Abstract

We demonstrate a temperature sensor based on surface plasmon resonances supported by photonic crystal fibers (PCFs). Within the PCF, to enhance the sensitivity of the sensor, the air holes of the second layer are filled with a large thermo-optic coefficient liquid and some of those air holes are selectively coated with metal. Temperature variations will induce changes of coupling efficiencies between the fundamental core mode and the plasmonic mode, thus leading to different loss spectra that will be recorded. In this paper, variations of the dielectric constants of all components, including the metal, the filled liquid, and the fused silica, are considered. We conduct numerical calculations to analyze the mode profile and evaluate the power loss, demonstrating a temperature sensitivity as high as 720pm/°C.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
    [CrossRef]
  3. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
    [CrossRef]
  4. B. Lee, S. Roh, and J. Park, “Current status of micro-and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15, 209–221 (2009).
    [CrossRef]
  5. A. K. Sharma and B. D. Gupta, “Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection,” Opt. Fiber Technol. 12, 87–100 (2006).
    [CrossRef]
  6. P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
    [CrossRef]
  7. J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
    [CrossRef]
  8. C. G. Poulton, M. A. Schmidt, G. J. Pearce, G. Kakarantzas, and P. S. Russell, “Numerical study of guided modes in arrays of metallic nanowires,” Opt. Lett. 32, 1647–1649 (2007).
    [CrossRef]
  9. J. Hou, D. Bird, A. George, S. Maier, B. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16, 5983–5990 (2008).
    [CrossRef]
  10. M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008).
    [CrossRef]
  11. P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
    [CrossRef]
  12. J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19, 211–227 (2000).
    [CrossRef]
  13. A. Hassani, and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14, 11616–11621 (2006).
    [CrossRef]
  14. X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 015005 (2010).
    [CrossRef]
  15. X. Zhang, R. Wang, F. M. Cox, B. T. Kuhlmey, and M. C. Large, “Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers,” Opt. Express 15, 16270–16278 (2007).
    [CrossRef]
  16. S. J. Qiu, Y. Chen, F. Xu, and Y. Q. Lu, “Temperature sensor based on an isopropanol-sealed photonic crystal fiber in-line interferometer with enhanced refractive index sensitivity,” Opt. Lett. 37, 863–865 (2012).
    [CrossRef]
  17. N. Liu, Y. Li, Y. Wang, H. Wang, W. Liang, and P. Lu, “Bending insensitive sensors for strain and temperature measurements with Bragg gratings in Bragg fibers,” Opt. Express 19, 13880–13891 (2011).
    [CrossRef]
  18. S. K. Srivastava and B. D. Gupta, “Simulation of a localized surface-plasmon-resonance-based fiber optic temperature sensor,” J. Opt. Soc. Am. A 27, 1743–1749 (2010).
    [CrossRef]
  19. S. J. Al-Bader and M. Imtaar, “Optical fiber hybrid-surface plasmon polaritons,” J. Opt. Soc. Am. B 10, 83–88 (1993).
    [CrossRef]
  20. U. Schröter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64, 125420 (2001).
    [CrossRef]
  21. G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12, 1338–1342 (1994).
    [CrossRef]
  22. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  23. K. Lin, Y. Lu, Z. Luo, R. Zheng, P. Wang, and H. Ming, “Numerical and experimental investigation of temperature effects on the surface plasmon resonance sensor,” Chin. Opt. Lett. 7, 428–431 (2009).
    [CrossRef]
  24. R. Beach and R. Christy, “Electron-electron scattering in the intraband optical conductivity of Cu, Ag, and Au,” Phys. Rev. B 16, 5277 (1977).
    [CrossRef]
  25. W. E. Lawrence, “Electron-electron scattering in the low-temperature resistivity of the noble metals,” Phys. Rev. B 13, 5316–5319 (1976).
    [CrossRef]
  26. T. Holstein, “Optical and infrared volume absorptivity of metals,” Phys. Rev. 96, 535 (1954).
    [CrossRef]
  27. K. Ujihara, “Reflectivity of metals at high temperatures,” J. Appl. Phys. 43, 2376–2383 (1972).
    [CrossRef]
  28. S. Herminghaus and P. Leiderer, “Surface plasmon enhanced transient thermoreflectance,” Appl. Phys. A 51, 350–353 (1990).
    [CrossRef]
  29. M. A. R. Franco, V. A. Serrão, and F. Sircilli, “Side-polished microstructured optical fiber for temperature sensor application,” IEEE Photon. Technol. Lett. 19, 1738–1740 (2007).
    [CrossRef]
  30. M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).
  31. B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Opt. Express 15, 11413–11426(2007).
    [CrossRef]
  32. L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
    [CrossRef]

