

Y. Zhao, R. Lv, Y. Zhang, and Q. Wang, “Novel optical devices based on the transmission properties of magnetic fluid and their characteristics,” Opt. Lasers Eng. 50, 1177–1184 (2012).
[CrossRef]

Y. Zhao, R. Lv, Y. Ying, and Q. Wang, “Hollow-core photonic crystal fiber Fabry-Perot sensor for magnetic field measurement based on magnetic fluid,” Opt. Laser Technol. 44, 899–902 (2012).
[CrossRef]

Y. Zhao, Y. Zhang, Q. Wang, and R. Lv, “Photonic crystal fibers Bragg grating filled magnetic fluid for magnetic fields sensing,” Sens. Lett. 10, 465–470 (2012).
[CrossRef]

Y. Zhao, Y. Zhang, R. Lv, and Q. Wang, “Novel optical devices based on the tunable refractive index of magnetic fluid and their characteristics,” J. Magn. Magn. Mater. 323, 2987–2996(2011).
[CrossRef]

Malynych, S.

S. Malynych and I. Moroz, “Time dependent magnetically induced variations in optical transmission of magnetite nanoparticle aqueous suspension,” Central Eur. J. Phys. 10, 159–165 (2012).
[CrossRef]

Margulis, W.

Mehta, R. V.

R. Patel, and R. V. Mehta, “Ferrodispersion: a promising candidate for an optical capacitor,” Appl. Opt. 50, G17–G22 (2011).
[CrossRef]

H. Bhatt, R. Patel, and R. V. Mehta, “Magnetically induced Mie resonance in a magnetic sphere suspended in a ferrofluid,” J. Opt. Soc. Am. A 27, 873–877 (2010).
[CrossRef]

R. V. Mehta, R. J. Patel, B. N. Chudasama, H. B. Desai, and R. V. Upadhyay, “Effect of dielectric and magnetic contrast on the photonic band gap in ferrodispersion,” Magnetohydrodynamics 44, 69–74 (2008).

Miao, H.

J. Li, Y. Lin, X. Liu, Q. Zhang, H. Miao, J. Fu, and L. Lin, “A magnetic field-dependent modulation effect tends to stabilize light transmission through binary ferrofluids,” Opt. Commun. 285, 3111–3115 (2012).
[CrossRef]

Moroz, I.

S. Malynych and I. Moroz, “Time dependent magnetically induced variations in optical transmission of magnetite nanoparticle aqueous suspension,” Central Eur. J. Phys. 10, 159–165 (2012).
[CrossRef]

Pan, C.-L.

R.-P. Pan, C.-C. Shih, T.-T. Tang, Y.-G. Wang, H.-Y. Wu, C.-J. Lin, and C.-L. Pan, “Magnetically tunable metallic photonic crystals immersed in liquid crystal for terahertz wave,” Proc. SPIE 8279, 82790J (2012).
[CrossRef]

Pan, R.-P.

R.-P. Pan, C.-C. Shih, T.-T. Tang, Y.-G. Wang, H.-Y. Wu, C.-J. Lin, and C.-L. Pan, “Magnetically tunable metallic photonic crystals immersed in liquid crystal for terahertz wave,” Proc. SPIE 8279, 82790J (2012).
[CrossRef]

Papell, S. S.

S. S. Papell, “Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles,” U. S. patent 3,215,572 (2 November 1965).

Park, S. Y.

S. Y. Park, H. Handa, and A. Sandhu, “High speed magneto-optical valve: Rapid control of the optical transmittance of aqueous solutions by magnetically induced self-assembly of superparamagnetic particle chains,” J. Appl. Phys. 105, 07B526 (2009).
[CrossRef]

Patel, R.

Patel, R. J.

R. V. Mehta, R. J. Patel, B. N. Chudasama, H. B. Desai, and R. V. Upadhyay, “Effect of dielectric and magnetic contrast on the photonic band gap in ferrodispersion,” Magnetohydrodynamics 44, 69–74 (2008).

