X. Ding, R. D. Sun, F. Li, W. Zhao, and W. Liu, “Experimental research on radius of curvature measurement of spherical lenses based on laser differential confocal technique,” Proc. SPIE 8201, 82011W (2011).

P. Becker, H. Friedrich, K. Fujii, W. Giardini, G. Mana, A. Picard, H. J. Pohl, H. Riemann, and S. Valkiers, “The Avogadro constant determination via enriched silicon-28,” Meas. Sci. Technol. 20, 092002 (2009).

[CrossRef]

Z. Jianhuan and Z. Junxian, “Effect of tilt angle of surface to be measured on differential confocal microscope pointing signal,” Acta Opt. Sin. 26, 1363–1366 (2006) (in Chinese).

T. L. Schmitz, C. J. Evans, A. Davies, and W. T. Estler, “Displacement uncertainty in interferometric radius measurements,” CIRP Ann. 51, 451–454 (2002).

[CrossRef]

T. L. Schmitz, A. D. Davies, and C. J. Evans, “Uncertainties in interferometric measurements of radius of curvature,” Proc. SPIE 4451, 432–447 (2001).

[CrossRef]

R. A. Nicolaus and G. Bönsch, “A novel interferometer for dimensional measurement of a silicon sphere,” IEEE Trans. Instrum. Meas. 46, 563–565 (1997).

[CrossRef]

J. Lin, D. Su, F. Yin, and D. Sha, “Research on a high-precision measuring technique for the curvature radius of a concave spherical surface,” Proc. SPIE 2536, 489–497 (1995).

L. A. Selberg, “Radius measurement by interferometry,” Opt. Eng. 31, 1961–1967 (1992).

[CrossRef]

P. Becker, H. Friedrich, K. Fujii, W. Giardini, G. Mana, A. Picard, H. J. Pohl, H. Riemann, and S. Valkiers, “The Avogadro constant determination via enriched silicon-28,” Meas. Sci. Technol. 20, 092002 (2009).

[CrossRef]

R. A. Nicolaus and G. Bönsch, “A novel interferometer for dimensional measurement of a silicon sphere,” IEEE Trans. Instrum. Meas. 46, 563–565 (1997).

[CrossRef]

T. L. Schmitz, N. Gardner, M. Vaughn, K. Medicus, and A. Davies, “Improving optical bench radius measurements using stage error motion data,” Appl. Opt. 47, 6692–6700 (2008).

[CrossRef]

A. Davies and T. L. Schmitz, “Correcting for stage error motions in radius measurements,” Appl. Opt. 44, 5884–5893 (2005).

[CrossRef]

T. L. Schmitz, C. J. Evans, A. Davies, and W. T. Estler, “Displacement uncertainty in interferometric radius measurements,” CIRP Ann. 51, 451–454 (2002).

[CrossRef]

A. Davies and T. L. Schmitz, “Defining the measurand in radius of curvature measurements,” in Recent Developments in Traceable Dimensional Measurements II, Proceedings of the 18th ASPE Annual Meeting (CD) (American Society for Precision Engineering, 2003).

T. L. Schmitz, A. D. Davies, and C. J. Evans, “Uncertainties in interferometric measurements of radius of curvature,” Proc. SPIE 4451, 432–447 (2001).

[CrossRef]

X. Ding, R. D. Sun, F. Li, W. Zhao, and W. Liu, “Experimental research on radius of curvature measurement of spherical lenses based on laser differential confocal technique,” Proc. SPIE 8201, 82011W (2011).

T. L. Schmitz, C. J. Evans, A. Davies, and W. T. Estler, “Displacement uncertainty in interferometric radius measurements,” CIRP Ann. 51, 451–454 (2002).

[CrossRef]

T. L. Schmitz, C. J. Evans, A. Davies, and W. T. Estler, “Displacement uncertainty in interferometric radius measurements,” CIRP Ann. 51, 451–454 (2002).

[CrossRef]

T. L. Schmitz, A. D. Davies, and C. J. Evans, “Uncertainties in interferometric measurements of radius of curvature,” Proc. SPIE 4451, 432–447 (2001).

[CrossRef]

P. Becker, H. Friedrich, K. Fujii, W. Giardini, G. Mana, A. Picard, H. J. Pohl, H. Riemann, and S. Valkiers, “The Avogadro constant determination via enriched silicon-28,” Meas. Sci. Technol. 20, 092002 (2009).

[CrossRef]

P. Becker, H. Friedrich, K. Fujii, W. Giardini, G. Mana, A. Picard, H. J. Pohl, H. Riemann, and S. Valkiers, “The Avogadro constant determination via enriched silicon-28,” Meas. Sci. Technol. 20, 092002 (2009).

