Abstract

An optical system useful to tune in a controlled way the color of a triline argon krypton (Ar–Kr) laser by means of a twisted nematic liquid crystal display (TNLCD) is presented. The optical setup employs a 4f system and two blazed gratings to first separate and then recombine the spectrum of the light beam. The TNLCD is included in the intermediate focal plane operating in the amplitude modulation mode to control the relative transmission of each spectral line. The resulting color is accurately predicted by using a previously developed physical model of the spectral and voltage dependence of the TNLCD birefringence. By simply changing the gray level image addressed to the display, the Ar–Kr laser is color modulated at a video rate, thus becoming an interesting, reconfigurable, coherent light source for applications such as multicolor holography or color inspection.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999).
  2. A. M. Pozo-Molina, J. J. Castro-Torres, and A. M. Rubiño-López, “Temporal stability and colour reproduction in fluorescent backlight LCD and AMOLED flat panel displays,” Opt. Pura Apl. 43, 207–212 (2010).
  3. M. G. Robinson, J. Chen, and G. D. Sharp, “Color in projection displays,” J. Display Technol. 1, 118–124 (2005).
    [CrossRef]
  4. J. L. Martínez, A. Martínez-García, and I. Moreno, “Wavelength-compensated color Fourier diffractive optical elements using a ferroelectric liquid crystal on silicon display and a color-filter wheel,” Appl. Opt. 48, 911–918 (2009).
    [CrossRef]
  5. T.-L. Kelly and J. Munch, “Wavelength dependence of twisted nematic liquid crystal phase modulators,” Opt. Commun. 156, 252–258 (1998).
    [CrossRef]
  6. J. L. Martínez, P. García-Martínez, M. M. Sánchez-López, and I. Moreno, “Accurate colour predictability based on a spectral retardance model of a twisted-nematic liquid crystal display,” Opt. Commun. 284, 2441–2447 (2011).
    [CrossRef]
  7. P. J. Miller and C. C. Hoyt, “Multispectral color capture using a liquid crystal tunable filter,” Opt. Eng. 41, 2532–2548 (2002).
    [CrossRef]
  8. M. A. López-Álvarez, J. Hernández-Andrés, J. Romero, and R. L. Lee, “Designing a practical system for spectral imaging of skylight,” Appl. Opt. 44, 5688–5695 (2005).
    [CrossRef]
  9. M. S. Millán, J. Otón, and E. Pérez-Cabré, “Dynamic compensation of chromatic aberration in a programmable diffractive lens,” Opt. Express 14, 9103–9111 (2006).
    [CrossRef]
  10. A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284, 3669–3692 (2011).
    [CrossRef]
  11. D. J. Funk and D. S. Moore, “Fourier-transform spectroscopy using liquid crystal technology,” Opt. Lett. 22, 1799–1801 (1997).
    [CrossRef]
  12. S. V. Kartalopoulus, Introduction to DWDM Technology (SPIE, 2000).
  13. D. Sinefeld, C. R. Doerr, and D. M. Marom, “A photonic spectral processor employing two-dimensional WDM channel separation and a phase LCoS modulator,” Opt. Express 19, 14532–14541 (2011).
    [CrossRef]
  14. Y. Zhang, H. Dong, R. Wang, J. Duan, A. Shi, Q. Fang, and Y. Liu, “Demonstration of a home projector based on RGB semiconductor lasers,” Appl. Opt. 51, 3584–3589 (2012).
    [CrossRef]
  15. Y. Saito, N. Nakai, A. Nomura, and T. Kano, “Spectral characteristics of a short-pulse red–green–blue dye mixture laser,” Appl. Opt. 31, 4298–4304 (1992).
    [CrossRef]
  16. T. Kampfe, E. Kley, A. Tunnermann, and P. Dannberg, “Design and fabrication of stacked, computer generated holograms for multicolor image generation,” Appl. Opt. 46, 5482–5488 (2007).
    [CrossRef]
  17. D. Brotherton-Ratcliffe, S. J. Zacharovas, R. J. Bakanas, J. Pileckas, A. Nikoskij, and J. Kuchin, “Digital holographic printing using pulsed RGB lasers,” Opt. Eng. 50, 091307 (2011).
    [CrossRef]
  18. T. Shimonaba and T. Ito, “A color holographic reconstruction system by time division multiplexing with reference lights of laser,” Opt. Rev. 10, 339–341 (2003).
    [CrossRef]
  19. T. Shimonaba, A. Shiraki, N. Masuda, and T. Ito, “An electroholographic color reconstruction by time division switching of reference lights,” J. Opt. A Pure Appl. Opt. 9, 757–760 (2007).
    [CrossRef]
  20. A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behaviour of twisted nematic liquid crystal displays based on a simple physical model,” Opt. Eng. 40, 2558–2564 (2001).
    [CrossRef]
  21. I. Moreno, A. M. Cutillas, M. M. Sánchez-López, P. Velásquez, and F. Mateos, “Full prediction of the broadband optical modulation performance of a twisted nematic liquid crystal cell,” Opt. Commun. 281, 5520–5526 (2008).
    [CrossRef]
  22. A. Lizana, A. Márquez, I. Moreno, C. Iemmi, J. Campos, and M. J. Yzuel, “Wavelength dependence of polarimetric and phase-shift characterization of a liquid crystal on silicon display,” J. Eur. Opt. Soc. Rapid Pub. 3, 08011 (2008).
    [CrossRef]
  23. D. Malacara, Color Vision and Colorimetry (SPIE, 2002).