Perciante, C. D.

Philip, J.

J. M. Laskar, S. Brojabasi, B. Raj, and J. Philip, “Comparison of light scattering from self assembled array of nanoparticle chains with cylinders,” Opt. Commun. 285, 1242–1247 (2012).
[CrossRef]

Pissadakis, S.

Psaltis, D.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photon. 5, 234–238 (2011).
[CrossRef]

Pu, S.

H. Ji, S. Pu, X. Wang, and G. Yu, “Magnetic field sensing based on V-shaped groove filled with magnetic fluids,” Appl. Opt. 51, 1010–1020 (2012).
[CrossRef]

S. Pu and M. Liu, “Tunable photonic crystals based on MnFe2O4 magnetic fluids by magnetic fields,” J. Alloys Compd. 481, 851–854 (2009).
[CrossRef]

S. Pu, X. Chen, Y. Chen, W. Liao, L. Chen, and Y. Xia, “Measurement of the refractive index of a magnetic fluid by the retroreflection on the fiber-optic end face,” Appl. Phys. Lett. 86, 171904 (2005).
[CrossRef]

W. Liao, X. Chen, Y. Chen, S. Pu, Y. Xia, and Q. Li, “Tunable optical fiber filters with magnetic fluids,” Appl. Phys. Lett. 87, 151122 (2005).
[CrossRef]

Raj, B.

J. M. Laskar, S. Brojabasi, B. Raj, and J. Philip, “Comparison of light scattering from self assembled array of nanoparticle chains with cylinders,” Opt. Commun. 285, 1242–1247 (2012).
[CrossRef]

Rosensweig, R. E.

R. E. Rosensweig, Ferrohydrodynamics (Cambridge University, 1985).

Sandhu, A.

S. Y. Park, H. Handa, and A. Sandhu, “High speed magneto-optical valve: Rapid control of the optical transmittance of aqueous solutions by magnetically induced self-assembly of superparamagnetic particle chains,” J. Appl. Phys. 105, 07B526 (2009).
[CrossRef]

Shih, C.-C.

R.-P. Pan, C.-C. Shih, T.-T. Tang, Y.-G. Wang, H.-Y. Wu, C.-J. Lin, and C.-L. Pan, “Magnetically tunable metallic photonic crystals immersed in liquid crystal for terahertz wave,” Proc. SPIE 8279, 82790J (2012).
[CrossRef]

Siang, L. W.

Sterner, C.

Tang, T.-T.

R.-P. Pan, C.-C. Shih, T.-T. Tang, Y.-G. Wang, H.-Y. Wu, C.-J. Lin, and C.-L. Pan, “Magnetically tunable metallic photonic crystals immersed in liquid crystal for terahertz wave,” Proc. SPIE 8279, 82790J (2012).
[CrossRef]

Tse, W. S.

S. Y. Yang, Y. F. Chen, Y. H. Ke, W. S. Tse, H. E. Horng, C.-Y. Hong, and H. C. Yang, “Effect of temperature on the structure formation in the magnetic fluid film subjected to perpendicular magnetic fields,” J. Magn. Magn. Mater. 252, 290–292 (2002).
[CrossRef]

Upadhyay, R. V.

R. V. Mehta, R. J. Patel, B. N. Chudasama, H. B. Desai, and R. V. Upadhyay, “Effect of dielectric and magnetic contrast on the photonic band gap in ferrodispersion,” Magnetohydrodynamics 44, 69–74 (2008).

Vasdekis, A. E.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photon. 5, 234–238 (2011).
[CrossRef]

Verbiest, T.

T. Verbiest and J. Wouters, “Magnetic field sensing based on Faraday rotation in inorganic/polymer hybrid materials,” Proc. SPIE 7467, 74670B (2009).
[CrossRef]

Wang, J.

