Abstract

We propose a simple and compact slow-light element by use of an optical microcoil resonator (OMR) constituted by two microfiber coils. Based on the matrix exponential method, we solve the coupled-wave equations of the OMR with n turns of microfiber coils and obtain a general solution. Simulations indicate that a tunable slow-light propagation can be obtained by controlling the coupling coefficient between the two adjacent microfiber coils by means of regulating the voltage applied to the ferroelectric crystal. A slow-light time delay up to 62 ps with a bandwidth of 0.4 nm is performed at the wavelength around 1.5 μm.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
    [CrossRef]
  2. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
    [CrossRef]
  3. Y. A. Vlasov, M. O. Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
    [CrossRef]
  4. L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photon. 2, 474–481 (2008).
    [CrossRef]
  5. D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234–6249 (2005).
    [CrossRef]
  6. L. Y. Ren and Y. Tomita, “Reducing group-velocity-dispersion-dependent broadening of stimulated Brillouin scattering slow light in an optical fiber by use of a single pump laser,” J. Opt. Soc. Am. B 25, 741–746 (2008).
    [CrossRef]
  7. S. H. Wang, L. Y. Ren, Y. Liu, and Y. Tomita, “Zero-broadening SBS slow light propagation in an optical fiber using two broadband pump beams,” Opt. Express 16, 8067–8076 (2008).
    [CrossRef]
  8. J. P. Zhang, G. Hernandez, and Y. F. Zhu, “Slow light with cavity electromagnetically induced transparency,” Opt. Lett. 33, 46–48 (2008).
    [CrossRef]
  9. P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, and C. J. Chang-Hasnain, “Room temperature slow light in a quantum-well waveguide via coherent population oscillation,” Opt. Express 13, 9909–9915 (2005).
    [CrossRef]
  10. L. Y. Ren and Y. Tomita, “Transient and nonlinear analysis of slow-light pulse propagation in an optical fiber via stimulated Brillouin scattering,” J. Opt. Soc. Am. B 26, 1281–1288 (2009).
    [CrossRef]
  11. S. Blair and K. Zheng, “Intensity-tunable group delay using stimulated Raman scattering in silicon slow-light waveguides,” Opt. Express 14, 1064–1069 (2006).
    [CrossRef]
  12. E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, “Large tunable delay with low distortion of 10  Gbit/s data in a slow light system based on narrow band fiber parametric amplification,” Opt. Express 14, 8540–8545 (2006).
    [CrossRef]
  13. J. Mørk, R. Kjær, M. Poel, and K. Yvind, “Slow light in a semiconductor waveguide at gigahertz frequencies,” Opt. Express 13, 8136–8145 (2005).
    [CrossRef]
  14. A. Martinez, J. G. Provost, G. Aubin, R. Brenot, J. Landreau, F. Lelarge, and A. Ramdane, “Slow and fast light in quantum dot based semiconductor optical amplifiers,” C. R. Phys. 10, 1000–1007 (2009).
    [CrossRef]
  15. J. Liang, L. Y. Ren, M. J. Yun, X. Han, and X. J. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” J. Appl. Phys. 110, 063103 (2011).
    [CrossRef]
  16. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
    [CrossRef]
  17. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85, 6113–6115 (2004).
    [CrossRef]
  18. E. F. Burmeister, J. P. Mack, H. N. Poulsen, M. L. Mašanović, B. Stamenić, D. J. Blumenthal, and J. E. Bowers, “Photonic integrated circuit optical buffer for packet-switched networks,” Opt. Express 17, 6629–6635 (2009).
    [CrossRef]
  19. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
    [CrossRef]
  20. M. Sumetsky, “Optical fiber microcoil resonator,” Opt. Express 12, 2303–2316 (2004).
    [CrossRef]
  21. M. Sumetsky, “Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation,” Opt. Express 13, 4331–4340 (2005).
    [CrossRef]
  22. M. Sumetsky, “Optical microfiber coil delay line,” Opt. Express 17, 7196–7205 (2009).
    [CrossRef]
  23. N. G. R. Broderick, “Optical snakes and ladders: dispersion and nonlinearity in microcoil resonators,” Opt. Express 16, 16247–16254 (2008).
    [CrossRef]
  24. F. Xu and G. Brambilla, “Manufacture of 3-D microfiber coil resonators,” IEEE Photon. Technol. Lett. 19, 1481–1483 (2007).
    [CrossRef]
  25. Y. Jung, G. S. Murugan, G. Brambilla, and D. J. Richardson, “Embedded optical microfiber coil resonator with enhanced high-Q,” IEEE Photon. Technol. Lett. 22, 1638–1640 (2010).
    [CrossRef]
  26. F. Xu and G. Brambilla, “Embedding optical microfiber coil resonators in Teflon,” Opt. Lett. 32, 2164–2166 (2007).
    [CrossRef]
  27. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15, 7888–7893(2007).
    [CrossRef]
  28. F. Xu, V. Pruneri, V. Finazzi, and G. Brambilla, “An embedded optical nanowire loop resonator refractometric sensor,” Opt. Express 16, 1062–1067 (2008).
    [CrossRef]
  29. X. L. Zhang, M. Belal, G. Y. Chen, Z. Q. Song, G. Brambilla, and T. P. Newson, “Compact optical microfiber phase modulator,” Opt. Lett. 37, 320–322 (2012).
    [CrossRef]
  30. S. Park and T. R. Shrout, “Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals,” J. Appl. Phys. 82, 1804–1811 (1997).
    [CrossRef]
  31. L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
    [CrossRef]
  32. G. H. Golub and C. F. Van Loan, Matrix Computations (Johns Hopkins University, 1996).
  33. E. Hairer, lecture notes on Solving Differential Equations on Manifolds, Université de Genève, Section de mathématiques, 2-4 rue du Lièvre, CP 64CH-1211 Genève 4, Switzerland, 2011.

