Abstract

We present a continuous liquid level sensing system for both room temperature and cryogenic fluids with millimeter spatial resolution. Change of in-fiber Rayleigh backscattering signal from the distinct thermal response of the heated sensing fiber in liquid and in air were interrogated and spatially resolved using the optical frequency domain reflectometry. Both electrical and optical heating techniques were investigated for cryogenic liquid applications at 4 K, 77 K, and the room temperature. The successful combination of self-heated fiber and wavelength-swept Rayleigh scattering interferometry provides, for the first time to our best knowledge, a truly distributed fuel gauge with high spatial resolution for cryogenic fuel storage, transportation, and management on ground and in space.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Khahiq, S. W. James, and R. P. Tatam, “Fiber-optic liquid-level sensor using a long-period grating,” Opt. Lett. 26, 1224–1226 (2001).
    [CrossRef]
  2. B. Yun, N. Chen, and Y. Cui, “Highly sensitive liquid-level sensor based on etched fiber Bragg grating,” IEEE Photon. Technol. Lett. 19, 1747–1749 (2007).
    [CrossRef]
  3. S. M. Chandani and N. A. F. Jaeger, “Optical fiber-based liquid level sensor,” Opt. Eng. 46, 114401 (2007).
    [CrossRef]
  4. B. Dong, Q. Zhao, L. Feng, T. Guo, L. Xue, S. Dong, and H. Gu, “Liquid-level sensor with a high-birefringence-fiber loop mirror,” Appl. Opt. 45, 7767–7771 (2006).
    [CrossRef]
  5. J. E. Antonio-Lopez, J. J. Sanchez-Mondragon, P. LiKam Wa, and D. A. May-Arrioja, “Fiber-optic sensor for liquid level measurement,” Opt. Lett. 36, 3425–3427 (2011).
    [CrossRef]
  6. T. Chen, R. Chen, P. Lu, Q. Chen, and K. P. Chen, “Fiber Mach-Zehnder Interferometer for Liquid Level Sensing,” Electron. Lett. 47, 1093–1095 (2011).
    [CrossRef]
  7. T. Guo, Q. Zhao, Q. Dou, H. Zhang, L. Xue, G. Huang, and X. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensors based on bending cantilever beam,” IEEE Photon. Technol. Lett. 17, 2400–2402 (2005).
    [CrossRef]
  8. K. P. Chen, B. McMillan, and L. Cashdollar, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett. 86, 143503 (2005).
    [CrossRef]
  9. T. Chen, D. Xu, M. Buric, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated all-fiber sensing system for cryogenic environments,” Meas. Sci. Technol. 21, 094036 (2010).
    [CrossRef]
  10. F. Yei, T. Chen, D. Xu, K. P. Chen, and L. Qian, “Cryogenic fluid level sensor multiplexed by frequency-shifted interferometry,” Appl. Opt. 49, 4898–4905 (2010).
    [CrossRef]
  11. T. Chen, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated optical fiber sensor array for cryogenic fluid level sensing,” IEEE Sens. J. 11, 1051–1052 (2011).
    [CrossRef]
  12. B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13, 666–674 (2005).
    [CrossRef]
  13. S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multimode fiber using swept-wavelengh interferometry,” in Optical Fiber Sensors (Optical Society of America, 2006), paper ThE42.
  14. A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J. 8, 1375–1380 (2008).
    [CrossRef]
  15. T. Chen, Q. Wang, R. Chen, B. Zhang, C. Jewart, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed high temperature pressure sensing using air-hole microstructural fibers,” Opt. Lett. 37, 1064–1066 (2012).
    [CrossRef]
  16. T. Chen, Q. Wang, R. Chen, B. Zhang, and K. P. Chen, “Distributed flow sensing using hot optical wire grids,” Opt. Express 20, 8240–8249 (2012).
    [CrossRef]
  17. T. Chen, Q. Wang, R. Chen, B. Zhang, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed hydrogen sensing using in-fiber Rayleigh scattering,” Appl. Phys. Lett. 100, 191105 (2012).
    [CrossRef]
  18. S. Gao, A. P. Zhang, H-Y. Tam, L. H. Cho, and C. Lu, “All-optical fiber anemometer based on laser heated fiber Bragg gratings,” Opt. Express 19, 10124–10130 (2011).
    [CrossRef]

2012

2011

S. Gao, A. P. Zhang, H-Y. Tam, L. H. Cho, and C. Lu, “All-optical fiber anemometer based on laser heated fiber Bragg gratings,” Opt. Express 19, 10124–10130 (2011).
[CrossRef]

