Abstract

We have demonstrated a self-starting, passively mode-locked Tm/Ho codoped fiber laser that lases at one of two center wavelengths. An amplified 1.56 μm distributed feedback laser pumps a ring laser cavity which contains 1 m of Tm/Ho codoped silica fiber. Mode locking is obtained via nonlinear polarization rotation using a c-band polarization sensitive isolator with two polarization controllers. The laser is able to pulse separately at either 1.97 or 2.04 μm by altering the intracavity polarization during the initiation of mode locking. The codoped fiber permits pulsing at one of two wavelengths, where the shorter is due to the Tm3+ emission and the longer due to the Ho3+ emission. The laser produces a stable pulse train at 28.4 MHz with 25 mW average power, and a pulse duration of 966 fs with 9 nm bandwidth.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Mazzone, “Analysis of volatile organic compounds in the exhaled breath for the diagnosis of lung cancer,” J. Thorac. Oncol. 3, 774–780 (2008).
    [CrossRef]
  2. K. Namjou, C. B. Roller, T. Reich, J. Jeffers, G. McMillen, P. McCann, and M. Camp, “Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy,” Appl. Phys. B 85, 427 (2006).
    [CrossRef]
  3. F. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources (Springer, 2003), pp. 445–510.
  4. M. J. Thorpe and J. Ye, “Cavity-enhanced direct comb spectroscopy,” Appl. Phys. B 91, 397–414 (2008).
    [CrossRef]
  5. T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett. 31, 33 (1977).
    [CrossRef]
  6. L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 67, 19–21 (1995).
    [CrossRef]
  7. M. Engelbrecht, F. Haxsen, A. Ruehl, D. Wandt, and D. Kracht, “Ultrafast thulium-doped fiber-oscillator with pulse energy of 4.3 nJ,” Opt. Lett. 33, 690–692 (2008).
    [CrossRef]
  8. Q. Wang, T. Chen, and K. Chen, “Mode-locked ultrafast thulium fiber laser with all fiber dispersion management,” in Proceedings of the Conference on Lasers and Electro-optics(Optical Society of America, 2010), paper CFK7.
  9. M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, and E. M. Dianov, “Mode-locked 1.93 μm thulium fiber laser with a carbon nanotube absorber,” Opt. Lett. 33, 1336–1338 (2008).
    [CrossRef]
  10. K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009).
    [CrossRef]
  11. F. Haxen, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Pulse characteristics of a passively mode-locked thulium fiber laser with positive and negative cavity dispersion,” Opt. Express 18, 18981–18988 (2010).
    [CrossRef]
  12. C. R. Philips, J. Jiang, C. Langrock, M. M. Fejer, and M. E. Fermann, “Self-referenced frequency comb from a Tm-fiber via PPLN waveguide supercontinuum generation,” in Proceedings of the Conference on Lasers and Electro-optics (Optical Society of America, 2011), paper PDPA5.
  13. K. Oh, T. F. Morse, A. Kilian, L. Reinhart, and P. M. Weber, “Continuous-wave oscillation on thulium-sensitized holmium-doped silica fiber laser,” Opt. Lett. 19, 278–280 (1994).
    [CrossRef]
  14. C. Ghisler, W. Luthy, H. P. Weber, J. Morel, A. Woodtli, T. Dändliker, V. Neuman, H. Berthou, and G. Kotortsios, “A Tm3+ sensitized Ho3+ silica fiber laser at 2.04 μm pumped at 809 nm,” Opt. Commun. 109, 279–281 (1994).
    [CrossRef]
  15. S. D. Jackson and T. A. King, “CW operation of a 1.064 μm pumped Tm-Ho-doped silica fiber laser,” IEEE J. Quantum Electron. 34, 1578–1587 (1998).
    [CrossRef]
  16. S. M. J. Kelley, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806–808 (1992).
    [CrossRef]
  17. M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in Femtosecond fiber laser,” IEEE J. Quantum Electron. 30, 1469–1477 (1994).
    [CrossRef]
  18. J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, C. Jørgensen, and T. Veng, “All-fiber, octave-spanning supercontinuum,” Opt. Lett. 28, 643–645 (2003).
    [CrossRef]
  19. L. Grüner-Nielsen, M. Wandel, P. Kristensen, C. Jørgensen, L. V. Jørgensen, B. Edvold, B. Pálsdóttir, and D. Jakobsen, “Dispersion-compensating fibers,” J. Lightwave Technol. 23, 3566–3579 (2005).
    [CrossRef]
  20. J. A. Buck, Fundamentals of Optical Fibers, 2nd ed. (Wiley, 2004).
  21. D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10, 2252–2258 (1971).
    [CrossRef]
  22. S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikv, “Tunable Raman soliton source using mode-locked Tm-Ho fiber laser,” IEEE Photon. Technol. Lett. 19, 934–936(2007).
    [CrossRef]
  23. J. C. M. Diels, J. J. Fontaine, I. C. McMichael, and F. Simoni, “Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy,” Appl. Opt. 24, 1270–1282 (1985).
    [CrossRef]
  24. S. Y. Chen, T. L. Yeo, J. Leighton, T. Sun, K. T. V. Grattan, R. Lade, B. D. Powell, G. Foster-Turner, and M. Osborne, “Tm:Ho co-doped single mode optical fiber laser pumped by a 1600 nm Er fiber laser,” Opt. Commun. 281, 2567–2571 (2008).
    [CrossRef]

