Abstract

We report a new technique for the rapid fabrication of microstripe cylindrical and toroidal mirrors with a high ratio (>10) of the two principal radii of curvature (RoC1/RoC2), and demonstrate their effectiveness as mode-selecting resonator mirrors for high-power planar waveguide lasers. In this process, the larger radius of curvature (RoC1) is determined by the planar or cylindrical shape of the fused silica substrate selected for laser processing, whilst the other (RoC2) is produced by controlled CO2 laser-induced vaporization of the glass. The narrow stripe mirror aperture is achieved by applying a set of partially overlapped laser scans, with the incident laser power, the number of laser scans, and their spacing being used to control the curvature produced by laser evaporation. In this work, a 1 mm diameter laser spot is used to produce grooves of cylindrical/toroidal shape with 240 μm width and 16 mm length. After high reflectance coating, these grooves are found to provide excellent mode selectivity as resonator mirrors for a 150 μm core Yb:YAG planar waveguide laser, producing high brightness output at more than 300 W. The results show clearly that the laser-generated microstripe mirrors can improve the optical performance of high-power planar waveguide lasers when applied in a low-loss mode-selective resonator configuration.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Temple, W. H. Lowdermilk, and D. Milam, “Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm,” Appl. Opt. 21, 3249–3255 (1982).
    [CrossRef]
  2. A. Kuhn, P. French, D. P. Hand, I. J. Blewett, M. Richmond, and J. D. C. Jones, “Preparation of fiber optics for the delivery of high-energy high-beam-quality Nd: YAG laser pulses,” Appl. Opt. 39, 6136–6143 (2000).
    [CrossRef]
  3. R. M. Brusasco, B. M. Penetrante, J. A. Butler, S. M. Maricle, and J. E. Peterson, “CO2-laser polishing for reduction of 351 nm surface damage initiation in fused silica,” Proc. SPIE 4679, 34–39 (2001).
    [CrossRef]
  4. R. R. Prasad, J. R. Bruere, J. Peterson, J. M. Halpin, M. Borden, and R. P. Hackel, “Enhanced performance of large 3ω optics using UV and IR lasers,” Proc. SPIE 5273, 288–295 (2004).
    [CrossRef]
  5. K. M. Nowak, H. J. Baker, and D. R. Hall, “Efficient laser polishing of silica micro-optic components,” Appl. Opt. 45, 162–171 (2006).
    [CrossRef]
  6. E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villarreal, and D. R. Hall, “Localized CO2 laser damage repair of fused silica optics,” Appl. Opt. 45, 5358–5367 (2006).
    [CrossRef]
  7. K. L. Wlodarczyk, E. Mendez, H. J. Baker, R. McBride, and D. R. Hall, “Laser smoothing of binary gratings and multilevel etched structures in fused silica,” Appl. Opt. 49, 1997–2005 (2010).
    [CrossRef]
  8. J. F. Monjardin, K. M. Nowak, H. J. Baker, and D. R. Hall, “Correction of beam errors in high power laser diode bars and stacks,” Opt. Express 14, 8178–8183 (2006).
    [CrossRef]
  9. N. Trela, H. J. Baker, J. J. Wendland, and D. R. Hall, “Dual-axis beam correction for an array of single-mode diode laser emitters using a laser-written custom phase-plate,” Opt. Express 17, 23576–23581 (2009).
    [CrossRef]
  10. S. Heidrich, E. Willenborg, and A. Richmann, “Development of a laser based process chain for manufacturing freeform optics,” Phys. Procedia 12, 519–528 (2011).
    [CrossRef]
  11. R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110, 053107 (2011).
    [CrossRef]
  12. D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
    [CrossRef]
  13. C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
    [CrossRef]
  14. I. J. Thomson, J. F. Monjardin, H. J. Baker, and D. R. Hall, “Efficient operation of a 400 W diode side-pumped Yb:YAG planar waveguide laser,” IEEE J. Quantum Electron. 47, 1336–1345 (2011).
    [CrossRef]
  15. A. D. McLachlan and F. P. Meyer, “Temperature dependence of the extinction coefficient of fused silica for CO2 laser wavelengths,” Appl. Opt. 26, 1728–1731 (1987).
    [CrossRef]
  16. K. L. Wlodarczyk, “Surface deformation mechanisms in laser smoothing and micro-machining of optical glasses,” Ph.D. dissertation (Heriot-Watt University, 2011).
  17. M. D. Feit, M. J. Matthews, T. F. Soules, J. S. Stolken, R. M. Vignes, S. T. Yang, and J. D. Cooke, “Densification and residual stress induced by CO2 laser-based mitigation of SiO2 surfaces,” Proc. SPIE 7842, 78420O (2010).
    [CrossRef]
  18. T. D. Bennett, D. J. Krajnovich, C. P. Grigoropoulos, P. Baumgart, and A. C. Tam, “Marangoni mechanism in pulsed laser texturing of magnetic disk substrates,” J. Heat Transfer 119, 589–596 (1997).
    [CrossRef]
  19. H. R. Philipp, “Silicon dioxide (SiO2) glass,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985), pp. 749–763.
  20. M. Von Allmen and A. Blatter, Laser-Beam Interactions with Materials: Physical Principles and Applications (Springer Verlag, 1995).
  21. J. J. Degnan and D. R. Hall, “Finite-aperture waveguide laser resonators,” IEEE J. Quantum Electron. 9, 901–910 (1973).
    [CrossRef]
  22. I. J. Thomson, K. L. Wlodarczyk, D. R. Hall, and H. J. Baker, “High brightness Yb:YAG planar waveguide laser with an unstable resonator formed with a novel laser-machined, toroidal mode-selective mirror,” in Advanced Solid-State Photonics, OSA Technical Digest (CD), (Optical Society of America, 2012), paper AW4A.19.