S. Xia, J. Wang, Z. Lu, and F. Zhang, “Birefringence and magneto-optical properties in oleic acid coated Fe3O4 nanoparticles: application for optical switch,” Int. J. Nanosci. 10, 515–520 (2011).
[CrossRef]

Wang, Q.

Y. Zhao, R. Lv, Y. Zhang, and Q. Wang, “Novel optical devices based on the transmission properties of magnetic fluid and their characteristics,” Opt. Lasers Eng. 50, 1177–1184 (2012).
[CrossRef]

Y. Zhao, R. Lv, Y. Ying, and Q. Wang, “Hollow-core photonic crystal fiber Fabry-Perot sensor for magnetic field measurement based on magnetic fluid,” Opt. Laser Technol. 44, 899–902 (2012).
[CrossRef]

Y. Zhao, Y. Zhang, Q. Wang, and R. Lv, “Photonic crystal fibers Bragg grating filled magnetic fluid for magnetic fields sensing,” Sens. Lett. 10, 465–470 (2012).
[CrossRef]

Y. Zhao, Y. Zhang, R. Lv, and Q. Wang, “Novel optical devices based on the tunable refractive index of magnetic fluid and their characteristics,” J. Magn. Magn. Mater. 323, 2987–2996(2011).
[CrossRef]

Wang, X.

Wang, Y.-G.

R.-P. Pan, C.-C. Shih, T.-T. Tang, Y.-G. Wang, H.-Y. Wu, C.-J. Lin, and C.-L. Pan, “Magnetically tunable metallic photonic crystals immersed in liquid crystal for terahertz wave,” Proc. SPIE 8279, 82790J (2012).
[CrossRef]

Wong, W. C.

P. Zu, C. C. Chan, W. S. Lew, L. Hu, Y. Jin, H. F. Liew, L. H. Chen, W. C. Wong, and X. Dong, “Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber,” IEEE Photon. J. 4, 494–498 (2012).
[CrossRef]

Wouters, J.

T. Verbiest and J. Wouters, “Magnetic field sensing based on Faraday rotation in inorganic/polymer hybrid materials,” Proc. SPIE 7467, 74670B (2009).
[CrossRef]

Wu, H.-Y.

R.-P. Pan, C.-C. Shih, T.-T. Tang, Y.-G. Wang, H.-Y. Wu, C.-J. Lin, and C.-L. Pan, “Magnetically tunable metallic photonic crystals immersed in liquid crystal for terahertz wave,” Proc. SPIE 8279, 82790J (2012).
[CrossRef]

Xia, S.

S. Xia, J. Wang, Z. Lu, and F. Zhang, “Birefringence and magneto-optical properties in oleic acid coated Fe3O4 nanoparticles: application for optical switch,” Int. J. Nanosci. 10, 515–520 (2011).
[CrossRef]

Xia, Y.

S. Pu, X. Chen, Y. Chen, W. Liao, L. Chen, and Y. Xia, “Measurement of the refractive index of a magnetic fluid by the retroreflection on the fiber-optic end face,” Appl. Phys. Lett. 86, 171904 (2005).
[CrossRef]

W. Liao, X. Chen, Y. Chen, S. Pu, Y. Xia, and Q. Li, “Tunable optical fiber filters with magnetic fluids,” Appl. Phys. Lett. 87, 151122 (2005).
[CrossRef]

Yang, H. C.

J. J. Chieh, C.-Y. Hong, S. Y. Yang, H. E. Horng, and H. C. Yang, “Study on magnetic fluid optical fiber devices for optical logic operations by characteristics of superparamagnetic nanoparticles and magnetic fluids,” J. Nanopart. Res. 12, 293–300 (2010).
[CrossRef]

C.-Y. Hong, Y. S. Yeh, S. Y. Yang, H. E. Horng, and H. C. Yang, “Ordered structures with point-like defects of various shapes in magnetic fluid films,” J. Magn. Magn. Mater. 283, 22–27 (2004).
[CrossRef]

S. Y. Yang, Y. F. Chen, Y. H. Ke, W. S. Tse, H. E. Horng, C.-Y. Hong, and H. C. Yang, “Effect of temperature on the structure formation in the magnetic fluid film subjected to perpendicular magnetic fields,” J. Magn. Magn. Mater. 252, 290–292 (2002).
[CrossRef]

Yang, S. Y.