2010 (1)

2009 (1)

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009).
[CrossRef]

2008 (5)

S. Y. Chen, T. L. Yeo, J. Leighton, T. Sun, K. T. V. Grattan, R. Lade, B. D. Powell, G. Foster-Turner, and M. Osborne, “Tm:Ho co-doped single mode optical fiber laser pumped by a 1600 nm Er fiber laser,” Opt. Commun. 281, 2567–2571 (2008).
[CrossRef]

P. Mazzone, “Analysis of volatile organic compounds in the exhaled breath for the diagnosis of lung cancer,” J. Thorac. Oncol. 3, 774–780 (2008).
[CrossRef]

M. J. Thorpe and J. Ye, “Cavity-enhanced direct comb spectroscopy,” Appl. Phys. B 91, 397–414 (2008).
[CrossRef]

M. Engelbrecht, F. Haxsen, A. Ruehl, D. Wandt, and D. Kracht, “Ultrafast thulium-doped fiber-oscillator with pulse energy of 4.3 nJ,” Opt. Lett. 33, 690–692 (2008).
[CrossRef]

M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, and E. M. Dianov, “Mode-locked 1.93 μm thulium fiber laser with a carbon nanotube absorber,” Opt. Lett. 33, 1336–1338 (2008).
[CrossRef]

2007 (1)

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikv, “Tunable Raman soliton source using mode-locked Tm-Ho fiber laser,” IEEE Photon. Technol. Lett. 19, 934–936(2007).
[CrossRef]

2006 (1)

K. Namjou, C. B. Roller, T. Reich, J. Jeffers, G. McMillen, P. McCann, and M. Camp, “Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy,” Appl. Phys. B 85, 427 (2006).
[CrossRef]

2005 (1)

2003 (1)

1998 (1)

S. D. Jackson and T. A. King, “CW operation of a 1.064 μm pumped Tm-Ho-doped silica fiber laser,” IEEE J. Quantum Electron. 34, 1578–1587 (1998).
[CrossRef]

1995 (1)

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 67, 19–21 (1995).
[CrossRef]

1994 (3)

C. Ghisler, W. Luthy, H. P. Weber, J. Morel, A. Woodtli, T. Dändliker, V. Neuman, H. Berthou, and G. Kotortsios, “A Tm3+ sensitized Ho3+ silica fiber laser at 2.04 μm pumped at 809 nm,” Opt. Commun. 109, 279–281 (1994).
[CrossRef]

M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in Femtosecond fiber laser,” IEEE J. Quantum Electron. 30, 1469–1477 (1994).
[CrossRef]

K. Oh, T. F. Morse, A. Kilian, L. Reinhart, and P. M. Weber, “Continuous-wave oscillation on thulium-sensitized holmium-doped silica fiber laser,” Opt. Lett. 19, 278–280 (1994).
[CrossRef]

1992 (1)

S. M. J. Kelley, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806–808 (1992).
[CrossRef]

1985 (1)

1977 (1)

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett. 31, 33 (1977).
[CrossRef]

1971 (1)

Berthou, H.