2012 (1)

2011 (1)

J. Liang, L. Y. Ren, M. J. Yun, X. Han, and X. J. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” J. Appl. Phys. 110, 063103 (2011).
[CrossRef]

2010 (1)

Y. Jung, G. S. Murugan, G. Brambilla, and D. J. Richardson, “Embedded optical microfiber coil resonator with enhanced high-Q,” IEEE Photon. Technol. Lett. 22, 1638–1640 (2010).
[CrossRef]

2009 (4)

2008 (6)

2007 (3)

2006 (2)

2005 (5)

2004 (3)

2003 (2)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[CrossRef]

2001 (1)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef]

1997 (1)

S. Park and T. R. Shrout, “Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals,” J. Appl. Phys. 82, 1804–1811 (1997).
[CrossRef]

1996 (1)

Ashcom, J. B.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Aubin, G.

A. Martinez, J. G. Provost, G. Aubin, R. Brenot, J. Landreau, F. Lelarge, and A. Ramdane, “Slow and fast light in quantum dot based semiconductor optical amplifiers,” C. R. Phys. 10, 1000–1007 (2009).
[CrossRef]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef]

Belal, M.

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[CrossRef]

Blair, S.

Blit, R.

Blumenthal, D. J.

Bowers, J. E.

Boyd, R. W.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[CrossRef]

Boyle, M. O.

Y. A. Vlasov, M. O. Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef]

Brambilla, G.

Brenot, R.

A. Martinez, J. G. Provost, G. Aubin, R. Brenot, J. Landreau, F. Lelarge, and A. Ramdane, “Slow and fast light in quantum dot based semiconductor optical amplifiers,” C. R. Phys. 10, 1000–1007 (2009).
[CrossRef]

Broderick, N. G. R.

Burmeister, E. F.

Chang-Hasnain, C. J.

Chen, G. Y.

Crankshaw, S.

Dahan, D.

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef]

Eisenstein, G.

Finazzi, V.

Gattass, R. R.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Golub, G. H.

G. H. Golub and C. F. Van Loan, Matrix Computations (Johns Hopkins University, 1996).

Gorodetsky, M. L.

Hairer, E.