2012 (1)

2011 (1)

2010 (2)

S. K. Srivastava and B. D. Gupta, “Simulation of a localized surface-plasmon-resonance-based fiber optic temperature sensor,” J. Opt. Soc. Am. A 27, 1743–1749 (2010).
[CrossRef]

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 015005 (2010).
[CrossRef]

2009 (2)

2008 (2)

J. Hou, D. Bird, A. George, S. Maier, B. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16, 5983–5990 (2008).
[CrossRef]

M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008).
[CrossRef]

2007 (4)

2006 (3)

A. Hassani, and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14, 11616–11621 (2006).
[CrossRef]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef]

A. K. Sharma and B. D. Gupta, “Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection,” Opt. Fiber Technol. 12, 87–100 (2006).
[CrossRef]

2005 (1)

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[CrossRef]

2003 (2)

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef]

J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
[CrossRef]

2001 (1)

U. Schröter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64, 125420 (2001).
[CrossRef]

2000 (1)

J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19, 211–227 (2000).
[CrossRef]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

1994 (1)

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12, 1338–1342 (1994).
[CrossRef]

1993 (2)

R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
[CrossRef]

S. J. Al-Bader and M. Imtaar, “Optical fiber hybrid-surface plasmon polaritons,” J. Opt. Soc. Am. B 10, 83–88 (1993).
[CrossRef]

1990 (1)

S. Herminghaus and P. Leiderer, “Surface plasmon enhanced transient thermoreflectance,” Appl. Phys. A 51, 350–353 (1990).
[CrossRef]

1977 (1)

R. Beach and R. Christy, “Electron-electron scattering in the intraband optical conductivity of Cu, Ag, and Au,” Phys. Rev. B 16, 5277 (1977).
[CrossRef]

1976 (1)

W. E. Lawrence, “Electron-electron scattering in the low-temperature resistivity of the noble metals,” Phys. Rev. B 13, 5316–5319 (1976).
[CrossRef]

1972 (2)

K. Ujihara, “Reflectivity of metals at high temperatures,” J. Appl. Phys. 43, 2376–2383 (1972).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1954 (1)

T. Holstein, “Optical and infrared volume absorptivity of metals,” Phys. Rev. 96, 535 (1954).
[CrossRef]

Al-Bader, S. J.

Amezcua-Correa, A.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef]

Baril, N. F.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef]

Beach, R.

R. Beach and R. Christy, “Electron-electron scattering in the intraband optical conductivity of Cu, Ag, and Au,” Phys. Rev. B 16, 5277 (1977).
[CrossRef]

Bird, D.

Chang, S. H.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[CrossRef]

Chen, Y.

Christy, R.

R. Beach and R. Christy, “Electron-electron scattering in the intraband optical conductivity of Cu, Ag, and Au,” Phys. Rev. B 16, 5277 (1977).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Cox, F. M.

Dereux, A.

U. Schröter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64, 125420 (2001).
[CrossRef]

Endo, M.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12, 1338–1342 (1994).
[CrossRef]

Fassi Fehri, M.

Finlayson, C. E.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef]

Franco, M. A. R.

M. A. R. Franco, V. A. Serrão, and F. Sircilli, “Side-polished microstructured optical fiber for temperature sensor application,” IEEE Photon. Technol. Lett. 19, 1738–1740 (2007).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Gauvreau, B.

George, A.

Ghosh, G.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12, 1338–1342 (1994).
[CrossRef]

Gupta, B. D.

S. K. Srivastava and B. D. Gupta, “Simulation of a localized surface-plasmon-resonance-based fiber optic temperature sensor,” J. Opt. Soc. Am. A 27, 1743–1749 (2010).
[CrossRef]

A. K. Sharma and B. D. Gupta, “Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection,” Opt. Fiber Technol. 12, 87–100 (2006).
[CrossRef]

Harrington, J. A.

J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19, 211–227 (2000).
[CrossRef]

Hassani, A.

Hayes, J. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef]

Herminghaus, S.

S. Herminghaus and P. Leiderer, “Surface plasmon enhanced transient thermoreflectance,” Appl. Phys. A 51, 350–353 (1990).
[CrossRef]

Holstein, T.

T. Holstein, “Optical and infrared volume absorptivity of metals,” Phys. Rev. 96, 535 (1954).
[CrossRef]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Hou, J.

Imtaar, M.

Iwasaki, T.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12, 1338–1342 (1994).
[CrossRef]

Jackson, B. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Jorgenson, R.