2012 (1)

2011 (4)

D. Sinefeld, C. R. Doerr, and D. M. Marom, “A photonic spectral processor employing two-dimensional WDM channel separation and a phase LCoS modulator,” Opt. Express 19, 14532–14541 (2011).
[CrossRef]

J. L. Martínez, P. García-Martínez, M. M. Sánchez-López, and I. Moreno, “Accurate colour predictability based on a spectral retardance model of a twisted-nematic liquid crystal display,” Opt. Commun. 284, 2441–2447 (2011).
[CrossRef]

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284, 3669–3692 (2011).
[CrossRef]

D. Brotherton-Ratcliffe, S. J. Zacharovas, R. J. Bakanas, J. Pileckas, A. Nikoskij, and J. Kuchin, “Digital holographic printing using pulsed RGB lasers,” Opt. Eng. 50, 091307 (2011).
[CrossRef]

2010 (1)

A. M. Pozo-Molina, J. J. Castro-Torres, and A. M. Rubiño-López, “Temporal stability and colour reproduction in fluorescent backlight LCD and AMOLED flat panel displays,” Opt. Pura Apl. 43, 207–212 (2010).

2009 (1)

2008 (2)

I. Moreno, A. M. Cutillas, M. M. Sánchez-López, P. Velásquez, and F. Mateos, “Full prediction of the broadband optical modulation performance of a twisted nematic liquid crystal cell,” Opt. Commun. 281, 5520–5526 (2008).
[CrossRef]

A. Lizana, A. Márquez, I. Moreno, C. Iemmi, J. Campos, and M. J. Yzuel, “Wavelength dependence of polarimetric and phase-shift characterization of a liquid crystal on silicon display,” J. Eur. Opt. Soc. Rapid Pub. 3, 08011 (2008).
[CrossRef]

2007 (2)

T. Shimonaba, A. Shiraki, N. Masuda, and T. Ito, “An electroholographic color reconstruction by time division switching of reference lights,” J. Opt. A Pure Appl. Opt. 9, 757–760 (2007).
[CrossRef]

T. Kampfe, E. Kley, A. Tunnermann, and P. Dannberg, “Design and fabrication of stacked, computer generated holograms for multicolor image generation,” Appl. Opt. 46, 5482–5488 (2007).
[CrossRef]

2006 (1)

2005 (2)

2003 (1)

T. Shimonaba and T. Ito, “A color holographic reconstruction system by time division multiplexing with reference lights of laser,” Opt. Rev. 10, 339–341 (2003).
[CrossRef]

2002 (1)

P. J. Miller and C. C. Hoyt, “Multispectral color capture using a liquid crystal tunable filter,” Opt. Eng. 41, 2532–2548 (2002).
[CrossRef]

2001 (1)

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behaviour of twisted nematic liquid crystal displays based on a simple physical model,” Opt. Eng. 40, 2558–2564 (2001).
[CrossRef]

1998 (1)

T.-L. Kelly and J. Munch, “Wavelength dependence of twisted nematic liquid crystal phase modulators,” Opt. Commun. 156, 252–258 (1998).
[CrossRef]

1997 (1)

1992 (1)

Bakanas, R. J.

D. Brotherton-Ratcliffe, S. J. Zacharovas, R. J. Bakanas, J. Pileckas, A. Nikoskij, and J. Kuchin, “Digital holographic printing using pulsed RGB lasers,” Opt. Eng. 50, 091307 (2011).
[CrossRef]

Brotherton-Ratcliffe, D.

