Abstract

A subwavelength plasmonic waveguide composed of a pair of comb-shape nanorod chains is proposed. The electromagnetic energy can be transported in the waveguide via the interaction strength of magnetoinductive coupling as well as conduction current exchange. Finite Element Method simulation results reveal that for such a waveguide composed of 50 pairs of 400 nm-long-nanorods, a passband ranging from zero to cutoff frequency 156.2 THz, and an effective propagation length of 20.87 μm can be achieved simultaneously. The proposed mechanism of energy transport in the nanoscale has potential applications in subwavelength transmission lines for a wide range of integrated optical devices.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
    [CrossRef]
  2. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
    [CrossRef]
  3. W. M. Saj, “FDTD simulations of 2D plasmon waveguide on silver nanorods in hexagonal lattice,” Opt. Express 13, 4818–4827 (2005).
    [CrossRef]
  4. J. Zhu, J. J. Li, and J. W. Zhao, “Tuning the wavelength drift between resonance light absorption and scattering of plasmonic nanoparticle,” Appl. Phys. Lett. 99, 101901 (2011).
    [CrossRef]
  5. F. M. Wang, H. Liu, T. Li, S. M. Wang, S. N. Zhu, J. Zhu, and W. Cao, “Highly confined energy propagation in a gap waveguide composed of two coupled nanorod chains,” Appl. Phys. Lett. 91, 133107 (2007).
    [CrossRef]
  6. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
    [CrossRef]
  7. T. Laroche and C. Girard, “Near-field optical properties of single plasmonic nanowires,” Appl. Phys. Lett. 89, 233119 (2006).
    [CrossRef]
  8. R. K. Harrison and A. Ben-Yakar, “Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate,” Opt. Express 18, 22556–22571(2010).
    [CrossRef]
  9. H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107, 057402 (2011).
    [CrossRef]
  10. Q. H. Song and H. Cao, “Improving optical confinement in nanostructures via external mode coupling,” Phys. Rev. Lett. 105, 053902 (2010).
    [CrossRef]
  11. C. P. Huang, X. G. Yin, Q. J. Wang, H. Huang, and Y. Y. Zhu, “Long-wavelength optical properties of a plasmonic crystal,” Phys. Rev. Lett. 104, 016402 (2010).
    [CrossRef]
  12. C. Tserkezis, N. Papanikolaou, E. Almpanis, and N. Stefanou, “Tailoring plasmons with metallic nanorod arrays,” Phys. Rev. B 80, 125124 (2009).
    [CrossRef]
  13. Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong plasmonic coupling between gold nanorods and slab,” Appl. Phys. Lett. 98, 083117 (2011).
    [CrossRef]
  14. G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16, 7460–7470 (2008).
    [CrossRef]
  15. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
    [CrossRef]
  16. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
    [CrossRef]
  17. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  18. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698–1702 (2007).
    [CrossRef]
  19. J. J. Wu, “Subwavelength microwave guiding by periodically corrugated strip line,” Prog. Electromagn. Res. 104, 113–123 (2010).
    [CrossRef]

2011 (3)

J. Zhu, J. J. Li, and J. W. Zhao, “Tuning the wavelength drift between resonance light absorption and scattering of plasmonic nanoparticle,” Appl. Phys. Lett. 99, 101901 (2011).
[CrossRef]

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107, 057402 (2011).
[CrossRef]

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong plasmonic coupling between gold nanorods and slab,” Appl. Phys. Lett. 98, 083117 (2011).
[CrossRef]

2010 (4)

R. K. Harrison and A. Ben-Yakar, “Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate,” Opt. Express 18, 22556–22571(2010).
[CrossRef]

Q. H. Song and H. Cao, “Improving optical confinement in nanostructures via external mode coupling,” Phys. Rev. Lett. 105, 053902 (2010).
[CrossRef]

C. P. Huang, X. G. Yin, Q. J. Wang, H. Huang, and Y. Y. Zhu, “Long-wavelength optical properties of a plasmonic crystal,” Phys. Rev. Lett. 104, 016402 (2010).
[CrossRef]