J. J. Chieh, C.-Y. Hong, S. Y. Yang, H. E. Horng, and H. C. Yang, “Study on magnetic fluid optical fiber devices for optical logic operations by characteristics of superparamagnetic nanoparticles and magnetic fluids,” J. Nanopart. Res. 12, 293–300 (2010).
[CrossRef]

C.-Y. Hong, Y. S. Yeh, S. Y. Yang, H. E. Horng, and H. C. Yang, “Ordered structures with point-like defects of various shapes in magnetic fluid films,” J. Magn. Magn. Mater. 283, 22–27 (2004).
[CrossRef]

C.-Y. Hong, H. E. Horng, and S. Y. Yang, “Tunable refractive index of magnetic fluids and its applications,” Phys. Status Solidi C 1, 1604–1609 (2004).
[CrossRef]

S. Y. Yang, Y. F. Chen, Y. H. Ke, W. S. Tse, H. E. Horng, C.-Y. Hong, and H. C. Yang, “Effect of temperature on the structure formation in the magnetic fluid film subjected to perpendicular magnetic fields,” J. Magn. Magn. Mater. 252, 290–292 (2002).
[CrossRef]

Yeh, Y. S.

C.-Y. Hong, Y. S. Yeh, S. Y. Yang, H. E. Horng, and H. C. Yang, “Ordered structures with point-like defects of various shapes in magnetic fluid films,” J. Magn. Magn. Mater. 283, 22–27 (2004).
[CrossRef]

Ying, Y.

Y. Zhao, R. Lv, Y. Ying, and Q. Wang, “Hollow-core photonic crystal fiber Fabry-Perot sensor for magnetic field measurement based on magnetic fluid,” Opt. Laser Technol. 44, 899–902 (2012).
[CrossRef]

Yu, G.

Zablotsky, D.

D. Zablotsky and E. Blums, “Magnetically driven microconvective instability of optically induced concentration grating in ferrofluids,” Phys. Rev. E 84, 026319 (2011).
[CrossRef]

Zhang, D.

Y. Ding, Y. Dong, J. Zhu, B. Zheng, D. Zhang, and W. Hu, “Linear birefringence and imperfect quarter wave plate effects on optic-fiber current sensor,” Proc. SPIE 8311, 83112C (2011).
[CrossRef]

Zhang, F.

S. Xia, J. Wang, Z. Lu, and F. Zhang, “Birefringence and magneto-optical properties in oleic acid coated Fe3O4 nanoparticles: application for optical switch,” Int. J. Nanosci. 10, 515–520 (2011).
[CrossRef]

Zhang, H.

Zhang, J.

T. Liu, X. Chen, Z. Di, J. Zhang, X. Li, and J. Chen, “Measurement of the magnetic field-dependent refractive index of magnetic fluids in bulk,” Chin. Opt. Lett. 6, 195–197 (2008).

T. Liu, X. Chen, Z. Di, and J. Zhang, “Tunable magneto-optical wavelength filter of long-period fiber grating with magnetic fluids,” Appl. Phys. Lett. 91, 121116 (2007).
[CrossRef]

Zhang, Q.

J. Li, Y. Lin, X. Liu, Q. Zhang, H. Miao, J. Fu, and L. Lin, “A magnetic field-dependent modulation effect tends to stabilize light transmission through binary ferrofluids,” Opt. Commun. 285, 3111–3115 (2012).
[CrossRef]

Zhang, Y.

