Abstract

In this paper, the performance of solar cells with graphene transparent electrodes is compared with cells using conventional indium tin oxide (ITO) electrodes, and it is demonstrated the optical absorption of solar cells with bare graphene structure is worse than that of bare ITO structure because of the higher refractive index of graphene. To enhance the light trapping of graphene-based thin-film solar cells, a simple two-layer SiO2/SiC structure is proposed as antireflection coatings deposited on top of graphene transparent electrodes, and the thickness of each layer is optimized by differential evolution in order to enhance the optical absorption of a-Si:H thin-film solar cells to the greatest degree. The optimization results demonstrate the optimal SiO2/SiC/graphene structure can obtain 37.30% enhancement with respect to bare ITO structure, which has obviously exceeded the light-trapping enhancement of 34.15% for the optimal SiO2/SiC/ITO structure. Therefore, with the aid of the light-trapping structure, the graphene films are a very promising indium-free transparent electrode substitute for the conventional ITO electrode for use in cost-efficient thin-film silicon solar cells.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12, 113–142 (2004).
    [CrossRef]
  2. D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell,” Appl. Phys. Lett. 28, 671–673 (1976).
    [CrossRef]
  3. J. K. Wassei and R. B. Kaner, “Graphene, a promising transparent conductor,” Mater. Today 13, 52–59 (2010).
    [CrossRef]
  4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
    [CrossRef]
  5. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
    [CrossRef]
  6. C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
    [CrossRef]
  7. V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, and Y. Yang, “Low-temperature solution processing of graphene–carbon nanotube hybrid materials for high-performance transparent conductors,” Nano Lett. 9, 1949–1955 (2009).
    [CrossRef]
  8. S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. Kim, K. S. Kim, B. Özyilmaz, J. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30 inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
    [CrossRef]
  9. M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solution,” Prog. Photovoltaics 10, 235–241 (2002).
    [CrossRef]
  10. Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8, 1501–1505 (2008).
    [CrossRef]
  11. S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93, 251108 (2008).
    [CrossRef]
  12. Y. M. Song, J. S. Yu, and Y. T. Lee, “Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement,” Opt. Lett. 35, 276–278 (2010).
    [CrossRef]
  13. J. Y. Chyan, W. C. Hsu, and J. A. Yeh, “Broadband antireflective poly-Si nanosponge for thin film solar cells,” Opt. Express 17, 4646–4651 (2009).
    [CrossRef]
  14. X. Li, J. Gao, L. Xue, and Y. Han, “Porous polymer films with gradient-refractive-index structure for broadband and omnidirectional antireflection coatings,” Adv. Funct. Mater. 20, 259–265 (2010).
    [CrossRef]
  15. Yu. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: metallic or dielectric nanoparticles?,” Appl. Phys. Lett. 96, 073111 (2010).
    [CrossRef]
  16. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
    [CrossRef]
  17. M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).
    [CrossRef]
  18. L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18, 14395–14400 (2010).
    [CrossRef]
  19. S. H. Choi, Y. L. Kim, and K. M. Byun, “Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors,” Opt. Express 19, 458–466 (2011).
    [CrossRef]
  20. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
    [CrossRef]
  21. R. J. Luebbers, F. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32, 222–227 (1990).
    [CrossRef]
  22. http://www.sopra-sa.com .
  23. Y. X. Zhao, F. Chen, H. Y. Chen, N. Li, Q. Shen, and L. M. Zhang, “The microstructure design optimization of negative index metamaterials using genetic algorithm,” Prog. Electromag. Res. Lett. 22, 95–108 (2011).
  24. K. Siakavara, “Novel fractal antenna arrays for satellite networks: circular ring Sierpinski carpet arrays optimized by genetic algorithms,” Prog. Electromagn. Res. 103, 115–138 (2010).
    [CrossRef]
  25. R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” J. Global Optim. 11, 341–359 (1997).
    [CrossRef]
  26. Y. X. Zhao, F. Chen, Q. Shen, Q. W. Liu, and L. M. Zhang, “Optimizing low loss negative index metamaterial for visible spectrum using differential evolution,” Opt. Express 19, 11605–11614 (2011).
    [CrossRef]
  27. Y. X. Zhao, F. Chen, Q. Shen, and L. M. Zhang, “Optimizing low loss silver nanowires structure metamaterial at yellow light spectrum with differential evolution,” Phys. Lett. A 376, 252–256 (2012).
    [CrossRef]
  28. Y. X. Zhao, F. Chen, Q. Shen, and L. M. Zhang, “Optimal design of light trapping in thin-film solar cells enhanced with graded SiNx and SiOxNy structure,” Opt. Express 20, 11121–11136 (2012).
    [CrossRef]