J. J. Wu, “Subwavelength microwave guiding by periodically corrugated strip line,” Prog. Electromagn. Res. 104, 113–123 (2010).
[CrossRef]

2009 (1)

C. Tserkezis, N. Papanikolaou, E. Almpanis, and N. Stefanou, “Tailoring plasmons with metallic nanorod arrays,” Phys. Rev. B 80, 125124 (2009).
[CrossRef]

2008 (1)

2007 (2)

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698–1702 (2007).
[CrossRef]

F. M. Wang, H. Liu, T. Li, S. M. Wang, S. N. Zhu, J. Zhu, and W. Cao, “Highly confined energy propagation in a gap waveguide composed of two coupled nanorod chains,” Appl. Phys. Lett. 91, 133107 (2007).
[CrossRef]

2006 (2)

T. Laroche and C. Girard, “Near-field optical properties of single plasmonic nanowires,” Appl. Phys. Lett. 89, 233119 (2006).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

2005 (1)

2002 (1)

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef]

2000 (1)

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
[CrossRef]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[CrossRef]

1998 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Almpanis, E.

C. Tserkezis, N. Papanikolaou, E. Almpanis, and N. Stefanou, “Tailoring plasmons with metallic nanorod arrays,” Phys. Rev. B 80, 125124 (2009).
[CrossRef]

Atkinson, R.

Atwater, H. A.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
[CrossRef]

Aussenegg, F. R.

Bachelier, G.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107, 057402 (2011).
[CrossRef]

Baida, H.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107, 057402 (2011).
[CrossRef]

Ben-Yakar, A.

Brongersma, M. L.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
[CrossRef]

Cao, H.

Q. H. Song and H. Cao, “Improving optical confinement in nanostructures via external mode coupling,” Phys. Rev. Lett. 105, 053902 (2010).
[CrossRef]

Cao, J. X.

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong plasmonic coupling between gold nanorods and slab,” Appl. Phys. Lett. 98, 083117 (2011).
[CrossRef]

Cao, W.

F. M. Wang, H. Liu, T. Li, S. M. Wang, S. N. Zhu, J. Zhu, and W. Cao, “Highly confined energy propagation in a gap waveguide composed of two coupled nanorod chains,” Appl. Phys. Lett. 91, 133107 (2007).
[CrossRef]

Christofilos, D.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107, 057402 (2011).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Crut, A.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107, 057402 (2011).
[CrossRef]

Del Fatti, N.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107, 057402 (2011).
[CrossRef]

Dickson, W.

Engheta, N.

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698–1702 (2007).
[CrossRef]

Evans, P.

Feldmann, J.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef]

Franzl, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef]

Genov, D. A.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Girard, C.

T. Laroche and C. Girard, “Near-field optical properties of single plasmonic nanowires,” Appl. Phys. Lett. 89, 233119 (2006).
[CrossRef]

Harrison, R. K.

Hartman, J. W.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
[CrossRef]

Hendren, W.

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[CrossRef]

Huang, C. P.

C. P. Huang, X. G. Yin, Q. J. Wang, H. Huang, and Y. Y. Zhu, “Long-wavelength optical properties of a plasmonic crystal,” Phys. Rev. Lett. 104, 016402 (2010).
[CrossRef]

Huang, H.

C. P. Huang, X. G. Yin, Q. J. Wang, H. Huang, and Y. Y. Zhu, “Long-wavelength optical properties of a plasmonic crystal,” Phys. Rev. Lett. 104, 016402 (2010).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Krenn, J. R.

Laroche, T.

T. Laroche and C. Girard, “Near-field optical properties of single plasmonic nanowires,” Appl. Phys. Lett. 89, 233119 (2006).
[CrossRef]

Leitner, A.

Li, J. J.