T. Chen, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated optical fiber sensor array for cryogenic fluid level sensing,” IEEE Sens. J. 11, 1051–1052 (2011).
[CrossRef]

J. E. Antonio-Lopez, J. J. Sanchez-Mondragon, P. LiKam Wa, and D. A. May-Arrioja, “Fiber-optic sensor for liquid level measurement,” Opt. Lett. 36, 3425–3427 (2011).
[CrossRef]

T. Chen, R. Chen, P. Lu, Q. Chen, and K. P. Chen, “Fiber Mach-Zehnder Interferometer for Liquid Level Sensing,” Electron. Lett. 47, 1093–1095 (2011).
[CrossRef]

2010

T. Chen, D. Xu, M. Buric, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated all-fiber sensing system for cryogenic environments,” Meas. Sci. Technol. 21, 094036 (2010).
[CrossRef]

F. Yei, T. Chen, D. Xu, K. P. Chen, and L. Qian, “Cryogenic fluid level sensor multiplexed by frequency-shifted interferometry,” Appl. Opt. 49, 4898–4905 (2010).
[CrossRef]

2008

A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J. 8, 1375–1380 (2008).
[CrossRef]

2007

B. Yun, N. Chen, and Y. Cui, “Highly sensitive liquid-level sensor based on etched fiber Bragg grating,” IEEE Photon. Technol. Lett. 19, 1747–1749 (2007).
[CrossRef]

S. M. Chandani and N. A. F. Jaeger, “Optical fiber-based liquid level sensor,” Opt. Eng. 46, 114401 (2007).
[CrossRef]

2006

2005

T. Guo, Q. Zhao, Q. Dou, H. Zhang, L. Xue, G. Huang, and X. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensors based on bending cantilever beam,” IEEE Photon. Technol. Lett. 17, 2400–2402 (2005).
[CrossRef]

K. P. Chen, B. McMillan, and L. Cashdollar, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett. 86, 143503 (2005).
[CrossRef]

B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13, 666–674 (2005).
[CrossRef]

2001

Antonio-Lopez, J. E.

Buric, M.

T. Chen, D. Xu, M. Buric, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated all-fiber sensing system for cryogenic environments,” Meas. Sci. Technol. 21, 094036 (2010).
[CrossRef]

Cashdollar, L.

K. P. Chen, B. McMillan, and L. Cashdollar, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett. 86, 143503 (2005).
[CrossRef]

Chandani, S. M.

S. M. Chandani and N. A. F. Jaeger, “Optical fiber-based liquid level sensor,” Opt. Eng. 46, 114401 (2007).
[CrossRef]

Chen, K. P.

T. Chen, Q. Wang, R. Chen, B. Zhang, C. Jewart, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed high temperature pressure sensing using air-hole microstructural fibers,” Opt. Lett. 37, 1064–1066 (2012).
[CrossRef]

T. Chen, Q. Wang, R. Chen, B. Zhang, and K. P. Chen, “Distributed flow sensing using hot optical wire grids,” Opt. Express 20, 8240–8249 (2012).
[CrossRef]

T. Chen, Q. Wang, R. Chen, B. Zhang, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed hydrogen sensing using in-fiber Rayleigh scattering,” Appl. Phys. Lett. 100, 191105 (2012).
[CrossRef]

T. Chen, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated optical fiber sensor array for cryogenic fluid level sensing,” IEEE Sens. J. 11, 1051–1052 (2011).
[CrossRef]

T. Chen, R. Chen, P. Lu, Q. Chen, and K. P. Chen, “Fiber Mach-Zehnder Interferometer for Liquid Level Sensing,” Electron. Lett. 47, 1093–1095 (2011).
[CrossRef]

T. Chen, D. Xu, M. Buric, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated all-fiber sensing system for cryogenic environments,” Meas. Sci. Technol. 21, 094036 (2010).
[CrossRef]

F. Yei, T. Chen, D. Xu, K. P. Chen, and L. Qian, “Cryogenic fluid level sensor multiplexed by frequency-shifted interferometry,” Appl. Opt. 49, 4898–4905 (2010).
[CrossRef]

K. P. Chen, B. McMillan, and L. Cashdollar, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett. 86, 143503 (2005).
[CrossRef]

Chen, N.

B. Yun, N. Chen, and Y. Cui, “Highly sensitive liquid-level sensor based on etched fiber Bragg grating,” IEEE Photon. Technol. Lett. 19, 1747–1749 (2007).
[CrossRef]

Chen, Q.

T. Chen, R. Chen, P. Lu, Q. Chen, and K. P. Chen, “Fiber Mach-Zehnder Interferometer for Liquid Level Sensing,” Electron. Lett. 47, 1093–1095 (2011).
[CrossRef]

Chen, R.