2012

Y. X. Zhao, F. Chen, Q. Shen, and L. M. Zhang, “Optimizing low loss silver nanowires structure metamaterial at yellow light spectrum with differential evolution,” Phys. Lett. A 376, 252–256 (2012).
[CrossRef]

Y. X. Zhao, F. Chen, Q. Shen, and L. M. Zhang, “Optimal design of light trapping in thin-film solar cells enhanced with graded SiNx and SiOxNy structure,” Opt. Express 20, 11121–11136 (2012).
[CrossRef]

2011

2010

L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18, 14395–14400 (2010).
[CrossRef]

K. Siakavara, “Novel fractal antenna arrays for satellite networks: circular ring Sierpinski carpet arrays optimized by genetic algorithms,” Prog. Electromagn. Res. 103, 115–138 (2010).
[CrossRef]

J. K. Wassei and R. B. Kaner, “Graphene, a promising transparent conductor,” Mater. Today 13, 52–59 (2010).
[CrossRef]

S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. Kim, K. S. Kim, B. Özyilmaz, J. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30 inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[CrossRef]

Y. M. Song, J. S. Yu, and Y. T. Lee, “Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement,” Opt. Lett. 35, 276–278 (2010).
[CrossRef]

X. Li, J. Gao, L. Xue, and Y. Han, “Porous polymer films with gradient-refractive-index structure for broadband and omnidirectional antireflection coatings,” Adv. Funct. Mater. 20, 259–265 (2010).
[CrossRef]

Yu. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: metallic or dielectric nanoparticles?,” Appl. Phys. Lett. 96, 073111 (2010).
[CrossRef]

2009

V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, and Y. Yang, “Low-temperature solution processing of graphene–carbon nanotube hybrid materials for high-performance transparent conductors,” Nano Lett. 9, 1949–1955 (2009).
[CrossRef]

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).
[CrossRef]

J. Y. Chyan, W. C. Hsu, and J. A. Yeh, “Broadband antireflective poly-Si nanosponge for thin film solar cells,” Opt. Express 17, 4646–4651 (2009).
[CrossRef]

2008

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8, 1501–1505 (2008).
[CrossRef]

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93, 251108 (2008).
[CrossRef]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[CrossRef]

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
[CrossRef]

2007

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[CrossRef]

2005

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[CrossRef]

2004

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12, 113–142 (2004).
[CrossRef]

2002

M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solution,” Prog. Photovoltaics 10, 235–241 (2002).
[CrossRef]

1997

R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” J. Global Optim. 11, 341–359 (1997).
[CrossRef]

1990

R. J. Luebbers, F. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32, 222–227 (1990).
[CrossRef]

1976

D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell,” Appl. Phys. Lett. 28, 671–673 (1976).
[CrossRef]

1966

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[CrossRef]

Ahn, J.

S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. Kim, K. S. Kim, B. Özyilmaz, J. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30 inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[CrossRef]

Akimov, Yu. A.

Yu. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: metallic or dielectric nanoparticles?,” Appl. Phys. Lett. 96, 073111 (2010).
[CrossRef]

Allen, M. J.

V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, and Y. Yang, “Low-temperature solution processing of graphene–carbon nanotube hybrid materials for high-performance transparent conductors,” Nano Lett. 9, 1949–1955 (2009).
[CrossRef]

Bae, S.

S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. Kim, K. S. Kim, B. Özyilmaz, J. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30 inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[CrossRef]

Bailat, J.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12, 113–142 (2004).
[CrossRef]

Balakrishnan, J.