2011 (3)

S. Heidrich, E. Willenborg, and A. Richmann, “Development of a laser based process chain for manufacturing freeform optics,” Phys. Procedia 12, 519–528 (2011).
[CrossRef]

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110, 053107 (2011).
[CrossRef]

I. J. Thomson, J. F. Monjardin, H. J. Baker, and D. R. Hall, “Efficient operation of a 400 W diode side-pumped Yb:YAG planar waveguide laser,” IEEE J. Quantum Electron. 47, 1336–1345 (2011).
[CrossRef]

2010 (4)

M. D. Feit, M. J. Matthews, T. F. Soules, J. S. Stolken, R. M. Vignes, S. T. Yang, and J. D. Cooke, “Densification and residual stress induced by CO2 laser-based mitigation of SiO2 surfaces,” Proc. SPIE 7842, 78420O (2010).
[CrossRef]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[CrossRef]

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
[CrossRef]

K. L. Wlodarczyk, E. Mendez, H. J. Baker, R. McBride, and D. R. Hall, “Laser smoothing of binary gratings and multilevel etched structures in fused silica,” Appl. Opt. 49, 1997–2005 (2010).
[CrossRef]

2009 (1)

2006 (3)

2004 (1)

R. R. Prasad, J. R. Bruere, J. Peterson, J. M. Halpin, M. Borden, and R. P. Hackel, “Enhanced performance of large 3ω optics using UV and IR lasers,” Proc. SPIE 5273, 288–295 (2004).
[CrossRef]

2001 (1)

R. M. Brusasco, B. M. Penetrante, J. A. Butler, S. M. Maricle, and J. E. Peterson, “CO2-laser polishing for reduction of 351 nm surface damage initiation in fused silica,” Proc. SPIE 4679, 34–39 (2001).
[CrossRef]

2000 (1)

1997 (1)

T. D. Bennett, D. J. Krajnovich, C. P. Grigoropoulos, P. Baumgart, and A. C. Tam, “Marangoni mechanism in pulsed laser texturing of magnetic disk substrates,” J. Heat Transfer 119, 589–596 (1997).
[CrossRef]

1987 (1)

1982 (1)

1973 (1)

J. J. Degnan and D. R. Hall, “Finite-aperture waveguide laser resonators,” IEEE J. Quantum Electron. 9, 901–910 (1973).
[CrossRef]

Baker, H. J.