T. Chen, Q. Wang, R. Chen, B. Zhang, C. Jewart, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed high temperature pressure sensing using air-hole microstructural fibers,” Opt. Lett. 37, 1064–1066 (2012).
[CrossRef]

T. Chen, Q. Wang, R. Chen, B. Zhang, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed hydrogen sensing using in-fiber Rayleigh scattering,” Appl. Phys. Lett. 100, 191105 (2012).
[CrossRef]

T. Chen, Q. Wang, R. Chen, B. Zhang, and K. P. Chen, “Distributed flow sensing using hot optical wire grids,” Opt. Express 20, 8240–8249 (2012).
[CrossRef]

T. Chen, R. Chen, P. Lu, Q. Chen, and K. P. Chen, “Fiber Mach-Zehnder Interferometer for Liquid Level Sensing,” Electron. Lett. 47, 1093–1095 (2011).
[CrossRef]

Chen, T.

T. Chen, Q. Wang, R. Chen, B. Zhang, and K. P. Chen, “Distributed flow sensing using hot optical wire grids,” Opt. Express 20, 8240–8249 (2012).
[CrossRef]

T. Chen, Q. Wang, R. Chen, B. Zhang, C. Jewart, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed high temperature pressure sensing using air-hole microstructural fibers,” Opt. Lett. 37, 1064–1066 (2012).
[CrossRef]

T. Chen, Q. Wang, R. Chen, B. Zhang, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed hydrogen sensing using in-fiber Rayleigh scattering,” Appl. Phys. Lett. 100, 191105 (2012).
[CrossRef]

T. Chen, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated optical fiber sensor array for cryogenic fluid level sensing,” IEEE Sens. J. 11, 1051–1052 (2011).
[CrossRef]

T. Chen, R. Chen, P. Lu, Q. Chen, and K. P. Chen, “Fiber Mach-Zehnder Interferometer for Liquid Level Sensing,” Electron. Lett. 47, 1093–1095 (2011).
[CrossRef]

T. Chen, D. Xu, M. Buric, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated all-fiber sensing system for cryogenic environments,” Meas. Sci. Technol. 21, 094036 (2010).
[CrossRef]

F. Yei, T. Chen, D. Xu, K. P. Chen, and L. Qian, “Cryogenic fluid level sensor multiplexed by frequency-shifted interferometry,” Appl. Opt. 49, 4898–4905 (2010).
[CrossRef]

Cho, L. H.

Cui, Y.

B. Yun, N. Chen, and Y. Cui, “Highly sensitive liquid-level sensor based on etched fiber Bragg grating,” IEEE Photon. Technol. Lett. 19, 1747–1749 (2007).
[CrossRef]

Dickerson, B. D.

A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J. 8, 1375–1380 (2008).
[CrossRef]

Dong, B.

Dong, S.

Dong, X.

T. Guo, Q. Zhao, Q. Dou, H. Zhang, L. Xue, G. Huang, and X. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensors based on bending cantilever beam,” IEEE Photon. Technol. Lett. 17, 2400–2402 (2005).
[CrossRef]

Dou, Q.

T. Guo, Q. Zhao, Q. Dou, H. Zhang, L. Xue, G. Huang, and X. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensors based on bending cantilever beam,” IEEE Photon. Technol. Lett. 17, 2400–2402 (2005).
[CrossRef]

Feng, L.

Froggatt, M.

Froggatt, M. E.

A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J. 8, 1375–1380 (2008).
[CrossRef]

S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multimode fiber using swept-wavelengh interferometry,” in Optical Fiber Sensors (Optical Society of America, 2006), paper ThE42.

Gao, S.

Gifford, D.

Gifford, D. K.

A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J. 8, 1375–1380 (2008).
[CrossRef]

S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multimode fiber using swept-wavelengh interferometry,” in Optical Fiber Sensors (Optical Society of America, 2006), paper ThE42.

Gu, H.

Guo, T.

B. Dong, Q. Zhao, L. Feng, T. Guo, L. Xue, S. Dong, and H. Gu, “Liquid-level sensor with a high-birefringence-fiber loop mirror,” Appl. Opt. 45, 7767–7771 (2006).
[CrossRef]

T. Guo, Q. Zhao, Q. Dou, H. Zhang, L. Xue, G. Huang, and X. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensors based on bending cantilever beam,” IEEE Photon. Technol. Lett. 17, 2400–2402 (2005).
[CrossRef]

Huang, G.