J. Zhu, J. J. Li, and J. W. Zhao, “Tuning the wavelength drift between resonance light absorption and scattering of plasmonic nanoparticle,” Appl. Phys. Lett. 99, 101901 (2011).
[CrossRef]

Li, L.

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong plasmonic coupling between gold nanorods and slab,” Appl. Phys. Lett. 98, 083117 (2011).
[CrossRef]

Li, T.

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong plasmonic coupling between gold nanorods and slab,” Appl. Phys. Lett. 98, 083117 (2011).
[CrossRef]

F. M. Wang, H. Liu, T. Li, S. M. Wang, S. N. Zhu, J. Zhu, and W. Cao, “Highly confined energy propagation in a gap waveguide composed of two coupled nanorod chains,” Appl. Phys. Lett. 91, 133107 (2007).
[CrossRef]

Liu, H.

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong plasmonic coupling between gold nanorods and slab,” Appl. Phys. Lett. 98, 083117 (2011).
[CrossRef]

F. M. Wang, H. Liu, T. Li, S. M. Wang, S. N. Zhu, J. Zhu, and W. Cao, “Highly confined energy propagation in a gap waveguide composed of two coupled nanorod chains,” Appl. Phys. Lett. 91, 133107 (2007).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Liu, Y. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Maioli, P.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107, 057402 (2011).
[CrossRef]

Mongin, D.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107, 057402 (2011).
[CrossRef]

Mulvaney, P.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef]

O’Connor, D.

Papanikolaou, N.

C. Tserkezis, N. Papanikolaou, E. Almpanis, and N. Stefanou, “Tailoring plasmons with metallic nanorod arrays,” Phys. Rev. B 80, 125124 (2009).
[CrossRef]

Pendry, J. B.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[CrossRef]

Pollard, R.

Quinten, M.

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[CrossRef]

Saj, W. M.

Song, Q. H.

Q. H. Song and H. Cao, “Improving optical confinement in nanostructures via external mode coupling,” Phys. Rev. Lett. 105, 053902 (2010).
[CrossRef]

Sönnichsen, C.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef]

Steele, J. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Stefanou, N.

C. Tserkezis, N. Papanikolaou, E. Almpanis, and N. Stefanou, “Tailoring plasmons with metallic nanorod arrays,” Phys. Rev. B 80, 125124 (2009).
[CrossRef]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[CrossRef]

Sun, C.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Tserkezis, C.

C. Tserkezis, N. Papanikolaou, E. Almpanis, and N. Stefanou, “Tailoring plasmons with metallic nanorod arrays,” Phys. Rev. B 80, 125124 (2009).
[CrossRef]

Vallée, F.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107, 057402 (2011).
[CrossRef]

von Plessen, G.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef]

Wang, F. M.

F. M. Wang, H. Liu, T. Li, S. M. Wang, S. N. Zhu, J. Zhu, and W. Cao, “Highly confined energy propagation in a gap waveguide composed of two coupled nanorod chains,” Appl. Phys. Lett. 91, 133107 (2007).
[CrossRef]

Wang, Q. J.

C. P. Huang, X. G. Yin, Q. J. Wang, H. Huang, and Y. Y. Zhu, “Long-wavelength optical properties of a plasmonic crystal,” Phys. Rev. Lett. 104, 016402 (2010).
[CrossRef]

Wang, S. M.

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong plasmonic coupling between gold nanorods and slab,” Appl. Phys. Lett. 98, 083117 (2011).
[CrossRef]

F. M. Wang, H. Liu, T. Li, S. M. Wang, S. N. Zhu, J. Zhu, and W. Cao, “Highly confined energy propagation in a gap waveguide composed of two coupled nanorod chains,” Appl. Phys. Lett. 91, 133107 (2007).
[CrossRef]

Wang, Y.

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong plasmonic coupling between gold nanorods and slab,” Appl. Phys. Lett. 98, 083117 (2011).
[CrossRef]

Wilk, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef]

Wilson, O.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef]

Wu, D. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Wu, J. J.