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110, 053107 (2011).
[CrossRef]

I. J. Thomson, J. F. Monjardin, H. J. Baker, and D. R. Hall, “Efficient operation of a 400 W diode side-pumped Yb:YAG planar waveguide laser,” IEEE J. Quantum Electron. 47, 1336–1345 (2011).
[CrossRef]

K. L. Wlodarczyk, E. Mendez, H. J. Baker, R. McBride, and D. R. Hall, “Laser smoothing of binary gratings and multilevel etched structures in fused silica,” Appl. Opt. 49, 1997–2005 (2010).
[CrossRef]

N. Trela, H. J. Baker, J. J. Wendland, and D. R. Hall, “Dual-axis beam correction for an array of single-mode diode laser emitters using a laser-written custom phase-plate,” Opt. Express 17, 23576–23581 (2009).
[CrossRef]

J. F. Monjardin, K. M. Nowak, H. J. Baker, and D. R. Hall, “Correction of beam errors in high power laser diode bars and stacks,” Opt. Express 14, 8178–8183 (2006).
[CrossRef]

E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villarreal, and D. R. Hall, “Localized CO2 laser damage repair of fused silica optics,” Appl. Opt. 45, 5358–5367 (2006).
[CrossRef]

K. M. Nowak, H. J. Baker, and D. R. Hall, “Efficient laser polishing of silica micro-optic components,” Appl. Opt. 45, 162–171 (2006).
[CrossRef]

I. J. Thomson, K. L. Wlodarczyk, D. R. Hall, and H. J. Baker, “High brightness Yb:YAG planar waveguide laser with an unstable resonator formed with a novel laser-machined, toroidal mode-selective mirror,” in Advanced Solid-State Photonics, OSA Technical Digest (CD), (Optical Society of America, 2012), paper AW4A.19.

Barbour, R. J.

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110, 053107 (2011).
[CrossRef]

Baumgart, P.

T. D. Bennett, D. J. Krajnovich, C. P. Grigoropoulos, P. Baumgart, and A. C. Tam, “Marangoni mechanism in pulsed laser texturing of magnetic disk substrates,” J. Heat Transfer 119, 589–596 (1997).
[CrossRef]

Bennett, T. D.

T. D. Bennett, D. J. Krajnovich, C. P. Grigoropoulos, P. Baumgart, and A. C. Tam, “Marangoni mechanism in pulsed laser texturing of magnetic disk substrates,” J. Heat Transfer 119, 589–596 (1997).
[CrossRef]

Blatter, A.

M. Von Allmen and A. Blatter, Laser-Beam Interactions with Materials: Physical Principles and Applications (Springer Verlag, 1995).

Blewett, I. J.

Borden, M.

R. R. Prasad, J. R. Bruere, J. Peterson, J. M. Halpin, M. Borden, and R. P. Hackel, “Enhanced performance of large 3ω optics using UV and IR lasers,” Proc. SPIE 5273, 288–295 (2004).
[CrossRef]

Bruere, J. R.

R. R. Prasad, J. R. Bruere, J. Peterson, J. M. Halpin, M. Borden, and R. P. Hackel, “Enhanced performance of large 3ω optics using UV and IR lasers,” Proc. SPIE 5273, 288–295 (2004).
[CrossRef]

Brusasco, R. M.

R. M. Brusasco, B. M. Penetrante, J. A. Butler, S. M. Maricle, and J. E. Peterson, “CO2-laser polishing for reduction of 351 nm surface damage initiation in fused silica,” Proc. SPIE 4679, 34–39 (2001).
[CrossRef]

Butler, J. A.

R. M. Brusasco, B. M. Penetrante, J. A. Butler, S. M. Maricle, and J. E. Peterson, “CO2-laser polishing for reduction of 351 nm surface damage initiation in fused silica,” Proc. SPIE 4679, 34–39 (2001).
[CrossRef]

Colombe, Y.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[CrossRef]

Cooke, J. D.

M. D. Feit, M. J. Matthews, T. F. Soules, J. S. Stolken, R. M. Vignes, S. T. Yang, and J. D. Cooke, “Densification and residual stress induced by CO2 laser-based mitigation of SiO2 surfaces,” Proc. SPIE 7842, 78420O (2010).
[CrossRef]

Curran, A.

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110, 053107 (2011).
[CrossRef]

Dalgarno, P. A.

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110, 053107 (2011).
[CrossRef]

Degnan, J. J.