S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. Kim, K. S. Kim, B. Özyilmaz, J. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30 inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[CrossRef]

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[CrossRef]

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[CrossRef]

Borini, S.

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).
[CrossRef]

Bruna, M.

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).
[CrossRef]

Byun, K. M.

Carlson, D. E.

D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell,” Appl. Phys. Lett. 28, 671–673 (1976).
[CrossRef]

Chen, F.

Y. X. Zhao, F. Chen, Q. Shen, and L. M. Zhang, “Optimizing low loss silver nanowires structure metamaterial at yellow light spectrum with differential evolution,” Phys. Lett. A 376, 252–256 (2012).
[CrossRef]

Y. X. Zhao, F. Chen, Q. Shen, and L. M. Zhang, “Optimal design of light trapping in thin-film solar cells enhanced with graded SiNx and SiOxNy structure,” Opt. Express 20, 11121–11136 (2012).
[CrossRef]

Y. X. Zhao, F. Chen, Q. Shen, Q. W. Liu, and L. M. Zhang, “Optimizing low loss negative index metamaterial for visible spectrum using differential evolution,” Opt. Express 19, 11605–11614 (2011).
[CrossRef]

Y. X. Zhao, F. Chen, H. Y. Chen, N. Li, Q. Shen, and L. M. Zhang, “The microstructure design optimization of negative index metamaterials using genetic algorithm,” Prog. Electromag. Res. Lett. 22, 95–108 (2011).

Chen, H. Y.

Y. X. Zhao, F. Chen, H. Y. Chen, N. Li, Q. Shen, and L. M. Zhang, “The microstructure design optimization of negative index metamaterials using genetic algorithm,” Prog. Electromag. Res. Lett. 22, 95–108 (2011).

Chen, L. M.

V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, and Y. Yang, “Low-temperature solution processing of graphene–carbon nanotube hybrid materials for high-performance transparent conductors,” Nano Lett. 9, 1949–1955 (2009).
[CrossRef]

Chhajed, S.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93, 251108 (2008).
[CrossRef]

Choi, S. H.

Chu, H. S.

Chyan, J. Y.

Droz, C.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12, 113–142 (2004).
[CrossRef]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[CrossRef]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[CrossRef]

Gao, J.

X. Li, J. Gao, L. Xue, and Y. Han, “Porous polymer films with gradient-refractive-index structure for broadband and omnidirectional antireflection coatings,” Adv. Funct. Mater. 20, 259–265 (2010).
[CrossRef]

Geim, A. K.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[CrossRef]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[CrossRef]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[CrossRef]

Green, M. A.

M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solution,” Prog. Photovoltaics 10, 235–241 (2002).
[CrossRef]

Grigorenko, A. N.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[CrossRef]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[CrossRef]

Han, Y.

X. Li, J. Gao, L. Xue, and Y. Han, “Porous polymer films with gradient-refractive-index structure for broadband and omnidirectional antireflection coatings,” Adv. Funct. Mater. 20, 259–265 (2010).
[CrossRef]

Hone, J.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
[CrossRef]

Hong, B. H.

S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. Kim, K. S. Kim, B. Özyilmaz, J. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30 inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[CrossRef]

Hsu, J. W. P.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8, 1501–1505 (2008).
[CrossRef]

Hsu, W. C.

Hunsberger, F.

R. J. Luebbers, F. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32, 222–227 (1990).
[CrossRef]

Iijima, S.

S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. Kim, K. S. Kim, B. Özyilmaz, J. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30 inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[CrossRef]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[CrossRef]

Kaner, R. B.

J. K. Wassei and R. B. Kaner, “Graphene, a promising transparent conductor,” Mater. Today 13, 52–59 (2010).
[CrossRef]

V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, and Y. Yang, “Low-temperature solution processing of graphene–carbon nanotube hybrid materials for high-performance transparent conductors,” Nano Lett. 9, 1949–1955 (2009).
[CrossRef]

Katsnelson, M. I.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[CrossRef]

Kim, H.