C. Ghisler, W. Luthy, H. P. Weber, J. Morel, A. Woodtli, T. Dändliker, V. Neuman, H. Berthou, and G. Kotortsios, “A Tm3+ sensitized Ho3+ silica fiber laser at 2.04 μm pumped at 809 nm,” Opt. Commun. 109, 279–281 (1994).
[CrossRef]

Buck, J. A.

J. A. Buck, Fundamentals of Optical Fibers, 2nd ed. (Wiley, 2004).

Camp, M.

K. Namjou, C. B. Roller, T. Reich, J. Jeffers, G. McMillen, P. McCann, and M. Camp, “Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy,” Appl. Phys. B 85, 427 (2006).
[CrossRef]

Chen, K.

Q. Wang, T. Chen, and K. Chen, “Mode-locked ultrafast thulium fiber laser with all fiber dispersion management,” in Proceedings of the Conference on Lasers and Electro-optics(Optical Society of America, 2010), paper CFK7.

Chen, S. Y.

S. Y. Chen, T. L. Yeo, J. Leighton, T. Sun, K. T. V. Grattan, R. Lade, B. D. Powell, G. Foster-Turner, and M. Osborne, “Tm:Ho co-doped single mode optical fiber laser pumped by a 1600 nm Er fiber laser,” Opt. Commun. 281, 2567–2571 (2008).
[CrossRef]

Chen, T.

Q. Wang, T. Chen, and K. Chen, “Mode-locked ultrafast thulium fiber laser with all fiber dispersion management,” in Proceedings of the Conference on Lasers and Electro-optics(Optical Society of America, 2010), paper CFK7.

Chernov, A. I.

Dändliker, T.

C. Ghisler, W. Luthy, H. P. Weber, J. Morel, A. Woodtli, T. Dändliker, V. Neuman, H. Berthou, and G. Kotortsios, “A Tm3+ sensitized Ho3+ silica fiber laser at 2.04 μm pumped at 809 nm,” Opt. Commun. 109, 279–281 (1994).
[CrossRef]

Dennis, M. L.

M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in Femtosecond fiber laser,” IEEE J. Quantum Electron. 30, 1469–1477 (1994).
[CrossRef]

Dianov, E. M.

Diels, J. C. M.

DiMarcello, F.

Duling, I. N.

M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in Femtosecond fiber laser,” IEEE J. Quantum Electron. 30, 1469–1477 (1994).
[CrossRef]

Edvold, B.

Engelbrecht, M.

Fejer, M. M.

C. R. Philips, J. Jiang, C. Langrock, M. M. Fejer, and M. E. Fermann, “Self-referenced frequency comb from a Tm-fiber via PPLN waveguide supercontinuum generation,” in Proceedings of the Conference on Lasers and Electro-optics (Optical Society of America, 2011), paper PDPA5.

Fermann, M. E.

C. R. Philips, J. Jiang, C. Langrock, M. M. Fejer, and M. E. Fermann, “Self-referenced frequency comb from a Tm-fiber via PPLN waveguide supercontinuum generation,” in Proceedings of the Conference on Lasers and Electro-optics (Optical Society of America, 2011), paper PDPA5.

Fleming, J.

Fontaine, J. J.

Foster-Turner, G.

S. Y. Chen, T. L. Yeo, J. Leighton, T. Sun, K. T. V. Grattan, R. Lade, B. D. Powell, G. Foster-Turner, and M. Osborne, “Tm:Ho co-doped single mode optical fiber laser pumped by a 1600 nm Er fiber laser,” Opt. Commun. 281, 2567–2571 (2008).
[CrossRef]

Fried, A.

F. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources (Springer, 2003), pp. 445–510.

Ghisler, C.

C. Ghisler, W. Luthy, H. P. Weber, J. Morel, A. Woodtli, T. Dändliker, V. Neuman, H. Berthou, and G. Kotortsios, “A Tm3+ sensitized Ho3+ silica fiber laser at 2.04 μm pumped at 809 nm,” Opt. Commun. 109, 279–281 (1994).
[CrossRef]

Gloge, D.

Grattan, K. T. V.

S. Y. Chen, T. L. Yeo, J. Leighton, T. Sun, K. T. V. Grattan, R. Lade, B. D. Powell, G. Foster-Turner, and M. Osborne, “Tm:Ho co-doped single mode optical fiber laser pumped by a 1600 nm Er fiber laser,” Opt. Commun. 281, 2567–2571 (2008).
[CrossRef]

Grüner-Nielsen, L.

Guina, M.

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikv, “Tunable Raman soliton source using mode-locked Tm-Ho fiber laser,” IEEE Photon. Technol. Lett. 19, 934–936(2007).
[CrossRef]

Hakulinen, T.

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikv, “Tunable Raman soliton source using mode-locked Tm-Ho fiber laser,” IEEE Photon. Technol. Lett. 19, 934–936(2007).
[CrossRef]

Haus, H. A.

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 67, 19–21 (1995).
[CrossRef]

Haxen, F.

Haxsen, F.

Ippen, E. P.

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 67, 19–21 (1995).
[CrossRef]

Izawa, T.

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett. 31, 33 (1977).
[CrossRef]

Jackson, S. D.

S. D. Jackson and T. A. King, “CW operation of a 1.064 μm pumped Tm-Ho-doped silica fiber laser,” IEEE J. Quantum Electron. 34, 1578–1587 (1998).
[CrossRef]

Jakobsen, D.

Jeffers, J.

K. Namjou, C. B. Roller, T. Reich, J. Jeffers, G. McMillen, P. McCann, and M. Camp, “Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy,” Appl. Phys. B 85, 427 (2006).
[CrossRef]

Jiang, J.

C. R. Philips, J. Jiang, C. Langrock, M. M. Fejer, and M. E. Fermann, “Self-referenced frequency comb from a Tm-fiber via PPLN waveguide supercontinuum generation,” in Proceedings of the Conference on Lasers and Electro-optics (Optical Society of America, 2011), paper PDPA5.

Jørgensen, C.

Jørgensen, L. V.

Kelley, S. M. J.

S. M. J. Kelley, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806–808 (1992).
[CrossRef]

Kieu, K.

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009).
[CrossRef]

Kilian, A.

King, T. A.

S. D. Jackson and T. A. King, “CW operation of a 1.064 μm pumped Tm-Ho-doped silica fiber laser,” IEEE J. Quantum Electron. 34, 1578–1587 (1998).
[CrossRef]

Kivistö, S.

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikv, “Tunable Raman soliton source using mode-locked Tm-Ho fiber laser,” IEEE Photon. Technol. Lett. 19, 934–936(2007).
[CrossRef]

Konov, V. I.

Kotortsios, G.

C. Ghisler, W. Luthy, H. P. Weber, J. Morel, A. Woodtli, T. Dändliker, V. Neuman, H. Berthou, and G. Kotortsios, “A Tm3+ sensitized Ho3+ silica fiber laser at 2.04 μm pumped at 809 nm,” Opt. Commun. 109, 279–281 (1994).
[CrossRef]

Kracht, D.

Kristensen, P.

Lade, R.

S. Y. Chen, T. L. Yeo, J. Leighton, T. Sun, K. T. V. Grattan, R. Lade, B. D. Powell, G. Foster-Turner, and M. Osborne, “Tm:Ho co-doped single mode optical fiber laser pumped by a 1600 nm Er fiber laser,” Opt. Commun. 281, 2567–2571 (2008).
[CrossRef]

Langrock, C.