E. Hairer, lecture notes on Solving Differential Equations on Manifolds, Université de Genève, Section de mathématiques, 2-4 rue du Lièvre, CP 64CH-1211 Genève 4, Switzerland, 2011.

Hamann, H. F.

Y. A. Vlasov, M. O. Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef]

Han, X.

J. Liang, L. Y. Ren, M. J. Yun, X. Han, and X. J. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” J. Appl. Phys. 110, 063103 (2011).
[CrossRef]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef]

He, S. L.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Hernandez, G.

Horak, P.

Ilchenko, V. S.

Jung, Y.

Y. Jung, G. S. Murugan, G. Brambilla, and D. J. Richardson, “Embedded optical microfiber coil resonator with enhanced high-Q,” IEEE Photon. Technol. Lett. 22, 1638–1640 (2010).
[CrossRef]

Kippenberg, T. J.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85, 6113–6115 (2004).
[CrossRef]

Kjær, R.

Landreau, J.

A. Martinez, J. G. Provost, G. Aubin, R. Brenot, J. Landreau, F. Lelarge, and A. Ramdane, “Slow and fast light in quantum dot based semiconductor optical amplifiers,” C. R. Phys. 10, 1000–1007 (2009).
[CrossRef]

Lelarge, F.

A. Martinez, J. G. Provost, G. Aubin, R. Brenot, J. Landreau, F. Lelarge, and A. Ramdane, “Slow and fast light in quantum dot based semiconductor optical amplifiers,” C. R. Phys. 10, 1000–1007 (2009).
[CrossRef]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[CrossRef]

Liang, J.

J. Liang, L. Y. Ren, M. J. Yun, X. Han, and X. J. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” J. Appl. Phys. 110, 063103 (2011).
[CrossRef]

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef]

Liu, Y.

Lou, J. Y.

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[CrossRef]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Mack, J. P.

Martinez, A.

A. Martinez, J. G. Provost, G. Aubin, R. Brenot, J. Landreau, F. Lelarge, and A. Ramdane, “Slow and fast light in quantum dot based semiconductor optical amplifiers,” C. R. Phys. 10, 1000–1007 (2009).
[CrossRef]

Mašanovic, M. L.

Maxwell, I.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Mazur, E.

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[CrossRef]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

McNab, S. J.

Y. A. Vlasov, M. O. Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef]

Moewe, M.

Mørk, J.

Murugan, G. S.

Y. Jung, G. S. Murugan, G. Brambilla, and D. J. Richardson, “Embedded optical microfiber coil resonator with enhanced high-Q,” IEEE Photon. Technol. Lett. 22, 1638–1640 (2010).
[CrossRef]

Newson, T. P.

Palinginis, P.

Park, S.

S. Park and T. R. Shrout, “Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals,” J. Appl. Phys. 82, 1804–1811 (1997).
[CrossRef]

Poel, M.

Poulsen, H. N.

Provost, J. G.

A. Martinez, J. G. Provost, G. Aubin, R. Brenot, J. Landreau, F. Lelarge, and A. Ramdane, “Slow and fast light in quantum dot based semiconductor optical amplifiers,” C. R. Phys. 10, 1000–1007 (2009).
[CrossRef]

Pruneri, V.

Ramdane, A.

A. Martinez, J. G. Provost, G. Aubin, R. Brenot, J. Landreau, F. Lelarge, and A. Ramdane, “Slow and fast light in quantum dot based semiconductor optical amplifiers,” C. R. Phys. 10, 1000–1007 (2009).
[CrossRef]

Ren, L. Y.

Richardson, D. J.

Y. Jung, G. S. Murugan, G. Brambilla, and D. J. Richardson, “Embedded optical microfiber coil resonator with enhanced high-Q,” IEEE Photon. Technol. Lett. 22, 1638–1640 (2010).
[CrossRef]

Savchenkov, A. A.

Sedgwick, F.

Shen, M. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Shrout, T. R.

S. Park and T. R. Shrout, “Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals,” J. Appl. Phys. 82, 1804–1811 (1997).
[CrossRef]

Shumakher, E.

Song, Z. Q.