J. J. Degnan and D. R. Hall, “Finite-aperture waveguide laser resonators,” IEEE J. Quantum Electron. 9, 901–910 (1973).
[CrossRef]

Delley, Y.

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
[CrossRef]

Deutsch, C.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[CrossRef]

Feit, M. D.

M. D. Feit, M. J. Matthews, T. F. Soules, J. S. Stolken, R. M. Vignes, S. T. Yang, and J. D. Cooke, “Densification and residual stress induced by CO2 laser-based mitigation of SiO2 surfaces,” Proc. SPIE 7842, 78420O (2010).
[CrossRef]

French, P.

Götzinger, S.

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
[CrossRef]

Grigoropoulos, C. P.

T. D. Bennett, D. J. Krajnovich, C. P. Grigoropoulos, P. Baumgart, and A. C. Tam, “Marangoni mechanism in pulsed laser texturing of magnetic disk substrates,” J. Heat Transfer 119, 589–596 (1997).
[CrossRef]

Hackel, R. P.

R. R. Prasad, J. R. Bruere, J. Peterson, J. M. Halpin, M. Borden, and R. P. Hackel, “Enhanced performance of large 3ω optics using UV and IR lasers,” Proc. SPIE 5273, 288–295 (2004).
[CrossRef]

Hall, D. R.

I. J. Thomson, J. F. Monjardin, H. J. Baker, and D. R. Hall, “Efficient operation of a 400 W diode side-pumped Yb:YAG planar waveguide laser,” IEEE J. Quantum Electron. 47, 1336–1345 (2011).
[CrossRef]

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110, 053107 (2011).
[CrossRef]

K. L. Wlodarczyk, E. Mendez, H. J. Baker, R. McBride, and D. R. Hall, “Laser smoothing of binary gratings and multilevel etched structures in fused silica,” Appl. Opt. 49, 1997–2005 (2010).
[CrossRef]

N. Trela, H. J. Baker, J. J. Wendland, and D. R. Hall, “Dual-axis beam correction for an array of single-mode diode laser emitters using a laser-written custom phase-plate,” Opt. Express 17, 23576–23581 (2009).
[CrossRef]

J. F. Monjardin, K. M. Nowak, H. J. Baker, and D. R. Hall, “Correction of beam errors in high power laser diode bars and stacks,” Opt. Express 14, 8178–8183 (2006).
[CrossRef]

E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villarreal, and D. R. Hall, “Localized CO2 laser damage repair of fused silica optics,” Appl. Opt. 45, 5358–5367 (2006).
[CrossRef]

K. M. Nowak, H. J. Baker, and D. R. Hall, “Efficient laser polishing of silica micro-optic components,” Appl. Opt. 45, 162–171 (2006).
[CrossRef]

J. J. Degnan and D. R. Hall, “Finite-aperture waveguide laser resonators,” IEEE J. Quantum Electron. 9, 901–910 (1973).
[CrossRef]

I. J. Thomson, K. L. Wlodarczyk, D. R. Hall, and H. J. Baker, “High brightness Yb:YAG planar waveguide laser with an unstable resonator formed with a novel laser-machined, toroidal mode-selective mirror,” in Advanced Solid-State Photonics, OSA Technical Digest (CD), (Optical Society of America, 2012), paper AW4A.19.

Halpin, J. M.

R. R. Prasad, J. R. Bruere, J. Peterson, J. M. Halpin, M. Borden, and R. P. Hackel, “Enhanced performance of large 3ω optics using UV and IR lasers,” Proc. SPIE 5273, 288–295 (2004).
[CrossRef]

Hand, D. P.

Hänsch, T. W.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[CrossRef]

Heidrich, S.

S. Heidrich, E. Willenborg, and A. Richmann, “Development of a laser based process chain for manufacturing freeform optics,” Phys. Procedia 12, 519–528 (2011).
[CrossRef]

Hunger, D.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[CrossRef]

Jones, J. D. C.

Krajnovich, D. J.

T. D. Bennett, D. J. Krajnovich, C. P. Grigoropoulos, P. Baumgart, and A. C. Tam, “Marangoni mechanism in pulsed laser texturing of magnetic disk substrates,” J. Heat Transfer 119, 589–596 (1997).
[CrossRef]

Kuhn, A.