C. R. Philips, J. Jiang, C. Langrock, M. M. Fejer, and M. E. Fermann, “Self-referenced frequency comb from a Tm-fiber via PPLN waveguide supercontinuum generation,” in Proceedings of the Conference on Lasers and Electro-optics (Optical Society of America, 2011), paper PDPA5.

Leighton, J.

S. Y. Chen, T. L. Yeo, J. Leighton, T. Sun, K. T. V. Grattan, R. Lade, B. D. Powell, G. Foster-Turner, and M. Osborne, “Tm:Ho co-doped single mode optical fiber laser pumped by a 1600 nm Er fiber laser,” Opt. Commun. 281, 2567–2571 (2008).
[CrossRef]

Lobach, A. S.

Luthy, W.

C. Ghisler, W. Luthy, H. P. Weber, J. Morel, A. Woodtli, T. Dändliker, V. Neuman, H. Berthou, and G. Kotortsios, “A Tm3+ sensitized Ho3+ silica fiber laser at 2.04 μm pumped at 809 nm,” Opt. Commun. 109, 279–281 (1994).
[CrossRef]

Mazzone, P.

P. Mazzone, “Analysis of volatile organic compounds in the exhaled breath for the diagnosis of lung cancer,” J. Thorac. Oncol. 3, 774–780 (2008).
[CrossRef]

McCann, P.

K. Namjou, C. B. Roller, T. Reich, J. Jeffers, G. McMillen, P. McCann, and M. Camp, “Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy,” Appl. Phys. B 85, 427 (2006).
[CrossRef]

McMichael, I. C.

McMillen, G.

K. Namjou, C. B. Roller, T. Reich, J. Jeffers, G. McMillen, P. McCann, and M. Camp, “Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy,” Appl. Phys. B 85, 427 (2006).
[CrossRef]

Monberg, E.

Morel, J.

C. Ghisler, W. Luthy, H. P. Weber, J. Morel, A. Woodtli, T. Dändliker, V. Neuman, H. Berthou, and G. Kotortsios, “A Tm3+ sensitized Ho3+ silica fiber laser at 2.04 μm pumped at 809 nm,” Opt. Commun. 109, 279–281 (1994).
[CrossRef]

Morgner, U.

Morse, T. F.

Namjou, K.

K. Namjou, C. B. Roller, T. Reich, J. Jeffers, G. McMillen, P. McCann, and M. Camp, “Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy,” Appl. Phys. B 85, 427 (2006).
[CrossRef]

Nelson, L. E.

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 67, 19–21 (1995).
[CrossRef]

Neuman, V.

C. Ghisler, W. Luthy, H. P. Weber, J. Morel, A. Woodtli, T. Dändliker, V. Neuman, H. Berthou, and G. Kotortsios, “A Tm3+ sensitized Ho3+ silica fiber laser at 2.04 μm pumped at 809 nm,” Opt. Commun. 109, 279–281 (1994).
[CrossRef]

Neumann, J.

Nicholson, J. W.

Obraztsova, E. D.

Oh, K.

Okhotnikv, O. G.

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikv, “Tunable Raman soliton source using mode-locked Tm-Ho fiber laser,” IEEE Photon. Technol. Lett. 19, 934–936(2007).
[CrossRef]

Osborne, M.

S. Y. Chen, T. L. Yeo, J. Leighton, T. Sun, K. T. V. Grattan, R. Lade, B. D. Powell, G. Foster-Turner, and M. Osborne, “Tm:Ho co-doped single mode optical fiber laser pumped by a 1600 nm Er fiber laser,” Opt. Commun. 281, 2567–2571 (2008).
[CrossRef]

Pálsdóttir, B.

Philips, C. R.

C. R. Philips, J. Jiang, C. Langrock, M. M. Fejer, and M. E. Fermann, “Self-referenced frequency comb from a Tm-fiber via PPLN waveguide supercontinuum generation,” in Proceedings of the Conference on Lasers and Electro-optics (Optical Society of America, 2011), paper PDPA5.

Powell, B. D.