Y. Zhao, R. Lv, Y. Zhang, and Q. Wang, “Novel optical devices based on the transmission properties of magnetic fluid and their characteristics,” Opt. Lasers Eng. 50, 1177–1184 (2012).
[CrossRef]

Y. Zhao, Y. Zhang, Q. Wang, and R. Lv, “Photonic crystal fibers Bragg grating filled magnetic fluid for magnetic fields sensing,” Sens. Lett. 10, 465–470 (2012).
[CrossRef]

P. Zu, C. C. Chan, L. W. Siang, Y. Jin, Y. Zhang, L. H. Fen, L. Chen, and X. Dong, “Magneto-optic fiber Sagnac modulator based on magnetic fluids,” Opt. Lett. 36, 1425–1427 (2011).
[CrossRef]

Y. Zhao, Y. Zhang, R. Lv, and Q. Wang, “Novel optical devices based on the tunable refractive index of magnetic fluid and their characteristics,” J. Magn. Magn. Mater. 323, 2987–2996(2011).
[CrossRef]

Zhao, Y.

Y. Zhao, R. Lv, Y. Zhang, and Q. Wang, “Novel optical devices based on the transmission properties of magnetic fluid and their characteristics,” Opt. Lasers Eng. 50, 1177–1184 (2012).
[CrossRef]

Y. Zhao, R. Lv, Y. Ying, and Q. Wang, “Hollow-core photonic crystal fiber Fabry-Perot sensor for magnetic field measurement based on magnetic fluid,” Opt. Laser Technol. 44, 899–902 (2012).
[CrossRef]

Y. Zhao, Y. Zhang, Q. Wang, and R. Lv, “Photonic crystal fibers Bragg grating filled magnetic fluid for magnetic fields sensing,” Sens. Lett. 10, 465–470 (2012).
[CrossRef]

Y. Zhao, Y. Zhang, R. Lv, and Q. Wang, “Novel optical devices based on the tunable refractive index of magnetic fluid and their characteristics,” J. Magn. Magn. Mater. 323, 2987–2996(2011).
[CrossRef]

T. Hu, Y. Zhao, X. Li, J. Chen, and Z. Lu, “Novel optical fiber current sensor based on magnetic fluid,” Chin. Opt. Lett. 8, 392–394 (2010).
[CrossRef]

Zheng, B.

Y. Ding, Y. Dong, J. Zhu, B. Zheng, D. Zhang, and W. Hu, “Linear birefringence and imperfect quarter wave plate effects on optic-fiber current sensor,” Proc. SPIE 8311, 83112C (2011).
[CrossRef]

Zhu, J.

Y. Ding, Y. Dong, J. Zhu, B. Zheng, D. Zhang, and W. Hu, “Linear birefringence and imperfect quarter wave plate effects on optic-fiber current sensor,” Proc. SPIE 8311, 83112C (2011).
[CrossRef]

Zu, P.

P. Zu, C. C. Chan, W. S. Lew, L. Hu, Y. Jin, H. F. Liew, L. H. Chen, W. C. Wong, and X. Dong, “Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber,” IEEE Photon. J. 4, 494–498 (2012).
[CrossRef]

P. Zu, C. C. Chan, L. W. Siang, Y. Jin, Y. Zhang, L. H. Fen, L. Chen, and X. Dong, “Magneto-optic fiber Sagnac modulator based on magnetic fluids,” Opt. Lett. 36, 1425–1427 (2011).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (3)

T. Liu, X. Chen, Z. Di, and J. Zhang, “Tunable magneto-optical wavelength filter of long-period fiber grating with magnetic fluids,” Appl. Phys. Lett. 91, 121116 (2007).
[CrossRef]

W. Liao, X. Chen, Y. Chen, S. Pu, Y. Xia, and Q. Li, “Tunable optical fiber filters with magnetic fluids,” Appl. Phys. Lett. 87, 151122 (2005).
[CrossRef]

S. Pu, X. Chen, Y. Chen, W. Liao, L. Chen, and Y. Xia, “Measurement of the refractive index of a magnetic fluid by the retroreflection on the fiber-optic end face,” Appl. Phys. Lett. 86, 171904 (2005).
[CrossRef]