[CrossRef]

P. Becker, H. Friedrich, K. Fujii, W. Giardini, G. Mana, A. Picard, H. J. Pohl, H. Riemann, and S. Valkiers, “The Avogadro constant determination via enriched silicon-28,” Meas. Sci. Technol. 20, 092002 (2009).

[CrossRef]

Z. Jianhuan and Z. Junxian, “Effect of tilt angle of surface to be measured on differential confocal microscope pointing signal,” Acta Opt. Sin. 26, 1363–1366 (2006) (in Chinese).

Z. Jianhuan and Z. Junxian, “Effect of tilt angle of surface to be measured on differential confocal microscope pointing signal,” Acta Opt. Sin. 26, 1363–1366 (2006) (in Chinese).

X. Ding, R. D. Sun, F. Li, W. Zhao, and W. Liu, “Experimental research on radius of curvature measurement of spherical lenses based on laser differential confocal technique,” Proc. SPIE 8201, 82011W (2011).

J. Lin, D. Su, F. Yin, and D. Sha, “Research on a high-precision measuring technique for the curvature radius of a concave spherical surface,” Proc. SPIE 2536, 489–497 (1995).

X. Ding, R. D. Sun, F. Li, W. Zhao, and W. Liu, “Experimental research on radius of curvature measurement of spherical lenses based on laser differential confocal technique,” Proc. SPIE 8201, 82011W (2011).

D. Malacara, “Radius of curvature measurement,” in Optical Shop Testing, D. Malacara, ed., 2nd ed. (Wiley Interscience, 1991), Chap. 18, pp. 728–735.

P. Becker, H. Friedrich, K. Fujii, W. Giardini, G. Mana, A. Picard, H. J. Pohl, H. Riemann, and S. Valkiers, “The Avogadro constant determination via enriched silicon-28,” Meas. Sci. Technol. 20, 092002 (2009).

[CrossRef]

R. A. Nicolaus and G. Bönsch, “A novel interferometer for dimensional measurement of a silicon sphere,” IEEE Trans. Instrum. Meas. 46, 563–565 (1997).

[CrossRef]

P. Becker, H. Friedrich, K. Fujii, W. Giardini, G. Mana, A. Picard, H. J. Pohl, H. Riemann, and S. Valkiers, “The Avogadro constant determination via enriched silicon-28,” Meas. Sci. Technol. 20, 092002 (2009).

[CrossRef]

P. Becker, H. Friedrich, K. Fujii, W. Giardini, G. Mana, A. Picard, H. J. Pohl, H. Riemann, and S. Valkiers, “The Avogadro constant determination via enriched silicon-28,” Meas. Sci. Technol. 20, 092002 (2009).

[CrossRef]

W. Zhao, R. Sun, L. Qiu, and D. Sha, “Laser differential confocal radius measurement,” Opt. Express 18, 2345–2360 (2010).

[CrossRef]

W. Zhao, J. Tan, and L. Qiu, “Confocal bipolar absolute differential confocal approach to higher spatial resolution,” Opt. Express 12, 5013–5021 (2004).

[CrossRef]

P. Becker, H. Friedrich, K. Fujii, W. Giardini, G. Mana, A. Picard, H. J. Pohl, H. Riemann, and S. Valkiers, “The Avogadro constant determination via enriched silicon-28,” Meas. Sci. Technol. 20, 092002 (2009).

[CrossRef]

T. L. Schmitz, N. Gardner, M. Vaughn, K. Medicus, and A. Davies, “Improving optical bench radius measurements using stage error motion data,” Appl. Opt. 47, 6692–6700 (2008).

[CrossRef]

A. Davies and T. L. Schmitz, “Correcting for stage error motions in radius measurements,” Appl. Opt. 44, 5884–5893 (2005).

[CrossRef]

T. L. Schmitz, C. J. Evans, A. Davies, and W. T. Estler, “Displacement uncertainty in interferometric radius measurements,” CIRP Ann. 51, 451–454 (2002).

[CrossRef]

T. L. Schmitz, A. D. Davies, and C. J. Evans, “Uncertainties in interferometric measurements of radius of curvature,” Proc. SPIE 4451, 432–447 (2001).

[CrossRef]

A. Davies and T. L. Schmitz, “Defining the measurand in radius of curvature measurements,” in Recent Developments in Traceable Dimensional Measurements II, Proceedings of the 18th ASPE Annual Meeting (CD) (American Society for Precision Engineering, 2003).

L. A. Selberg, “Radius measurement by interferometry,” Opt. Eng. 31, 1961–1967 (1992).

[CrossRef]

W. Zhao, R. Sun, L. Qiu, and D. Sha, “Laser differential confocal radius measurement,” Opt. Express 18, 2345–2360 (2010).