T. Guo, Q. Zhao, Q. Dou, H. Zhang, L. Xue, G. Huang, and X. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensors based on bending cantilever beam,” IEEE Photon. Technol. Lett. 17, 2400–2402 (2005).
[CrossRef]

Jaeger, N. A. F.

S. M. Chandani and N. A. F. Jaeger, “Optical fiber-based liquid level sensor,” Opt. Eng. 46, 114401 (2007).
[CrossRef]

James, S. W.

Jewart, C.

Khahiq, S.

Kreger, S. T.

A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J. 8, 1375–1380 (2008).
[CrossRef]

S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multimode fiber using swept-wavelengh interferometry,” in Optical Fiber Sensors (Optical Society of America, 2006), paper ThE42.

LiKam Wa, P.

Lu, C.

Lu, P.

T. Chen, R. Chen, P. Lu, Q. Chen, and K. P. Chen, “Fiber Mach-Zehnder Interferometer for Liquid Level Sensing,” Electron. Lett. 47, 1093–1095 (2011).
[CrossRef]

Maklad, M.

T. Chen, Q. Wang, R. Chen, B. Zhang, C. Jewart, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed high temperature pressure sensing using air-hole microstructural fibers,” Opt. Lett. 37, 1064–1066 (2012).
[CrossRef]

T. Chen, Q. Wang, R. Chen, B. Zhang, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed hydrogen sensing using in-fiber Rayleigh scattering,” Appl. Phys. Lett. 100, 191105 (2012).
[CrossRef]

T. Chen, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated optical fiber sensor array for cryogenic fluid level sensing,” IEEE Sens. J. 11, 1051–1052 (2011).
[CrossRef]

T. Chen, D. Xu, M. Buric, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated all-fiber sensing system for cryogenic environments,” Meas. Sci. Technol. 21, 094036 (2010).
[CrossRef]

May-Arrioja, D. A.

McMillan, B.

K. P. Chen, B. McMillan, and L. Cashdollar, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett. 86, 143503 (2005).
[CrossRef]

Qian, L.

Sanchez-Mondragon, J. J.

Sang, A. K.

A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J. 8, 1375–1380 (2008).
[CrossRef]

Soller, B.

Soller, B. J.

S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multimode fiber using swept-wavelengh interferometry,” in Optical Fiber Sensors (Optical Society of America, 2006), paper ThE42.

Swinehart, P. R.

T. Chen, Q. Wang, R. Chen, B. Zhang, C. Jewart, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed high temperature pressure sensing using air-hole microstructural fibers,” Opt. Lett. 37, 1064–1066 (2012).
[CrossRef]

T. Chen, Q. Wang, R. Chen, B. Zhang, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed hydrogen sensing using in-fiber Rayleigh scattering,” Appl. Phys. Lett. 100, 191105 (2012).
[CrossRef]

Swinhart, P. R.

T. Chen, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated optical fiber sensor array for cryogenic fluid level sensing,” IEEE Sens. J. 11, 1051–1052 (2011).
[CrossRef]

T. Chen, D. Xu, M. Buric, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated all-fiber sensing system for cryogenic environments,” Meas. Sci. Technol. 21, 094036 (2010).
[CrossRef]

Tam, H-Y.

Tatam, R. P.

Wang, Q.

Wolfe, M.

Wolfe, M. S.

S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multimode fiber using swept-wavelengh interferometry,” in Optical Fiber Sensors (Optical Society of America, 2006), paper ThE42.

Xu, D.

F. Yei, T. Chen, D. Xu, K. P. Chen, and L. Qian, “Cryogenic fluid level sensor multiplexed by frequency-shifted interferometry,” Appl. Opt. 49, 4898–4905 (2010).
[CrossRef]

T. Chen, D. Xu, M. Buric, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated all-fiber sensing system for cryogenic environments,” Meas. Sci. Technol. 21, 094036 (2010).
[CrossRef]

Xue, L.

B. Dong, Q. Zhao, L. Feng, T. Guo, L. Xue, S. Dong, and H. Gu, “Liquid-level sensor with a high-birefringence-fiber loop mirror,” Appl. Opt. 45, 7767–7771 (2006).
[CrossRef]

T. Guo, Q. Zhao, Q. Dou, H. Zhang, L. Xue, G. Huang, and X. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensors based on bending cantilever beam,” IEEE Photon. Technol. Lett. 17, 2400–2402 (2005).
[CrossRef]

Yei, F.

Yun, B.

B. Yun, N. Chen, and Y. Cui, “Highly sensitive liquid-level sensor based on etched fiber Bragg grating,” IEEE Photon. Technol. Lett. 19, 1747–1749 (2007).
[CrossRef]

Zhang, A. P.