D. Brotherton-Ratcliffe, S. J. Zacharovas, R. J. Bakanas, J. Pileckas, A. Nikoskij, and J. Kuchin, “Digital holographic printing using pulsed RGB lasers,” Opt. Eng. 50, 091307 (2011).
[CrossRef]

Campos, J.

A. Lizana, A. Márquez, I. Moreno, C. Iemmi, J. Campos, and M. J. Yzuel, “Wavelength dependence of polarimetric and phase-shift characterization of a liquid crystal on silicon display,” J. Eur. Opt. Soc. Rapid Pub. 3, 08011 (2008).
[CrossRef]

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behaviour of twisted nematic liquid crystal displays based on a simple physical model,” Opt. Eng. 40, 2558–2564 (2001).
[CrossRef]

Castro-Torres, J. J.

A. M. Pozo-Molina, J. J. Castro-Torres, and A. M. Rubiño-López, “Temporal stability and colour reproduction in fluorescent backlight LCD and AMOLED flat panel displays,” Opt. Pura Apl. 43, 207–212 (2010).

Chen, J.

Cutillas, A. M.

I. Moreno, A. M. Cutillas, M. M. Sánchez-López, P. Velásquez, and F. Mateos, “Full prediction of the broadband optical modulation performance of a twisted nematic liquid crystal cell,” Opt. Commun. 281, 5520–5526 (2008).
[CrossRef]

Dannberg, P.

Davis, J. A.

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behaviour of twisted nematic liquid crystal displays based on a simple physical model,” Opt. Eng. 40, 2558–2564 (2001).
[CrossRef]

Doerr, C. R.

Dong, H.

Duan, J.

Fang, Q.

Funk, D. J.

García-Martínez, P.

J. L. Martínez, P. García-Martínez, M. M. Sánchez-López, and I. Moreno, “Accurate colour predictability based on a spectral retardance model of a twisted-nematic liquid crystal display,” Opt. Commun. 284, 2441–2447 (2011).
[CrossRef]

Gu, C.

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999).

Hernández-Andrés, J.

Hoyt, C. C.

P. J. Miller and C. C. Hoyt, “Multispectral color capture using a liquid crystal tunable filter,” Opt. Eng. 41, 2532–2548 (2002).
[CrossRef]

Iemmi, C.

A. Lizana, A. Márquez, I. Moreno, C. Iemmi, J. Campos, and M. J. Yzuel, “Wavelength dependence of polarimetric and phase-shift characterization of a liquid crystal on silicon display,” J. Eur. Opt. Soc. Rapid Pub. 3, 08011 (2008).
[CrossRef]

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behaviour of twisted nematic liquid crystal displays based on a simple physical model,” Opt. Eng. 40, 2558–2564 (2001).
[CrossRef]

Ito, T.

T. Shimonaba, A. Shiraki, N. Masuda, and T. Ito, “An electroholographic color reconstruction by time division switching of reference lights,” J. Opt. A Pure Appl. Opt. 9, 757–760 (2007).
[CrossRef]

T. Shimonaba and T. Ito, “A color holographic reconstruction system by time division multiplexing with reference lights of laser,” Opt. Rev. 10, 339–341 (2003).
[CrossRef]

Kampfe, T.

Kano, T.

Kartalopoulus, S. V.

S. V. Kartalopoulus, Introduction to DWDM Technology (SPIE, 2000).

Kelly, T.-L.

T.-L. Kelly and J. Munch, “Wavelength dependence of twisted nematic liquid crystal phase modulators,” Opt. Commun. 156, 252–258 (1998).
[CrossRef]

Kley, E.

Kuchin, J.

D. Brotherton-Ratcliffe, S. J. Zacharovas, R. J. Bakanas, J. Pileckas, A. Nikoskij, and J. Kuchin, “Digital holographic printing using pulsed RGB lasers,” Opt. Eng. 50, 091307 (2011).
[CrossRef]

Lee, R. L.

Liu, Y.

Lizana, A.

A. Lizana, A. Márquez, I. Moreno, C. Iemmi, J. Campos, and M. J. Yzuel, “Wavelength dependence of polarimetric and phase-shift characterization of a liquid crystal on silicon display,” J. Eur. Opt. Soc. Rapid Pub. 3, 08011 (2008).
[CrossRef]

López-Álvarez, M. A.

Malacara, D.