J. J. Wu, “Subwavelength microwave guiding by periodically corrugated strip line,” Prog. Electromagn. Res. 104, 113–123 (2010).
[CrossRef]

Wurtz, G. A.

Yin, X. G.

C. P. Huang, X. G. Yin, Q. J. Wang, H. Huang, and Y. Y. Zhu, “Long-wavelength optical properties of a plasmonic crystal,” Phys. Rev. Lett. 104, 016402 (2010).
[CrossRef]

Zayats, A. V.

Zhang, X.

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong plasmonic coupling between gold nanorods and slab,” Appl. Phys. Lett. 98, 083117 (2011).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Zhao, J. W.

J. Zhu, J. J. Li, and J. W. Zhao, “Tuning the wavelength drift between resonance light absorption and scattering of plasmonic nanoparticle,” Appl. Phys. Lett. 99, 101901 (2011).
[CrossRef]

Zheng, Y. J.

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong plasmonic coupling between gold nanorods and slab,” Appl. Phys. Lett. 98, 083117 (2011).
[CrossRef]

Zhu, C.

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong plasmonic coupling between gold nanorods and slab,” Appl. Phys. Lett. 98, 083117 (2011).
[CrossRef]

Zhu, J.

J. Zhu, J. J. Li, and J. W. Zhao, “Tuning the wavelength drift between resonance light absorption and scattering of plasmonic nanoparticle,” Appl. Phys. Lett. 99, 101901 (2011).
[CrossRef]

F. M. Wang, H. Liu, T. Li, S. M. Wang, S. N. Zhu, J. Zhu, and W. Cao, “Highly confined energy propagation in a gap waveguide composed of two coupled nanorod chains,” Appl. Phys. Lett. 91, 133107 (2007).
[CrossRef]

Zhu, S. N.

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong plasmonic coupling between gold nanorods and slab,” Appl. Phys. Lett. 98, 083117 (2011).
[CrossRef]

F. M. Wang, H. Liu, T. Li, S. M. Wang, S. N. Zhu, J. Zhu, and W. Cao, “Highly confined energy propagation in a gap waveguide composed of two coupled nanorod chains,” Appl. Phys. Lett. 91, 133107 (2007).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Zhu, Y. Y.

C. P. Huang, X. G. Yin, Q. J. Wang, H. Huang, and Y. Y. Zhu, “Long-wavelength optical properties of a plasmonic crystal,” Phys. Rev. Lett. 104, 016402 (2010).
[CrossRef]

Appl. Phys. Lett. (4)

J. Zhu, J. J. Li, and J. W. Zhao, “Tuning the wavelength drift between resonance light absorption and scattering of plasmonic nanoparticle,” Appl. Phys. Lett. 99, 101901 (2011).
[CrossRef]

F. M. Wang, H. Liu, T. Li, S. M. Wang, S. N. Zhu, J. Zhu, and W. Cao, “Highly confined energy propagation in a gap waveguide composed of two coupled nanorod chains,” Appl. Phys. Lett. 91, 133107 (2007).
[CrossRef]

T. Laroche and C. Girard, “Near-field optical properties of single plasmonic nanowires,” Appl. Phys. Lett. 89, 233119 (2006).
[CrossRef]

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, “Selective optical trapping based on strong plasmonic coupling between gold nanorods and slab,” Appl. Phys. Lett. 98, 083117 (2011).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (3)

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
[CrossRef]

C. Tserkezis, N. Papanikolaou, E. Almpanis, and N. Stefanou, “Tailoring plasmons with metallic nanorod arrays,” Phys. Rev. B 80, 125124 (2009).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (5)

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef]

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107, 057402 (2011).
[CrossRef]

Q. H. Song and H. Cao, “Improving optical confinement in nanostructures via external mode coupling,” Phys. Rev. Lett. 105, 053902 (2010).
[CrossRef]