Central Eur. J. Phys. (1)

S. Malynych and I. Moroz, “Time dependent magnetically induced variations in optical transmission of magnetite nanoparticle aqueous suspension,” Central Eur. J. Phys. 10, 159–165 (2012).
[CrossRef]

Chin. Opt. Lett. (2)

IEEE Photon. J. (1)

P. Zu, C. C. Chan, W. S. Lew, L. Hu, Y. Jin, H. F. Liew, L. H. Chen, W. C. Wong, and X. Dong, “Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber,” IEEE Photon. J. 4, 494–498 (2012).
[CrossRef]

IEEE Trans. Magn. (1)

M. Chung and C. Fu, “Optical transmittance and dynamic properties of ferrofluids (Fe3O4) under DC-biased magnetic fields,” IEEE Trans. Magn. 47, 3170–3172 (2011).
[CrossRef]

IEEE Trans. Power Deliv. (1)

T. W. Cease and P. Johnston, “A magneto-optic current transducer,” IEEE Trans. Power Deliv. 5, 548–555 (1990).
[CrossRef]

Int. J. Nanosci. (1)

S. Xia, J. Wang, Z. Lu, and F. Zhang, “Birefringence and magneto-optical properties in oleic acid coated Fe3O4 nanoparticles: application for optical switch,” Int. J. Nanosci. 10, 515–520 (2011).
[CrossRef]

J. Alloys Compd. (1)

S. Pu and M. Liu, “Tunable photonic crystals based on MnFe2O4 magnetic fluids by magnetic fields,” J. Alloys Compd. 481, 851–854 (2009).
[CrossRef]

J. Appl. Phys. (1)

S. Y. Park, H. Handa, and A. Sandhu, “High speed magneto-optical valve: Rapid control of the optical transmittance of aqueous solutions by magnetically induced self-assembly of superparamagnetic particle chains,” J. Appl. Phys. 105, 07B526 (2009).
[CrossRef]

J. Magn. Magn. Mater. (3)

Y. Zhao, Y. Zhang, R. Lv, and Q. Wang, “Novel optical devices based on the tunable refractive index of magnetic fluid and their characteristics,” J. Magn. Magn. Mater. 323, 2987–2996(2011).
[CrossRef]

S. Y. Yang, Y. F. Chen, Y. H. Ke, W. S. Tse, H. E. Horng, C.-Y. Hong, and H. C. Yang, “Effect of temperature on the structure formation in the magnetic fluid film subjected to perpendicular magnetic fields,” J. Magn. Magn. Mater. 252, 290–292 (2002).
[CrossRef]

C.-Y. Hong, Y. S. Yeh, S. Y. Yang, H. E. Horng, and H. C. Yang, “Ordered structures with point-like defects of various shapes in magnetic fluid films,” J. Magn. Magn. Mater. 283, 22–27 (2004).
[CrossRef]

J. Nanopart. Res. (1)

J. J. Chieh, C.-Y. Hong, S. Y. Yang, H. E. Horng, and H. C. Yang, “Study on magnetic fluid optical fiber devices for optical logic operations by characteristics of superparamagnetic nanoparticles and magnetic fluids,” J. Nanopart. Res. 12, 293–300 (2010).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. D (1)

C. Z. Fan, E. J. Liang, and J. P. Huang, “Optical properties in the soft photonic crystals based on ferrofluids,” J. Phys. D 44, 325003 (2011).
[CrossRef]

Magnetohydrodynamics (1)

R. V. Mehta, R. J. Patel, B. N. Chudasama, H. B. Desai, and R. V. Upadhyay, “Effect of dielectric and magnetic contrast on the photonic band gap in ferrodispersion,” Magnetohydrodynamics 44, 69–74 (2008).