D. Malacara, Color Vision and Colorimetry (SPIE, 2002).

Marom, D. M.

Márquez, A.

A. Lizana, A. Márquez, I. Moreno, C. Iemmi, J. Campos, and M. J. Yzuel, “Wavelength dependence of polarimetric and phase-shift characterization of a liquid crystal on silicon display,” J. Eur. Opt. Soc. Rapid Pub. 3, 08011 (2008).
[CrossRef]

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behaviour of twisted nematic liquid crystal displays based on a simple physical model,” Opt. Eng. 40, 2558–2564 (2001).
[CrossRef]

Martínez, J. L.

J. L. Martínez, P. García-Martínez, M. M. Sánchez-López, and I. Moreno, “Accurate colour predictability based on a spectral retardance model of a twisted-nematic liquid crystal display,” Opt. Commun. 284, 2441–2447 (2011).
[CrossRef]

J. L. Martínez, A. Martínez-García, and I. Moreno, “Wavelength-compensated color Fourier diffractive optical elements using a ferroelectric liquid crystal on silicon display and a color-filter wheel,” Appl. Opt. 48, 911–918 (2009).
[CrossRef]

Martínez-García, A.

Masuda, N.

T. Shimonaba, A. Shiraki, N. Masuda, and T. Ito, “An electroholographic color reconstruction by time division switching of reference lights,” J. Opt. A Pure Appl. Opt. 9, 757–760 (2007).
[CrossRef]

Mateos, F.

I. Moreno, A. M. Cutillas, M. M. Sánchez-López, P. Velásquez, and F. Mateos, “Full prediction of the broadband optical modulation performance of a twisted nematic liquid crystal cell,” Opt. Commun. 281, 5520–5526 (2008).
[CrossRef]

Millán, M. S.

Miller, P. J.

P. J. Miller and C. C. Hoyt, “Multispectral color capture using a liquid crystal tunable filter,” Opt. Eng. 41, 2532–2548 (2002).
[CrossRef]

Moore, D. S.

Moreno, I.

J. L. Martínez, P. García-Martínez, M. M. Sánchez-López, and I. Moreno, “Accurate colour predictability based on a spectral retardance model of a twisted-nematic liquid crystal display,” Opt. Commun. 284, 2441–2447 (2011).
[CrossRef]

J. L. Martínez, A. Martínez-García, and I. Moreno, “Wavelength-compensated color Fourier diffractive optical elements using a ferroelectric liquid crystal on silicon display and a color-filter wheel,” Appl. Opt. 48, 911–918 (2009).
[CrossRef]

A. Lizana, A. Márquez, I. Moreno, C. Iemmi, J. Campos, and M. J. Yzuel, “Wavelength dependence of polarimetric and phase-shift characterization of a liquid crystal on silicon display,” J. Eur. Opt. Soc. Rapid Pub. 3, 08011 (2008).
[CrossRef]

I. Moreno, A. M. Cutillas, M. M. Sánchez-López, P. Velásquez, and F. Mateos, “Full prediction of the broadband optical modulation performance of a twisted nematic liquid crystal cell,” Opt. Commun. 281, 5520–5526 (2008).
[CrossRef]

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behaviour of twisted nematic liquid crystal displays based on a simple physical model,” Opt. Eng. 40, 2558–2564 (2001).
[CrossRef]

Munch, J.

T.-L. Kelly and J. Munch, “Wavelength dependence of twisted nematic liquid crystal phase modulators,” Opt. Commun. 156, 252–258 (1998).
[CrossRef]

Nakai, N.

Nikoskij, A.

D. Brotherton-Ratcliffe, S. J. Zacharovas, R. J. Bakanas, J. Pileckas, A. Nikoskij, and J. Kuchin, “Digital holographic printing using pulsed RGB lasers,” Opt. Eng. 50, 091307 (2011).
[CrossRef]

Nomura, A.

Otón, J.

Pérez-Cabré, E.

Pileckas, J.

D. Brotherton-Ratcliffe, S. J. Zacharovas, R. J. Bakanas, J. Pileckas, A. Nikoskij, and J. Kuchin, “Digital holographic printing using pulsed RGB lasers,” Opt. Eng. 50, 091307 (2011).
[CrossRef]

Pozo-Molina, A. M.

A. M. Pozo-Molina, J. J. Castro-Torres, and A. M. Rubiño-López, “Temporal stability and colour reproduction in fluorescent backlight LCD and AMOLED flat panel displays,” Opt. Pura Apl. 43, 207–212 (2010).