Lowdermilk, W. H.

Maricle, S. M.

R. M. Brusasco, B. M. Penetrante, J. A. Butler, S. M. Maricle, and J. E. Peterson, “CO2-laser polishing for reduction of 351 nm surface damage initiation in fused silica,” Proc. SPIE 4679, 34–39 (2001).
[CrossRef]

Matthews, M. J.

M. D. Feit, M. J. Matthews, T. F. Soules, J. S. Stolken, R. M. Vignes, S. T. Yang, and J. D. Cooke, “Densification and residual stress induced by CO2 laser-based mitigation of SiO2 surfaces,” Proc. SPIE 7842, 78420O (2010).
[CrossRef]

McBride, R.

McLachlan, A. D.

Mendez, E.

Meyer, F. P.

Milam, D.

Monjardin, J. F.

I. J. Thomson, J. F. Monjardin, H. J. Baker, and D. R. Hall, “Efficient operation of a 400 W diode side-pumped Yb:YAG planar waveguide laser,” IEEE J. Quantum Electron. 47, 1336–1345 (2011).
[CrossRef]

J. F. Monjardin, K. M. Nowak, H. J. Baker, and D. R. Hall, “Correction of beam errors in high power laser diode bars and stacks,” Opt. Express 14, 8178–8183 (2006).
[CrossRef]

Nowak, K. M.

Penetrante, B. M.

R. M. Brusasco, B. M. Penetrante, J. A. Butler, S. M. Maricle, and J. E. Peterson, “CO2-laser polishing for reduction of 351 nm surface damage initiation in fused silica,” Proc. SPIE 4679, 34–39 (2001).
[CrossRef]

Peterson, J.

R. R. Prasad, J. R. Bruere, J. Peterson, J. M. Halpin, M. Borden, and R. P. Hackel, “Enhanced performance of large 3ω optics using UV and IR lasers,” Proc. SPIE 5273, 288–295 (2004).
[CrossRef]

Peterson, J. E.

R. M. Brusasco, B. M. Penetrante, J. A. Butler, S. M. Maricle, and J. E. Peterson, “CO2-laser polishing for reduction of 351 nm surface damage initiation in fused silica,” Proc. SPIE 4679, 34–39 (2001).
[CrossRef]

Petroff, P. M.

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110, 053107 (2011).
[CrossRef]

Philipp, H. R.

H. R. Philipp, “Silicon dioxide (SiO2) glass,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985), pp. 749–763.

Prasad, R. R.

R. R. Prasad, J. R. Bruere, J. Peterson, J. M. Halpin, M. Borden, and R. P. Hackel, “Enhanced performance of large 3ω optics using UV and IR lasers,” Proc. SPIE 5273, 288–295 (2004).
[CrossRef]

Reichel, J.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[CrossRef]

Renn, A.

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
[CrossRef]

Richmann, A.

S. Heidrich, E. Willenborg, and A. Richmann, “Development of a laser based process chain for manufacturing freeform optics,” Phys. Procedia 12, 519–528 (2011).
[CrossRef]

Richmond, M.

Sandoghdar, V.

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
[CrossRef]

Soules, T. F.

M. D. Feit, M. J. Matthews, T. F. Soules, J. S. Stolken, R. M. Vignes, S. T. Yang, and J. D. Cooke, “Densification and residual stress induced by CO2 laser-based mitigation of SiO2 surfaces,” Proc. SPIE 7842, 78420O (2010).
[CrossRef]

Steinmetz, T.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[CrossRef]

Stöferle, T.

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
[CrossRef]

Stolken, J. S.

M. D. Feit, M. J. Matthews, T. F. Soules, J. S. Stolken, R. M. Vignes, S. T. Yang, and J. D. Cooke, “Densification and residual stress induced by CO2 laser-based mitigation of SiO2 surfaces,” Proc. SPIE 7842, 78420O (2010).
[CrossRef]

Stoltz, N. G.

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110, 053107 (2011).
[CrossRef]

Tam, A. C.

T. D. Bennett, D. J. Krajnovich, C. P. Grigoropoulos, P. Baumgart, and A. C. Tam, “Marangoni mechanism in pulsed laser texturing of magnetic disk substrates,” J. Heat Transfer 119, 589–596 (1997).
[CrossRef]

Temple, P. A.