Nat. Photon. (1)

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photon. 5, 234–238 (2011).
[CrossRef]

Opt. Commun. (2)

J. Li, Y. Lin, X. Liu, Q. Zhang, H. Miao, J. Fu, and L. Lin, “A magnetic field-dependent modulation effect tends to stabilize light transmission through binary ferrofluids,” Opt. Commun. 285, 3111–3115 (2012).
[CrossRef]

J. M. Laskar, S. Brojabasi, B. Raj, and J. Philip, “Comparison of light scattering from self assembled array of nanoparticle chains with cylinders,” Opt. Commun. 285, 1242–1247 (2012).
[CrossRef]

Opt. Laser Technol. (1)

Y. Zhao, R. Lv, Y. Ying, and Q. Wang, “Hollow-core photonic crystal fiber Fabry-Perot sensor for magnetic field measurement based on magnetic fluid,” Opt. Laser Technol. 44, 899–902 (2012).
[CrossRef]

Opt. Lasers Eng. (1)

Y. Zhao, R. Lv, Y. Zhang, and Q. Wang, “Novel optical devices based on the transmission properties of magnetic fluid and their characteristics,” Opt. Lasers Eng. 50, 1177–1184 (2012).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. E (1)

D. Zablotsky and E. Blums, “Magnetically driven microconvective instability of optically induced concentration grating in ferrofluids,” Phys. Rev. E 84, 026319 (2011).
[CrossRef]

Phys. Status Solidi C (1)

C.-Y. Hong, H. E. Horng, and S. Y. Yang, “Tunable refractive index of magnetic fluids and its applications,” Phys. Status Solidi C 1, 1604–1609 (2004).
[CrossRef]

Proc. SPIE (3)

T. Verbiest and J. Wouters, “Magnetic field sensing based on Faraday rotation in inorganic/polymer hybrid materials,” Proc. SPIE 7467, 74670B (2009).
[CrossRef]

Y. Ding, Y. Dong, J. Zhu, B. Zheng, D. Zhang, and W. Hu, “Linear birefringence and imperfect quarter wave plate effects on optic-fiber current sensor,” Proc. SPIE 8311, 83112C (2011).
[CrossRef]

R.-P. Pan, C.-C. Shih, T.-T. Tang, Y.-G. Wang, H.-Y. Wu, C.-J. Lin, and C.-L. Pan, “Magnetically tunable metallic photonic crystals immersed in liquid crystal for terahertz wave,” Proc. SPIE 8279, 82790J (2012).
[CrossRef]

Sens. Lett. (1)

Y. Zhao, Y. Zhang, Q. Wang, and R. Lv, “Photonic crystal fibers Bragg grating filled magnetic fluid for magnetic fields sensing,” Sens. Lett. 10, 465–470 (2012).
[CrossRef]

Other (2)

R. E. Rosensweig, Ferrohydrodynamics (Cambridge University, 1985).

S. S. Papell, “Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles,” U. S. patent 3,215,572 (2 November 1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Cross-section view of the magnetic field sensing system based on a capillary tube filled with magnetic fluids.

Fig. 2.
Fig. 2.

Position of the focal line (f) as a function of refractive index of MF (nMF) under several different parameters: (a) n0, (b) n1, (c) R, (d) h, and (e) r.

Fig. 3.
Fig. 3.

Comparison of the fnMF curves calculated with the simplified [Eq. (2) and (3)] and exactly analytical expressions [Eq. (1)] under different conditions: (a) and (b), h<R and h=r; (c) and (d), h<r<R.

Fig. 4.
Fig. 4.

Fractional errors of two simplified conditions [Eqs. (2) and (3)]: (a) and (b), h is comparable to r; (c) and (d), h<r. The insets give the corresponding fractional errors in an extended range of refractive index of MF.

Fig. 5.
Fig. 5.

Schematic of the experimental setup for studying the sensing system based on the capillary tube filled with MF and the typical images of the focal line recorded by the image acquisition system.

Fig. 6.
Fig. 6.