S. Y. Chen, T. L. Yeo, J. Leighton, T. Sun, K. T. V. Grattan, R. Lade, B. D. Powell, G. Foster-Turner, and M. Osborne, “Tm:Ho co-doped single mode optical fiber laser pumped by a 1600 nm Er fiber laser,” Opt. Commun. 281, 2567–2571 (2008).
[CrossRef]

Reich, T.

K. Namjou, C. B. Roller, T. Reich, J. Jeffers, G. McMillen, P. McCann, and M. Camp, “Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy,” Appl. Phys. B 85, 427 (2006).
[CrossRef]

Reinhart, L.

Richter, D.

F. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources (Springer, 2003), pp. 445–510.

Roller, C. B.

K. Namjou, C. B. Roller, T. Reich, J. Jeffers, G. McMillen, P. McCann, and M. Camp, “Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy,” Appl. Phys. B 85, 427 (2006).
[CrossRef]

Ruehl, A.

Shibata, N.

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett. 31, 33 (1977).
[CrossRef]

Simoni, F.

Solodyankin, M. A.

Sun, T.

S. Y. Chen, T. L. Yeo, J. Leighton, T. Sun, K. T. V. Grattan, R. Lade, B. D. Powell, G. Foster-Turner, and M. Osborne, “Tm:Ho co-doped single mode optical fiber laser pumped by a 1600 nm Er fiber laser,” Opt. Commun. 281, 2567–2571 (2008).
[CrossRef]

Takeda, A.

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett. 31, 33 (1977).
[CrossRef]

Tausenev, A. V.

Thorpe, M. J.

M. J. Thorpe and J. Ye, “Cavity-enhanced direct comb spectroscopy,” Appl. Phys. B 91, 397–414 (2008).
[CrossRef]

Tittel, F.

F. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources (Springer, 2003), pp. 445–510.

Veng, T.

Wandel, M.

Wandt, D.

Wang, Q.

Q. Wang, T. Chen, and K. Chen, “Mode-locked ultrafast thulium fiber laser with all fiber dispersion management,” in Proceedings of the Conference on Lasers and Electro-optics(Optical Society of America, 2010), paper CFK7.

Weber, H. P.

C. Ghisler, W. Luthy, H. P. Weber, J. Morel, A. Woodtli, T. Dändliker, V. Neuman, H. Berthou, and G. Kotortsios, “A Tm3+ sensitized Ho3+ silica fiber laser at 2.04 μm pumped at 809 nm,” Opt. Commun. 109, 279–281 (1994).
[CrossRef]

Weber, P. M.

Wise, F. W.

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009).
[CrossRef]

Wisk, P.

Woodtli, A.

C. Ghisler, W. Luthy, H. P. Weber, J. Morel, A. Woodtli, T. Dändliker, V. Neuman, H. Berthou, and G. Kotortsios, “A Tm3+ sensitized Ho3+ silica fiber laser at 2.04 μm pumped at 809 nm,” Opt. Commun. 109, 279–281 (1994).
[CrossRef]

Yablon, A.

Yan, M. F.

Ye, J.

M. J. Thorpe and J. Ye, “Cavity-enhanced direct comb spectroscopy,” Appl. Phys. B 91, 397–414 (2008).
[CrossRef]

Yeo, T. L.

S. Y. Chen, T. L. Yeo, J. Leighton, T. Sun, K. T. V. Grattan, R. Lade, B. D. Powell, G. Foster-Turner, and M. Osborne, “Tm:Ho co-doped single mode optical fiber laser pumped by a 1600 nm Er fiber laser,” Opt. Commun. 281, 2567–2571 (2008).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (2)

M. J. Thorpe and J. Ye, “Cavity-enhanced direct comb spectroscopy,” Appl. Phys. B 91, 397–414 (2008).
[CrossRef]

K. Namjou, C. B. Roller, T. Reich, J. Jeffers, G. McMillen, P. McCann, and M. Camp, “Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy,” Appl. Phys. B 85, 427 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett. 31, 33 (1977).
[CrossRef]

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 67, 19–21 (1995).
[CrossRef]

Electron. Lett. (1)

S. M. J. Kelley, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806–808 (1992).
[CrossRef]

IEEE J. Quantum Electron. (2)