C. P. Huang, X. G. Yin, Q. J. Wang, H. Huang, and Y. Y. Zhu, “Long-wavelength optical properties of a plasmonic crystal,” Phys. Rev. Lett. 104, 016402 (2010).
[CrossRef]

Prog. Electromagn. Res. (1)

J. J. Wu, “Subwavelength microwave guiding by periodically corrugated strip line,” Prog. Electromagn. Res. 104, 113–123 (2010).
[CrossRef]

Science (1)

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698–1702 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Basic configuration of the plasmonic waveguide composed of a pair of metal nanorod chains. The geometrical characteristics of the waveguide and the positions of dipole sources (the arrows) and the probe (the point) are included. The dimensions of each rod are 50 nm by 50 nm by 400 nm. Note that the rod length is equal to the sum of l and h, which enables a convenient comparison with its counterparts with disconnected nanorods.

Fig. 2.
Fig. 2.

(a) Magnetic field amplitude |Hz| at the probe point in connected nanorods-based waveguide composed of two pairs (curve with square) and three pairs (curve with circle) of nanorods. (b) Mode distribution at the resonance frequency corresponding to the three |Hz| peaks in (a).

Fig. 3.
Fig. 3.

(a) Magnetic field amplitude |Hz| at the probe point in disconnected nanorods-based waveguide composed of two pairs (curve with square) and three pairs (curve with circle) of nanorods. (b) Mode distribution at the resonance frequency corresponding to the three |Hz| peaks in (a).

Fig. 4.
Fig. 4.

Magnetic field at the probe point in a waveguide composed of two pairs (dashed curve), 10 pairs (dashed dotted curve), and 50 pairs (solid curve) of connected nanorods. fcutoff represents the cutoff frequency for the proposed waveguide.

Fig. 5.
Fig. 5.

EM energy transportation along a pair of (a) connected and (b) disconnected nanorod chains, each consisting of 50 metal 400 nm-long-nanorod pairs. The corresponding magnified mode distribution and electric field intensity along the cutline at x=4225nm are shown in (c), (d), and (e), separately. The solid curve is for the connected nanorods, and the circle dotted curve is for the disconnected nanorods.

Fig. 6.
Fig. 6.

(a) f-k dispersion relationship and (b) attenuation coefficient for the waveguide based on a pair of 50-connected-nanorod chains with a rod length of 200 nm (curve with up triangle), 300 nm (curve with down triangle), and 400 nm (curve with circle). The dark solid line in (a) stands for the light line, and the dark line with squares in (b) shows the attenuation coefficient of the waveguide based on a pair of 50-disconnected-nanorods chains with a nanorod length of 400 nm.

Fig. 7.
Fig. 7.

Simulated attenuation factor for the proposed waveguide with a gap width g equal to 20 nm (curve with square), 50 nm (curve with circle), 100 nm (curve with up triangle), and 150 nm (curve with down triangle).

Fig. 8.
Fig. 8.

Simulated attenuation factor for the proposed waveguide with an interrod distance equal to 50 nm (curve with square), 100 nm (curve with circle), 150 nm (curve with up triangle), and 200 nm (curve with down triangle).

Fig. 9.
Fig. 9.

Mode field profiles for the proposed waveguide with a substrate refractive index of (a) 1.5 and (b) 2.5. (c) Propagation length and (d) mode effective index of the proposed waveguide versus the substrate refractive index. The effective index is derived from the dispersion curve.

Tables (1)

Tables Icon

Table 1. Main Notation Used in the Following Discussion and Their Definitions

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I=12L(q˙12+q˙22)12C(q12+q22)+Mq˙1q˙214C(q1q2)2.
ddx(Iq˙m)Iqm=Rq˙m,m=1,2,
μ¨1+Γμ˙1+ω02μ1=12κcω02(μ1+μ2)κmμ¨2,
μ¨2+Γμ˙2+ω02μ2=12κcω02(μ1+μ2)κmμ¨1.
μ=μm0exp(12Γmt+mtωm),m=1,2.

Metrics