Thomson, I. J.

I. J. Thomson, J. F. Monjardin, H. J. Baker, and D. R. Hall, “Efficient operation of a 400 W diode side-pumped Yb:YAG planar waveguide laser,” IEEE J. Quantum Electron. 47, 1336–1345 (2011).
[CrossRef]

I. J. Thomson, K. L. Wlodarczyk, D. R. Hall, and H. J. Baker, “High brightness Yb:YAG planar waveguide laser with an unstable resonator formed with a novel laser-machined, toroidal mode-selective mirror,” in Advanced Solid-State Photonics, OSA Technical Digest (CD), (Optical Society of America, 2012), paper AW4A.19.

Toninelli, C.

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
[CrossRef]

Trela, N.

Vignes, R. M.

M. D. Feit, M. J. Matthews, T. F. Soules, J. S. Stolken, R. M. Vignes, S. T. Yang, and J. D. Cooke, “Densification and residual stress induced by CO2 laser-based mitigation of SiO2 surfaces,” Proc. SPIE 7842, 78420O (2010).
[CrossRef]

Villarreal, F. J.

Von Allmen, M.

M. Von Allmen and A. Blatter, Laser-Beam Interactions with Materials: Physical Principles and Applications (Springer Verlag, 1995).

Warburton, R. J.

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110, 053107 (2011).
[CrossRef]

Wendland, J. J.

Willenborg, E.

S. Heidrich, E. Willenborg, and A. Richmann, “Development of a laser based process chain for manufacturing freeform optics,” Phys. Procedia 12, 519–528 (2011).
[CrossRef]

Wlodarczyk, K. L.

K. L. Wlodarczyk, E. Mendez, H. J. Baker, R. McBride, and D. R. Hall, “Laser smoothing of binary gratings and multilevel etched structures in fused silica,” Appl. Opt. 49, 1997–2005 (2010).
[CrossRef]

K. L. Wlodarczyk, “Surface deformation mechanisms in laser smoothing and micro-machining of optical glasses,” Ph.D. dissertation (Heriot-Watt University, 2011).

I. J. Thomson, K. L. Wlodarczyk, D. R. Hall, and H. J. Baker, “High brightness Yb:YAG planar waveguide laser with an unstable resonator formed with a novel laser-machined, toroidal mode-selective mirror,” in Advanced Solid-State Photonics, OSA Technical Digest (CD), (Optical Society of America, 2012), paper AW4A.19.

Yang, S. T.

M. D. Feit, M. J. Matthews, T. F. Soules, J. S. Stolken, R. M. Vignes, S. T. Yang, and J. D. Cooke, “Densification and residual stress induced by CO2 laser-based mitigation of SiO2 surfaces,” Proc. SPIE 7842, 78420O (2010).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett. (1)

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
[CrossRef]

IEEE J. Quantum Electron. (2)

I. J. Thomson, J. F. Monjardin, H. J. Baker, and D. R. Hall, “Efficient operation of a 400 W diode side-pumped Yb:YAG planar waveguide laser,” IEEE J. Quantum Electron. 47, 1336–1345 (2011).
[CrossRef]

J. J. Degnan and D. R. Hall, “Finite-aperture waveguide laser resonators,” IEEE J. Quantum Electron. 9, 901–910 (1973).
[CrossRef]

J. Appl. Phys. (1)

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110, 053107 (2011).
[CrossRef]

J. Heat Transfer (1)

T. D. Bennett, D. J. Krajnovich, C. P. Grigoropoulos, P. Baumgart, and A. C. Tam, “Marangoni mechanism in pulsed laser texturing of magnetic disk substrates,” J. Heat Transfer 119, 589–596 (1997).
[CrossRef]

New J. Phys. (1)

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[CrossRef]

Opt. Express (2)

Phys. Procedia (1)

S. Heidrich, E. Willenborg, and A. Richmann, “Development of a laser based process chain for manufacturing freeform optics,” Phys. Procedia 12, 519–528 (2011).
[CrossRef]

Proc. SPIE (3)