M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in Femtosecond fiber laser,” IEEE J. Quantum Electron. 30, 1469–1477 (1994).
[CrossRef]

S. D. Jackson and T. A. King, “CW operation of a 1.064 μm pumped Tm-Ho-doped silica fiber laser,” IEEE J. Quantum Electron. 34, 1578–1587 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikv, “Tunable Raman soliton source using mode-locked Tm-Ho fiber laser,” IEEE Photon. Technol. Lett. 19, 934–936(2007).
[CrossRef]

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009).
[CrossRef]

J. Lightwave Technol. (1)

J. Thorac. Oncol. (1)

P. Mazzone, “Analysis of volatile organic compounds in the exhaled breath for the diagnosis of lung cancer,” J. Thorac. Oncol. 3, 774–780 (2008).
[CrossRef]

Opt. Commun. (2)

S. Y. Chen, T. L. Yeo, J. Leighton, T. Sun, K. T. V. Grattan, R. Lade, B. D. Powell, G. Foster-Turner, and M. Osborne, “Tm:Ho co-doped single mode optical fiber laser pumped by a 1600 nm Er fiber laser,” Opt. Commun. 281, 2567–2571 (2008).
[CrossRef]

C. Ghisler, W. Luthy, H. P. Weber, J. Morel, A. Woodtli, T. Dändliker, V. Neuman, H. Berthou, and G. Kotortsios, “A Tm3+ sensitized Ho3+ silica fiber laser at 2.04 μm pumped at 809 nm,” Opt. Commun. 109, 279–281 (1994).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Other (4)

C. R. Philips, J. Jiang, C. Langrock, M. M. Fejer, and M. E. Fermann, “Self-referenced frequency comb from a Tm-fiber via PPLN waveguide supercontinuum generation,” in Proceedings of the Conference on Lasers and Electro-optics (Optical Society of America, 2011), paper PDPA5.

J. A. Buck, Fundamentals of Optical Fibers, 2nd ed. (Wiley, 2004).

F. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources (Springer, 2003), pp. 445–510.

Q. Wang, T. Chen, and K. Chen, “Mode-locked ultrafast thulium fiber laser with all fiber dispersion management,” in Proceedings of the Conference on Lasers and Electro-optics(Optical Society of America, 2010), paper CFK7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the Tm/Ho codoped laser ring cavity. DFB, distributed feedback laser; OC, output coupler; PC, polarization controller; WDM, wavelength division multiplexor; EDFA, erbium doped fiber amplifier.

Fig. 2.
Fig. 2.

Mode-locked output spectrum for 4 m of Tm/Ho codoped fiber and 7 m of SMF when pumped at 1.56 μm.

Fig. 3.
Fig. 3.

Computed group velocity dispersion of OFS HNLF compared to Corning SMF-28. The HNLF GVD was provided to us from OFS, while the GVD of the SMF was computed using the manufacturer’s core size, the Sellmeier coefficients [19], and the weakly guiding approximation.

Fig. 4.
Fig. 4.

Mode-locked output spectrum for 1 m of Tm/Ho codoped fiber and 6 m of SMF28 when pumping at 1.56 μm. The spectral width is 15 nm FWHM. Over months of operation the bandwidth reduced to 8 nm.

Fig. 5.
Fig. 5.

Interferometric autocorrelation trace of the laser output. The autocorrelation FWHM was 1833 fs, corresponding to a pulse duration of 966 fs. The computed IAC envelope for a 966 fs pulse that exhibits self-phase modulation is plotted for comparison. The inset is the corresponding spectrum of 8 nm FWHM at the time of the IAC measurement.

Fig. 6.
Fig. 6.

Mode-locked spectrum for 1 m of Tm/Ho codoped fiber when pump power is 300mW with center wavelengths at (a) 1.96 μm and (b) 2.04 μm. Each spectrum was obtained under separate mode-locking conditions.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

β2L=Nλ02πc2[(ΔλNλ0)2+ln2(1+2)π2(λ0cΔτ)2]1,

Metrics