Zhang, B.

Zhang, H.

T. Guo, Q. Zhao, Q. Dou, H. Zhang, L. Xue, G. Huang, and X. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensors based on bending cantilever beam,” IEEE Photon. Technol. Lett. 17, 2400–2402 (2005).
[CrossRef]

Zhao, Q.

B. Dong, Q. Zhao, L. Feng, T. Guo, L. Xue, S. Dong, and H. Gu, “Liquid-level sensor with a high-birefringence-fiber loop mirror,” Appl. Opt. 45, 7767–7771 (2006).
[CrossRef]

T. Guo, Q. Zhao, Q. Dou, H. Zhang, L. Xue, G. Huang, and X. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensors based on bending cantilever beam,” IEEE Photon. Technol. Lett. 17, 2400–2402 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

K. P. Chen, B. McMillan, and L. Cashdollar, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett. 86, 143503 (2005).
[CrossRef]

T. Chen, Q. Wang, R. Chen, B. Zhang, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed hydrogen sensing using in-fiber Rayleigh scattering,” Appl. Phys. Lett. 100, 191105 (2012).
[CrossRef]

Electron. Lett.

T. Chen, R. Chen, P. Lu, Q. Chen, and K. P. Chen, “Fiber Mach-Zehnder Interferometer for Liquid Level Sensing,” Electron. Lett. 47, 1093–1095 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

T. Guo, Q. Zhao, Q. Dou, H. Zhang, L. Xue, G. Huang, and X. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensors based on bending cantilever beam,” IEEE Photon. Technol. Lett. 17, 2400–2402 (2005).
[CrossRef]

B. Yun, N. Chen, and Y. Cui, “Highly sensitive liquid-level sensor based on etched fiber Bragg grating,” IEEE Photon. Technol. Lett. 19, 1747–1749 (2007).
[CrossRef]

IEEE Sens. J.

T. Chen, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated optical fiber sensor array for cryogenic fluid level sensing,” IEEE Sens. J. 11, 1051–1052 (2011).
[CrossRef]

A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J. 8, 1375–1380 (2008).
[CrossRef]

Meas. Sci. Technol.

T. Chen, D. Xu, M. Buric, M. Maklad, P. R. Swinhart, and K. P. Chen, “Self-heated all-fiber sensing system for cryogenic environments,” Meas. Sci. Technol. 21, 094036 (2010).
[CrossRef]

Opt. Eng.

S. M. Chandani and N. A. F. Jaeger, “Optical fiber-based liquid level sensor,” Opt. Eng. 46, 114401 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Other

S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multimode fiber using swept-wavelengh interferometry,” in Optical Fiber Sensors (Optical Society of America, 2006), paper ThE42.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of in-fiber Rayleigh backscattering measurement using optical frequency domain reflectometry.

Fig. 2.
Fig. 2.

(a) Schematic of electrical on-fiber heating for liquid level sensing. (b) Uniform temperature profile using different heating power measured by in-fiber Rayleigh scattering. (c) Maximum temperature rise versus input electrical power density.

Fig. 3.
Fig. 3.

(a) Temperature profile of the electrically heated fiber during level sensing. (b) Sensor response of both straight and double-helix sensor configuration.

Fig. 4.
Fig. 4.

(a) Three independent parameters, the liquid level ZT, the tilting orientation θT, and the tilting angle ΦT to determine a unique tilted liquid level. (b) The experimental results of measuring the liquid level ZT and tilting angle ΦT using a double-helix sensor at fixed tilting orientation θT. Inset: the comparison of actual value and measured value for liquid level ZT and tilting angle ΦT.

Fig. 5.
Fig. 5.

(a) Schematic of level sensing using optically heated fiber. (b) Temperature profiles of different HAF with different heating power. (c) Heating efficiency of different HAF.

Fig. 6.
Fig. 6.

Level sensing response in (a) liquid nitrogen (LN) at 77 K and (b) liquid helium (LH) at 4 K.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ω(t)=ω0+γt,
ERayleigh=Emeas(tτ)·ρ(ω)cos[ωτϕ],
I(ω)=Iref+IRayleigh+Ibeat=|Eref(t)|2+|Emeas(tτ)·r(ω)|2+2Eref(t)·Emeas(tτ)·ρ(ω)cos[ωτϕ],
I(τ)=I(nx/c)=FFT[I(ω)]=FFT[Ibeat(ω)],
Lmax=cτsampling4n,ΔL=c2nΔfsweep.
Imeasure(ω)Iref*(ω)=FFT[Imeasure(τ)·Iref*(τ)],
Δλλ=Δνν=KTΔT.

Metrics