R. M. Brusasco, B. M. Penetrante, J. A. Butler, S. M. Maricle, and J. E. Peterson, “CO2-laser polishing for reduction of 351 nm surface damage initiation in fused silica,” Proc. SPIE 4679, 34–39 (2001).
[CrossRef]

R. R. Prasad, J. R. Bruere, J. Peterson, J. M. Halpin, M. Borden, and R. P. Hackel, “Enhanced performance of large 3ω optics using UV and IR lasers,” Proc. SPIE 5273, 288–295 (2004).
[CrossRef]

M. D. Feit, M. J. Matthews, T. F. Soules, J. S. Stolken, R. M. Vignes, S. T. Yang, and J. D. Cooke, “Densification and residual stress induced by CO2 laser-based mitigation of SiO2 surfaces,” Proc. SPIE 7842, 78420O (2010).
[CrossRef]

Other (4)

I. J. Thomson, K. L. Wlodarczyk, D. R. Hall, and H. J. Baker, “High brightness Yb:YAG planar waveguide laser with an unstable resonator formed with a novel laser-machined, toroidal mode-selective mirror,” in Advanced Solid-State Photonics, OSA Technical Digest (CD), (Optical Society of America, 2012), paper AW4A.19.

H. R. Philipp, “Silicon dioxide (SiO2) glass,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985), pp. 749–763.

M. Von Allmen and A. Blatter, Laser-Beam Interactions with Materials: Physical Principles and Applications (Springer Verlag, 1995).

K. L. Wlodarczyk, “Surface deformation mechanisms in laser smoothing and micro-machining of optical glasses,” Ph.D. dissertation (Heriot-Watt University, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Laser system used for the fabrication of micro-stripe mirrors.

Fig. 2.
Fig. 2.

Three-dimensional surface scan of the groove produced by a single line laser scan at P=9.4W: (a) before and (b) after annealing for 1 h at 1100°C.

Fig. 3.
Fig. 3.

Average depth of the grooves produced at different values of laser power. Results were obtained for a 1.5 mm thick fused silica sample which had been annealed following the laser treatment. Error bars indicate the peak-to-valley magnitude of the surface waviness measured along the bottom of the grooves.

Fig. 4.
Fig. 4.

Cross section of the groove produced at P=9.5W. The surface profile was measured after annealing.

Fig. 5.
Fig. 5.

RoC of the grooves produced in the range of laser powers from 9.2 to 9.8 W. Solid line is only a guide for the eye.

Fig. 6.
Fig. 6.

Profile of surface waviness measured along the bottom surface of the laser-generated grooves produced at: (a) P=9.4W and (b) P=9.8W. Peak-to-valley (P-V) magnitude of the surface waviness for the grooves produced in the range of laser powers from 9.2 to 10.2 W is shown in (c).

Fig. 7.
Fig. 7.

Cross-section of the grooves produced by overlapped laser scans at P=9.5W. The profiles were measured: (a) before and (b) after annealing for one hour at T=1100°C.

Fig. 8.
Fig. 8.

Average depth of grooves shown in Fig. 7(b) as a function of the number of laser scans (N). Error bars indicate the peak-to-valley magnitude of the surface waviness measured along the bottom of the grooves.

Fig. 9.
Fig. 9.

Cross-section of the groove produced by five partially overlapping laser scans at P=9.5W and with a 46 μm spacing (Δx) between individual laser scans. Dotted curves represent the profiles determined with the aid of the subtractive model, whereas the solid curves represent the experimental results.

Fig. 10.
Fig. 10.

(a) Overall shape and close-up view of the microstripe toroidal mirror produced by five laser scans with Δx=46μm and at P=9.35W. Surface waviness measured along the bottom of the mirror is shown in (b).

Fig. 11.
Fig. 11.

Laser beam profile obtained from the Yb:YAG planar waveguide laser when the 16 mm RoC cylindrical groove was applied as a mirror in the low-loss mode-selective resonator configuration.

Tables (1)

Tables Icon

Table 1. Laser Power and Laser Power Fluctuations (ΔP) Measured during Laser Scanning, the RoC of the Grooves in the X and Y Axis, and the Peak-to-Valley Magnitude of the Surface Waviness Measured along the Bottom of each Groove

Metrics