Sensing property of the system at several wall thicknesses of capillary: (a) Rr=0.595, (b) Rr=0.745, (c) Rr=1.175, (d) Rr=1.3, (e) Rr=1.6, (f) Rr=2.25, (g) Rr=2.26, and (h) Rr=2.625. For each case, three samples with different concentrations of MF are experimentalized.

Fig. 7.
Fig. 7.

Influence of capillary wall thickness on the sensing property of the system under different MF concentrations: (a) 0.628%, (b) 0.468%, and (c) 0.374%.

Fig. 8.
Fig. 8.

Variation range of the position of the focal line Δf as a function of wall thickness of the capillary Rr.

Fig. 9.
Fig. 9.

Diagram of geometric optical path.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

f=n14R4r4nMF22MR,
M=[R2h2(n12R22n02h2)n0n12R2n02h2(R22h2)]×[(n12r22n02h2)(nMF2r22n02h2)+4n02h2n12r2n02h2nMF2r2n02h2]+n0[(R22h2)(n12R22n02h2)+4n0h2R2h2n12R2n02h2]×[n12r2n02h2(nMF2r22n02h2)nMF2r2n02h2(n12r22n02h2)].
f2=n12r4nMF22M2R,
M2=n11Rn1[(n12r22h2)(nMF2r22h2)+4h2n12r2h2nMF2r2h2]+(nMF2r22h2)n12r2h2(n12r22h2)nMF2r2h2.
f3=Rn1rnMF2M3R,
sinO1AF=sinθ=hR.
sinOAB=sinφ=n0n1sinθ=n0n1hR.
sinABO2=sinβ=Rrsinφ=n0n1hr.
sinOBC=sinα=n1nMFsinβ=n0nMFhr.
sinDCO3=nMFn1sinα=n0n1hr.
sinODC=rRsinβ=n0n1hR.
sinO4DE=n1n0sinφ=n1n0n0n1hR=hR.
f=Rsin(2θ+2β2φ2α)sinθR=hsin(2θ+2β2φ2α)R.
sin(2θ+2β2φ2α)=[R2h2(n12R22n02h2)n0n12R2n02h2(R22h2)]×[(n12r22n02h2)(nMF2r22n02h2)+4n02h2n12r2n02h2nMF2r2n02h2]2hn14R4r4nMF2+[(R22h2)(n12R22n02h2)+4n0h2R2h2n12R2n02h2]×[n12r2n02h2(nMF2r22n02h2)nMF2r2n02h2(n12r22n02h2)]2n0hn14R4r4nMF2.
f=n14R4r4nMF22MR,
M=[R2h2(n12R22n02h2)n0n12R2n02h2(R22h2)]×[(n12r22n02h2)(nMF2r22n02h2)+4n02h2n12r2n02h2nMF2r2n02h2]+n0[(R22h2)(n12R22n02h2)+4n0h2R2h2n12R2n02h2]×[n12r2n02h2(nMF2r22n02h2)nMF2r2n02h2(n12r22n02h2)].
θ=hR,
φ=n0hn1R.
sin(2θ+2β2φ2α)=2h(n1n0)RnMF2n13r4[(n12r22n02h2)(nMF2r22n02h2)+4n02h2n12r2n02h2nMF2r2n02h2]+2n0hnMF2n12r4(nMF2r22n02h2)n12r2n02h22n0hnMF2n12r4(n12r22n02h2)nMF2r2n02h2.
f1=n12r4nMF22M1R,
M1=(n1n0)Rn1[(n12r22n02h2)(nMF2r22n02h2)+4n02h2n12r2n02h2nMF2r2n02h2]+n0[(nMF2r22n02h2)n12r2n02h2(n12r22n02h2)nMF2r2n02h2].
β=n0hn1r,
α=n0hnMFr.
sin(2θ+2β2φ2α)=2hnMFr(n1n0)+Rn0(nMFn1)Rrn1nMF.
f2=Rn1rnMF2M2R,
M2=nMFr(n1n0)+Rn0(nMFn1).

Metrics