Robinson, M. G.

Romero, J.

Rubiño-López, A. M.

A. M. Pozo-Molina, J. J. Castro-Torres, and A. M. Rubiño-López, “Temporal stability and colour reproduction in fluorescent backlight LCD and AMOLED flat panel displays,” Opt. Pura Apl. 43, 207–212 (2010).

Saito, Y.

Sánchez-López, M. M.

J. L. Martínez, P. García-Martínez, M. M. Sánchez-López, and I. Moreno, “Accurate colour predictability based on a spectral retardance model of a twisted-nematic liquid crystal display,” Opt. Commun. 284, 2441–2447 (2011).
[CrossRef]

I. Moreno, A. M. Cutillas, M. M. Sánchez-López, P. Velásquez, and F. Mateos, “Full prediction of the broadband optical modulation performance of a twisted nematic liquid crystal cell,” Opt. Commun. 281, 5520–5526 (2008).
[CrossRef]

Sharp, G. D.

Shi, A.

Shimonaba, T.

T. Shimonaba, A. Shiraki, N. Masuda, and T. Ito, “An electroholographic color reconstruction by time division switching of reference lights,” J. Opt. A Pure Appl. Opt. 9, 757–760 (2007).
[CrossRef]

T. Shimonaba and T. Ito, “A color holographic reconstruction system by time division multiplexing with reference lights of laser,” Opt. Rev. 10, 339–341 (2003).
[CrossRef]

Shiraki, A.

T. Shimonaba, A. Shiraki, N. Masuda, and T. Ito, “An electroholographic color reconstruction by time division switching of reference lights,” J. Opt. A Pure Appl. Opt. 9, 757–760 (2007).
[CrossRef]

Sinefeld, D.

Tunnermann, A.

Velásquez, P.

I. Moreno, A. M. Cutillas, M. M. Sánchez-López, P. Velásquez, and F. Mateos, “Full prediction of the broadband optical modulation performance of a twisted nematic liquid crystal cell,” Opt. Commun. 281, 5520–5526 (2008).
[CrossRef]

Wang, R.

Weiner, A. M.

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284, 3669–3692 (2011).
[CrossRef]

Yeh, P.

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999).

Yzuel, M. J.

A. Lizana, A. Márquez, I. Moreno, C. Iemmi, J. Campos, and M. J. Yzuel, “Wavelength dependence of polarimetric and phase-shift characterization of a liquid crystal on silicon display,” J. Eur. Opt. Soc. Rapid Pub. 3, 08011 (2008).
[CrossRef]

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behaviour of twisted nematic liquid crystal displays based on a simple physical model,” Opt. Eng. 40, 2558–2564 (2001).
[CrossRef]

Zacharovas, S. J.

D. Brotherton-Ratcliffe, S. J. Zacharovas, R. J. Bakanas, J. Pileckas, A. Nikoskij, and J. Kuchin, “Digital holographic printing using pulsed RGB lasers,” Opt. Eng. 50, 091307 (2011).
[CrossRef]

Zhang, Y.

Appl. Opt. (5)

J. Display Technol. (1)

J. Eur. Opt. Soc. Rapid Pub. (1)

A. Lizana, A. Márquez, I. Moreno, C. Iemmi, J. Campos, and M. J. Yzuel, “Wavelength dependence of polarimetric and phase-shift characterization of a liquid crystal on silicon display,” J. Eur. Opt. Soc. Rapid Pub. 3, 08011 (2008).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

T. Shimonaba, A. Shiraki, N. Masuda, and T. Ito, “An electroholographic color reconstruction by time division switching of reference lights,” J. Opt. A Pure Appl. Opt. 9, 757–760 (2007).
[CrossRef]

Opt. Commun. (4)

T.-L. Kelly and J. Munch, “Wavelength dependence of twisted nematic liquid crystal phase modulators,” Opt. Commun. 156, 252–258 (1998).
[CrossRef]

J. L. Martínez, P. García-Martínez, M. M. Sánchez-López, and I. Moreno, “Accurate colour predictability based on a spectral retardance model of a twisted-nematic liquid crystal display,” Opt. Commun. 284, 2441–2447 (2011).
[CrossRef]

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284, 3669–3692 (2011).
[CrossRef]

I. Moreno, A. M. Cutillas, M. M. Sánchez-López, P. Velásquez, and F. Mateos, “Full prediction of the broadband optical modulation performance of a twisted nematic liquid crystal cell,” Opt. Commun. 281, 5520–5526 (2008).
[CrossRef]