S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. Kim, K. S. Kim, B. Özyilmaz, J. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30 inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[CrossRef]

Kim, H. R.

S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. Kim, K. S. Kim, B. Özyilmaz, J. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30 inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[CrossRef]

Kim, J. K.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93, 251108 (2008).
[CrossRef]

Kim, K. S.

S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. Kim, K. S. Kim, B. Özyilmaz, J. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30 inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[CrossRef]

Kim, Y.

S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. Kim, K. S. Kim, B. Özyilmaz, J. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30 inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[CrossRef]

Kim, Y. L.

Koh, W. S.

Yu. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: metallic or dielectric nanoparticles?,” Appl. Phys. Lett. 96, 073111 (2010).
[CrossRef]

L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18, 14395–14400 (2010).
[CrossRef]

Kroll, U.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12, 113–142 (2004).
[CrossRef]

Kunz, K. S.

R. J. Luebbers, F. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32, 222–227 (1990).
[CrossRef]

Kysar, J. W.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
[CrossRef]

Lee, C.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
[CrossRef]

Lee, Y.

S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. Kim, K. S. Kim, B. Özyilmaz, J. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30 inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[CrossRef]

Lee, Y. J.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8, 1501–1505 (2008).
[CrossRef]

Lee, Y. T.

Lei, T.

S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. Kim, K. S. Kim, B. Özyilmaz, J. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30 inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[CrossRef]

Li, E. P.

Li, N.

Y. X. Zhao, F. Chen, H. Y. Chen, N. Li, Q. Shen, and L. M. Zhang, “The microstructure design optimization of negative index metamaterials using genetic algorithm,” Prog. Electromag. Res. Lett. 22, 95–108 (2011).

Li, X.

X. Li, J. Gao, L. Xue, and Y. Han, “Porous polymer films with gradient-refractive-index structure for broadband and omnidirectional antireflection coatings,” Adv. Funct. Mater. 20, 259–265 (2010).
[CrossRef]

Liu, Q. W.

Luebbers, R. J.

R. J. Luebbers, F. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32, 222–227 (1990).
[CrossRef]

McKenzie, B. B.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8, 1501–1505 (2008).
[CrossRef]

Meier, J.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12, 113–142 (2004).
[CrossRef]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[CrossRef]

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[CrossRef]

Nelson, K.

V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, and Y. Yang, “Low-temperature solution processing of graphene–carbon nanotube hybrid materials for high-performance transparent conductors,” Nano Lett. 9, 1949–1955 (2009).
[CrossRef]

Novoselov, K. S.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[CrossRef]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[CrossRef]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[CrossRef]

Özyilmaz, B.

S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. Kim, K. S. Kim, B. Özyilmaz, J. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30 inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[CrossRef]

Park, J.

S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. Kim, K. S. Kim, B. Özyilmaz, J. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30 inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[CrossRef]

Peres, N. M. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[CrossRef]

Peters, D. W.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8, 1501–1505 (2008).
[CrossRef]

Price, K.

R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” J. Global Optim. 11, 341–359 (1997).
[CrossRef]

Ren, S.

Yu. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: metallic or dielectric nanoparticles?,” Appl. Phys. Lett. 96, 073111 (2010).
[CrossRef]

Ruby, D. S.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8, 1501–1505 (2008).
[CrossRef]

Schade, H.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12, 113–142 (2004).
[CrossRef]

Schneider, M.

R. J. Luebbers, F. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32, 222–227 (1990).
[CrossRef]

Schubert, E. F.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93, 251108 (2008).
[CrossRef]

Schubert, M. F.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93, 251108 (2008).
[CrossRef]

Shah, A. V.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12, 113–142 (2004).
[CrossRef]

Shen, Q.