R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
[CrossRef]

Kabashin, A.

Kakarantzas, G.

Knight, J. C.

Kuhlmey, B.

Kuhlmey, B. T.

Large, M. C.

Lawrence, W. E.

W. E. Lawrence, “Electron-electron scattering in the low-temperature resistivity of the noble metals,” Phys. Rev. B 13, 5316–5319 (1976).
[CrossRef]

Lee, B.

B. Lee, S. Roh, and J. Park, “Current status of micro-and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15, 209–221 (2009).
[CrossRef]

Leiderer, P.

S. Herminghaus and P. Leiderer, “Surface plasmon enhanced transient thermoreflectance,” Appl. Phys. A 51, 350–353 (1990).
[CrossRef]

Leviatan, Y.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 015005 (2010).
[CrossRef]

Li, C.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 015005 (2010).
[CrossRef]

Li, Y.

Liang, W.

Lin, K.

Liu, N.

Lu, P.

Lu, Y.

Lu, Y. Q.

Luo, Z.

Maier, S.

Margine, E. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef]

Ming, H.

Pan, S.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 015005 (2010).
[CrossRef]

Park, J.

B. Lee, S. Roh, and J. Park, “Current status of micro-and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15, 209–221 (2009).
[CrossRef]

Pearce, G. J.

Poulton, C. G.

M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008).
[CrossRef]

C. G. Poulton, M. A. Schmidt, G. J. Pearce, G. Kakarantzas, and P. S. Russell, “Numerical study of guided modes in arrays of metallic nanowires,” Opt. Lett. 32, 1647–1649 (2007).
[CrossRef]

Qiu, S. J.

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Roh, S.

B. Lee, S. Roh, and J. Park, “Current status of micro-and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15, 209–221 (2009).
[CrossRef]

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef]

Russell, P. S.

Russell, P. S. J.

M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008).
[CrossRef]

Sazio, P. J. A.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef]

Schatz, G. C.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[CrossRef]

Scheidemantel, T. J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef]

Schmidt, M. A.

M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008).
[CrossRef]

C. G. Poulton, M. A. Schmidt, G. J. Pearce, G. Kakarantzas, and P. S. Russell, “Numerical study of guided modes in arrays of metallic nanowires,” Opt. Lett. 32, 1647–1649 (2007).
[CrossRef]

Schröter, U.

U. Schröter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64, 125420 (2001).
[CrossRef]

Sempere, L. N. P.

M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008).
[CrossRef]

Serrão, V. A.

M. A. R. Franco, V. A. Serrão, and F. Sircilli, “Side-polished microstructured optical fiber for temperature sensor application,” IEEE Photon. Technol. Lett. 19, 1738–1740 (2007).
[CrossRef]

Sharma, A. K.

A. K. Sharma and B. D. Gupta, “Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection,” Opt. Fiber Technol. 12, 87–100 (2006).
[CrossRef]

Sherry, L. J.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[CrossRef]

Shum, P.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 015005 (2010).
[CrossRef]

Sircilli, F.

M. A. R. Franco, V. A. Serrão, and F. Sircilli, “Side-polished microstructured optical fiber for temperature sensor application,” IEEE Photon. Technol. Lett. 19, 1738–1740 (2007).
[CrossRef]

Skorobogatiy, M.

Skorobogatiy, M. A.

Srivastava, S. K.

Tyagi, H. K.

M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008).
[CrossRef]

Ujihara, K.

K. Ujihara, “Reflectivity of metals at high temperatures,” J. Appl. Phys. 43, 2376–2383 (1972).
[CrossRef]

Van Duyne, R. P.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[CrossRef]

Wang, H.

Wang, P.

Wang, R.

Wang, Y.

Weber, M. J.

M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).

Wiley, B. J.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[CrossRef]

Won, D. J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef]

Xia, Y.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[CrossRef]

Xu, F.

Yan, M.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 015005 (2010).
[CrossRef]

Yee, S.

R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Yu, X.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 015005 (2010).
[CrossRef]

Zhang, F.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef]

Zhang, X.

Zhang, Y.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 015005 (2010).
[CrossRef]

Zheng, R.