[CrossRef]

J. Lin, D. Su, F. Yin, and D. Sha, “Research on a high-precision measuring technique for the curvature radius of a concave spherical surface,” Proc. SPIE 2536, 489–497 (1995).

J. Lin, D. Su, F. Yin, and D. Sha, “Research on a high-precision measuring technique for the curvature radius of a concave spherical surface,” Proc. SPIE 2536, 489–497 (1995).

X. Ding, R. D. Sun, F. Li, W. Zhao, and W. Liu, “Experimental research on radius of curvature measurement of spherical lenses based on laser differential confocal technique,” Proc. SPIE 8201, 82011W (2011).

P. Becker, H. Friedrich, K. Fujii, W. Giardini, G. Mana, A. Picard, H. J. Pohl, H. Riemann, and S. Valkiers, “The Avogadro constant determination via enriched silicon-28,” Meas. Sci. Technol. 20, 092002 (2009).

[CrossRef]

J. Lin, D. Su, F. Yin, and D. Sha, “Research on a high-precision measuring technique for the curvature radius of a concave spherical surface,” Proc. SPIE 2536, 489–497 (1995).

X. Ding, R. D. Sun, F. Li, W. Zhao, and W. Liu, “Experimental research on radius of curvature measurement of spherical lenses based on laser differential confocal technique,” Proc. SPIE 8201, 82011W (2011).

W. Zhao, R. Sun, L. Qiu, and D. Sha, “Laser differential confocal radius measurement,” Opt. Express 18, 2345–2360 (2010).

[CrossRef]

W. Zhao, J. Tan, and L. Qiu, “Confocal bipolar absolute differential confocal approach to higher spatial resolution,” Opt. Express 12, 5013–5021 (2004).

[CrossRef]

Z. Jianhuan and Z. Junxian, “Effect of tilt angle of surface to be measured on differential confocal microscope pointing signal,” Acta Opt. Sin. 26, 1363–1366 (2006) (in Chinese).

A. Davies and T. L. Schmitz, “Correcting for stage error motions in radius measurements,” Appl. Opt. 44, 5884–5893 (2005).

[CrossRef]

T. L. Schmitz, N. Gardner, M. Vaughn, K. Medicus, and A. Davies, “Improving optical bench radius measurements using stage error motion data,” Appl. Opt. 47, 6692–6700 (2008).

[CrossRef]

T. L. Schmitz, C. J. Evans, A. Davies, and W. T. Estler, “Displacement uncertainty in interferometric radius measurements,” CIRP Ann. 51, 451–454 (2002).

[CrossRef]

R. A. Nicolaus and G. Bönsch, “A novel interferometer for dimensional measurement of a silicon sphere,” IEEE Trans. Instrum. Meas. 46, 563–565 (1997).

[CrossRef]

P. Becker, H. Friedrich, K. Fujii, W. Giardini, G. Mana, A. Picard, H. J. Pohl, H. Riemann, and S. Valkiers, “The Avogadro constant determination via enriched silicon-28,” Meas. Sci. Technol. 20, 092002 (2009).

[CrossRef]

L. A. Selberg, “Radius measurement by interferometry,” Opt. Eng. 31, 1961–1967 (1992).

[CrossRef]

W. Zhao, J. Tan, and L. Qiu, “Confocal bipolar absolute differential confocal approach to higher spatial resolution,” Opt. Express 12, 5013–5021 (2004).

[CrossRef]

W. Zhao, R. Sun, L. Qiu, and D. Sha, “Laser differential confocal radius measurement,” Opt. Express 18, 2345–2360 (2010).

[CrossRef]

J. Lin, D. Su, F. Yin, and D. Sha, “Research on a high-precision measuring technique for the curvature radius of a concave spherical surface,” Proc. SPIE 2536, 489–497 (1995).

T. L. Schmitz, A. D. Davies, and C. J. Evans, “Uncertainties in interferometric measurements of radius of curvature,” Proc. SPIE 4451, 432–447 (2001).

[CrossRef]

X. Ding, R. D. Sun, F. Li, W. Zhao, and W. Liu, “Experimental research on radius of curvature measurement of spherical lenses based on laser differential confocal technique,” Proc. SPIE 8201, 82011W (2011).

A. Davies and T. L. Schmitz, “Defining the measurand in radius of curvature measurements,” in Recent Developments in Traceable Dimensional Measurements II, Proceedings of the 18th ASPE Annual Meeting (CD) (American Society for Precision Engineering, 2003).

D. Malacara, “Radius of curvature measurement,” in Optical Shop Testing, D. Malacara, ed., 2nd ed. (Wiley Interscience, 1991), Chap. 18, pp. 728–735.