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85, 6113–6115 (2004).
[CrossRef]

Stamenic, B.

Sumetsky, M.

Thévenaz, L.

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photon. 2, 474–481 (2008).
[CrossRef]

Tomita, Y.

Tong, L. M.

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[CrossRef]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Vahala, K. J.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85, 6113–6115 (2004).
[CrossRef]

Van Loan, C. F.

G. H. Golub and C. F. Van Loan, Matrix Computations (Johns Hopkins University, 1996).

Vlasov, Y. A.

Y. A. Vlasov, M. O. Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef]

Wang, S. H.

Wang, X. J.

J. Liang, L. Y. Ren, M. J. Yun, X. Han, and X. J. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” J. Appl. Phys. 110, 063103 (2011).
[CrossRef]

Willinger, A.

Xu, F.

Yun, M. J.

J. Liang, L. Y. Ren, M. J. Yun, X. Han, and X. J. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” J. Appl. Phys. 110, 063103 (2011).
[CrossRef]

Yvind, K.

Zhang, J. P.

Zhang, X. L.

Zheng, K.

Zhu, Y. F.

Appl. Phys. Lett. (1)

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85, 6113–6115 (2004).
[CrossRef]

C. R. Phys. (1)

A. Martinez, J. G. Provost, G. Aubin, R. Brenot, J. Landreau, F. Lelarge, and A. Ramdane, “Slow and fast light in quantum dot based semiconductor optical amplifiers,” C. R. Phys. 10, 1000–1007 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

F. Xu and G. Brambilla, “Manufacture of 3-D microfiber coil resonators,” IEEE Photon. Technol. Lett. 19, 1481–1483 (2007).
[CrossRef]

Y. Jung, G. S. Murugan, G. Brambilla, and D. J. Richardson, “Embedded optical microfiber coil resonator with enhanced high-Q,” IEEE Photon. Technol. Lett. 22, 1638–1640 (2010).
[CrossRef]

J. Appl. Phys. (2)

S. Park and T. R. Shrout, “Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals,” J. Appl. Phys. 82, 1804–1811 (1997).
[CrossRef]

J. Liang, L. Y. Ren, M. J. Yun, X. Han, and X. J. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” J. Appl. Phys. 110, 063103 (2011).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nat. Photon. (1)

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photon. 2, 474–481 (2008).
[CrossRef]

Nature (3)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef]

Y. A. Vlasov, M. O. Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Opt. Express (14)

M. Sumetsky, “Optical fiber microcoil resonator,” Opt. Express 12, 2303–2316 (2004).
[CrossRef]

M. Sumetsky, “Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation,” Opt. Express 13, 4331–4340 (2005).
[CrossRef]

M. Sumetsky, “Optical microfiber coil delay line,” Opt. Express 17, 7196–7205 (2009).
[CrossRef]

N. G. R. Broderick, “Optical snakes and ladders: dispersion and nonlinearity in microcoil resonators,” Opt. Express 16, 16247–16254 (2008).
[CrossRef]

F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15, 7888–7893(2007).
[CrossRef]

F. Xu, V. Pruneri, V. Finazzi, and G. Brambilla, “An embedded optical nanowire loop resonator refractometric sensor,” Opt. Express 16, 1062–1067 (2008).
[CrossRef]

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[CrossRef]

D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234–6249 (2005).
[CrossRef]

S. H. Wang, L. Y. Ren, Y. Liu, and Y. Tomita, “Zero-broadening SBS slow light propagation in an optical fiber using two broadband pump beams,” Opt. Express 16, 8067–8076 (2008).
[CrossRef]

P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, and C. J. Chang-Hasnain, “Room temperature slow light in a quantum-well waveguide via coherent population oscillation,” Opt. Express 13, 9909–9915 (2005).
[CrossRef]

S. Blair and K. Zheng, “Intensity-tunable group delay using stimulated Raman scattering in silicon slow-light waveguides,” Opt. Express 14, 1064–1069 (2006).
[CrossRef]

E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, “Large tunable delay with low distortion of 10  Gbit/s data in a slow light system based on narrow band fiber parametric amplification,” Opt. Express 14, 8540–8545 (2006).
[CrossRef]