Appl. Phys. A (1)

S. Herminghaus and P. Leiderer, “Surface plasmon enhanced transient thermoreflectance,” Appl. Phys. A 51, 350–353 (1990).
[CrossRef]

Chin. Opt. Lett. (1)

Fiber Integr. Opt. (1)

J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19, 211–227 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. A. R. Franco, V. A. Serrão, and F. Sircilli, “Side-polished microstructured optical fiber for temperature sensor application,” IEEE Photon. Technol. Lett. 19, 1738–1740 (2007).
[CrossRef]

J. Appl. Phys. (1)

K. Ujihara, “Reflectivity of metals at high temperatures,” J. Appl. Phys. 43, 2376–2383 (1972).
[CrossRef]

J. Lightwave Technol. (1)

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12, 1338–1342 (1994).
[CrossRef]

J. Opt. (1)

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 015005 (2010).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[CrossRef]

Nature (1)

J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
[CrossRef]

Opt. Express (5)

Opt. Fiber Technol. (2)

B. Lee, S. Roh, and J. Park, “Current status of micro-and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15, 209–221 (2009).
[CrossRef]

A. K. Sharma and B. D. Gupta, “Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection,” Opt. Fiber Technol. 12, 87–100 (2006).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. (1)

T. Holstein, “Optical and infrared volume absorptivity of metals,” Phys. Rev. 96, 535 (1954).
[CrossRef]

Phys. Rev. B (5)

M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008).
[CrossRef]

U. Schröter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64, 125420 (2001).
[CrossRef]

R. Beach and R. Christy, “Electron-electron scattering in the intraband optical conductivity of Cu, Ag, and Au,” Phys. Rev. B 16, 5277 (1977).
[CrossRef]

W. E. Lawrence, “Electron-electron scattering in the low-temperature resistivity of the noble metals,” Phys. Rev. B 13, 5316–5319 (1976).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Science (2)

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef]

Sens. Actuators B (2)

R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Other (2)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Structure of a selectively coated PCF-based SPR temperature sensor. Λ is the hole-to-hole pitch and d1, d2, dc are the hole diameters. Λ=2μm, dc=0.5Λ, d1=0.6Λ, and d2=0.8Λ.

Fig. 2.
Fig. 2.

(a) Dispersion relations of various modes in the sensor when the gold layer thickness is 40 nm and T=25°C. Real parts of the effective refractive indices of a core-guided mode (red solid line), silica bounded plasmonic modes (vu=3,4,5), and sensing medium bounded plasmonic modes (vl=1,2,3). The black dotted line represents the dispersion of fused silica. (b) The solid line represents loss spectra of the sensor. For comparison, dashed line shows the confinement loss of a core-guided mode in the absence of a metal coating.

Fig. 3.
Fig. 3.

The |Ex| component of the electric field distributions of the plasmonic modes and core-guided modes marked in Fig. 2(a). The gold thickness is 40 nm and T=25°C. (a) Field distribution of vl=1 sensing medium bounded mode at λ=560nm. (b) Field distribution of coupling mode at peak I at λ=608nm. (c) Field distribution of core-guided mode at λ=700nm. (d) Field distribution of coupling mode at peak III at λ=903nm.

Fig. 4.
Fig. 4.

(a) Calculated loss spectra of the resonance peak at different temperatures when the thickness of gold coating is 40 nm and nliquid is 1.35 at 25 °C. (b) Calculated loss spectra of the resonance peak for 30 nm, 40 nm, and 50 nm thickness of a gold coating when nliquid is 1.35 and the temperature is 25 °C.

Fig. 5.
Fig. 5.

(a) Calculated loss spectra of the resonance peak for 30 nm, 40 nm, and 50 nm thickness of a gold coating when nliquid is 1.35 and the temperature is 25 °C. (b) Full width at half maximum of the sensor at different gold layer thicknesses when nliquid is 1.35 and the temperature is 25 °C.

Fig. 6.
Fig. 6.

Resonance wavelength curve (red solid line) and loss spectra (blue dashed line) of the sensor at different gold layer thicknesses when nliquid is 1.35 and the temperature is 25 °C.

Tables (1)

Tables Icon

Table 1. Parameters of Gold Used for the Numerical Simulation

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

n2(λ,T)=(1.31552+0.690754×105T)+(0.788404+0.235835×104T)λ2λ2(0.0110199+0.584758×106T)+(0.91316+0.548368×106T)λ2λ2100,
ε(ω)=ε1+iε2=εωp2ω(ω+iωc),
ωp=ωp0×exp(TT02×αV(T0)),
ωc=ωcp+ωce.
ωce(T)=16π4ΓΔhEF[(kBT)2+(hω4π2)2],
ωcp(T)=ω0[25+4(TTD)50TD/Tz4dzez1],
αL=αL1+μ1μ,
n=nliquid+(dn/dT)(TT0),
Sλ[nm/°C]=dλpeak(T)dT.

Metrics