Opt. Eng. (3)

D. Brotherton-Ratcliffe, S. J. Zacharovas, R. J. Bakanas, J. Pileckas, A. Nikoskij, and J. Kuchin, “Digital holographic printing using pulsed RGB lasers,” Opt. Eng. 50, 091307 (2011).
[CrossRef]

P. J. Miller and C. C. Hoyt, “Multispectral color capture using a liquid crystal tunable filter,” Opt. Eng. 41, 2532–2548 (2002).
[CrossRef]

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behaviour of twisted nematic liquid crystal displays based on a simple physical model,” Opt. Eng. 40, 2558–2564 (2001).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Opt. Pura Apl. (1)

A. M. Pozo-Molina, J. J. Castro-Torres, and A. M. Rubiño-López, “Temporal stability and colour reproduction in fluorescent backlight LCD and AMOLED flat panel displays,” Opt. Pura Apl. 43, 207–212 (2010).

Opt. Rev. (1)

T. Shimonaba and T. Ito, “A color holographic reconstruction system by time division multiplexing with reference lights of laser,” Opt. Rev. 10, 339–341 (2003).
[CrossRef]

Other (3)

S. V. Kartalopoulus, Introduction to DWDM Technology (SPIE, 2000).

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999).

D. Malacara, Color Vision and Colorimetry (SPIE, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Scheme of the optical setup. L denotes converging lenses, P denotes linear polarizers, LCD the liquid crystal display, and SP the spectrometer.

Fig. 2.
Fig. 2.

Experimental spectrum of the input light beam. (a) Picture of the diffraction pattern after the blazed grating and (b) measurement of the recombined beam spectrum with the spectrometer after adjusting the power input.

Fig. 3.
Fig. 3.

TNLCD effective retardance parameters β and δ, in degrees, as a function of the addressed gray level, for the three RGB wavelengths.

Fig. 4.
Fig. 4.

Intensity transmission of the TNLCD in the configuration (φ1=42°,φ2=48°) as a function of the addressed gray level for the RGB wavelengths. Continuous lines denote the numerically simulated prediction, while points denote the corresponding experimental data.

Fig. 5.
Fig. 5.

Color representation on the CIExy chromaticity diagram of the three Ar–Kr laser lines (488, 568, and 647 nm) and the possible color gamut that can be reproduced.

Fig. 6.
Fig. 6.

Experimental spectra and captured color output beam (as insets) for the relative weights of the spectral lines (BGR): (a) (1,1,1); (b) (1/2,1/2,1); (c) (0,0,1); (d) (1/2,1,1/2); (e) (0,1,0); (f) (1,1/2,1/2); and (g) (1,0,0).

Fig. 7.
Fig. 7.

Simulation results for the representation in the CIExy diagram of different sequences (solid color points) where, starting from three equally intense spectral lines, two of them are gradually decreased in steps of 10%. For each case the fully transmitted line is: (a) red, (b) green, or (c) blue.

Fig. 8.
Fig. 8.

Experimental results corresponding to the simulation presented in Fig. 7.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

MLCD(α,β,δ)=ei(β+2δ)R(α)·M(α,β,δ),
R(α)=(cos(α)sin(α)sin(α)cos(α)),
M(α,β,δ)=(AiBCCA+iB),
A=cos(γ)cos(2δ)βγsin(γ)sin(2δ),
B=cos(γ)sin(2δ)+βγsin(γ)cos(2δ),
C=αsin(γ)γ,
γ=α2+β2.
τ(λ,g)=[A(λ,g)cos(φ1φ2+α)+C(λ,g)sin(φ1φ2+α)]2+[B(λ,g)cos(φ1+φ2α)]2,
i(λ)i=R,G,Bciδ(λλi),
T(λ)=τ(λ,g)i(λ).
T(λ)i=R,G,Bciτiδ(λλi),
X=0T(λ)x¯(λ)dλ,Y=0T(λ)y¯(λ)dλ,Z=0T(λ)z¯(λ)dλ.
X(g^)=i=R,G,Bciτix¯i,Y(g^)=i=R,G,Bciτiy¯i,Z(g^)=i=R,G,Bciτiz¯i,
x(g^)=X(g^)X(g^)+Y(g^)+Z(g^),
y(g^)=Y(g^)X(g^)+Y(g^)+Z(g^),
z(g^)=Z(g^)X(g^)+Y(g^)+Z(g^).

Metrics