J. Mørk, R. Kjær, M. Poel, and K. Yvind, “Slow light in a semiconductor waveguide at gigahertz frequencies,” Opt. Express 13, 8136–8145 (2005).
[CrossRef]

E. F. Burmeister, J. P. Mack, H. N. Poulsen, M. L. Mašanović, B. Stamenić, D. J. Blumenthal, and J. E. Bowers, “Photonic integrated circuit optical buffer for packet-switched networks,” Opt. Express 17, 6629–6635 (2009).
[CrossRef]

Opt. Lett. (4)

Science (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[CrossRef]

Other (2)

G. H. Golub and C. F. Van Loan, Matrix Computations (Johns Hopkins University, 1996).

E. Hairer, lecture notes on Solving Differential Equations on Manifolds, Université de Genève, Section de mathématiques, 2-4 rue du Lièvre, CP 64CH-1211 Genève 4, Switzerland, 2011.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Optical microcoil resonator (OMR).

Fig. 2.
Fig. 2.

Diagram of the tunable slow-light element based on the OMR.

Fig. 3.
Fig. 3.

Transmission spectra of the OMR components with (a) two coils, (b) three coils, (c) four coils, and (d) five coils, respectively. The parameters are taken as: k=0.5/mm, l=1mm, neff=1.45, α=0.02/mm, r=1μm.

Fig. 4.
Fig. 4.

Dependence of the transmission spectrum of the OMR components on the coupling coefficient and optical wavelength, where (a) to (d) correspond to the OMR components containing two, three, four, and five microfiber coils, respectively.

Fig. 5.
Fig. 5.

Amplitude phase spectrum of the two-coil OMR. The parameters are taken as: k=0.5/mm, l=1mm, neff=1.45, and α=0.02/mm, r=1μm.

Fig. 6.
Fig. 6.

Dependence of the group time delay of the two-coil OMR on the optical wavelength. The parameters are taken as: k=0.5/mm, l=1mm, r=1μm, α=0.02/mm, neff=1.45.

Fig. 7.
Fig. 7.

Dependence of the group time delay of the two-coil OMR on the coupling coefficient k and the wavelength λ. The parameters are taken as: l=1mm, neff=1.45, α=0.02/mm, r=1μm. (a) The wavelength varies from 1546 to 1556 nm, (b) at the wavelength of 1550 nm, (c) the group time delay dependence on k.

Fig. 8.
Fig. 8.

Relationship among the coupling coefficient k, the pitch p of the two adjacent microfiber coils, and the voltage applied on the PZN-PT. The parameters are taken as: neff=1.45, α=0.02/mm, and r=1μm.

Fig. 9.
Fig. 9.

Dependence of the group time delay on the voltage applied to the PZN-PT.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

dds(A1(s)A2(s)A3(s)A4(s)An2(s)An1(s)An(s))=(0ik00000ik0ik00000ik0ik00000ik000000000ik00000ik0ik00000ik0)(A1(s)A2(s)A3(s)A4(s)An2(s)An1(s)An(s)),
k=(neff2ne2)β{2π2λ2x2+y2<r2dxdy[F0x(x,y)(F0x(x,yp))+F0y(x,y)(F0y(x,yp))]+12neff2x2+y2=r2dlr(xF0x(x,y)+yF0y(x,y))(F0x(x,yp)x+F0y(x,yp)y)},
(A1(0)A2(0)A3(0)A4(0)An2(0)An1(0)An(0))=(0000000eiβl0000000eiβl0000000eiβl000000000000000eiβl0000000eiβl0)(A1(l)A2(l)A3(l)A4(l)An2(l)An1(l)An(l))+(A1(0)000000),
ddsA=KA,
A(0)=BA(l)+A1(0).
A(s)=eKsC,
C=(EBeKl)1A1(0).
A(s)=eKs(EBeKl)1A1(0).
T=An(l)eiβlA1(0).
P=T×T*,
ϕT=phase(T)=Im(ln(T)).
τd=neffc(dϕTdβ),

Metrics