Y. X. Zhao, F. Chen, Q. Shen, and L. M. Zhang, “Optimal design of light trapping in thin-film solar cells enhanced with graded SiNx and SiOxNy structure,” Opt. Express 20, 11121–11136 (2012).
[CrossRef]

Y. X. Zhao, F. Chen, Q. Shen, and L. M. Zhang, “Optimizing low loss silver nanowires structure metamaterial at yellow light spectrum with differential evolution,” Phys. Lett. A 376, 252–256 (2012).
[CrossRef]

Y. X. Zhao, F. Chen, Q. Shen, Q. W. Liu, and L. M. Zhang, “Optimizing low loss negative index metamaterial for visible spectrum using differential evolution,” Opt. Express 19, 11605–11614 (2011).
[CrossRef]

Y. X. Zhao, F. Chen, H. Y. Chen, N. Li, Q. Shen, and L. M. Zhang, “The microstructure design optimization of negative index metamaterials using genetic algorithm,” Prog. Electromag. Res. Lett. 22, 95–108 (2011).

Siakavara, K.

K. Siakavara, “Novel fractal antenna arrays for satellite networks: circular ring Sierpinski carpet arrays optimized by genetic algorithms,” Prog. Electromagn. Res. 103, 115–138 (2010).
[CrossRef]

Sian, S. Y.

Yu. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: metallic or dielectric nanoparticles?,” Appl. Phys. Lett. 96, 073111 (2010).
[CrossRef]

Song, Y. I.

S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. Kim, K. S. Kim, B. Özyilmaz, J. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30 inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[CrossRef]

Song, Y. M.

Standler, R. B.

R. J. Luebbers, F. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32, 222–227 (1990).
[CrossRef]

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[CrossRef]

Storn, R.

R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” J. Global Optim. 11, 341–359 (1997).
[CrossRef]

Tung, V. C.

V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, and Y. Yang, “Low-temperature solution processing of graphene–carbon nanotube hybrid materials for high-performance transparent conductors,” Nano Lett. 9, 1949–1955 (2009).
[CrossRef]

Vallat-Sauvain, E.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12, 113–142 (2004).
[CrossRef]

Vanecek, M.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12, 113–142 (2004).
[CrossRef]

Wassei, J. K.

J. K. Wassei and R. B. Kaner, “Graphene, a promising transparent conductor,” Mater. Today 13, 52–59 (2010).
[CrossRef]

V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, and Y. Yang, “Low-temperature solution processing of graphene–carbon nanotube hybrid materials for high-performance transparent conductors,” Nano Lett. 9, 1949–1955 (2009).
[CrossRef]

Wei, X.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
[CrossRef]

Wronski, C. R.

D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell,” Appl. Phys. Lett. 28, 671–673 (1976).
[CrossRef]

Wu, L.

Wyrsch, N.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12, 113–142 (2004).
[CrossRef]

Xu, X.

S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. Kim, K. S. Kim, B. Özyilmaz, J. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30 inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[CrossRef]

Xue, L.

X. Li, J. Gao, L. Xue, and Y. Han, “Porous polymer films with gradient-refractive-index structure for broadband and omnidirectional antireflection coatings,” Adv. Funct. Mater. 20, 259–265 (2010).
[CrossRef]

Yang, Y.

V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, and Y. Yang, “Low-temperature solution processing of graphene–carbon nanotube hybrid materials for high-performance transparent conductors,” Nano Lett. 9, 1949–1955 (2009).
[CrossRef]

Yee, K. S.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[CrossRef]

Yeh, J. A.

Yu, J. S.

Zhang, L. M.

Y. X. Zhao, F. Chen, Q. Shen, and L. M. Zhang, “Optimizing low loss silver nanowires structure metamaterial at yellow light spectrum with differential evolution,” Phys. Lett. A 376, 252–256 (2012).
[CrossRef]

Y. X. Zhao, F. Chen, Q. Shen, and L. M. Zhang, “Optimal design of light trapping in thin-film solar cells enhanced with graded SiNx and SiOxNy structure,” Opt. Express 20, 11121–11136 (2012).
[CrossRef]

Y. X. Zhao, F. Chen, Q. Shen, Q. W. Liu, and L. M. Zhang, “Optimizing low loss negative index metamaterial for visible spectrum using differential evolution,” Opt. Express 19, 11605–11614 (2011).
[CrossRef]

Y. X. Zhao, F. Chen, H. Y. Chen, N. Li, Q. Shen, and L. M. Zhang, “The microstructure design optimization of negative index metamaterials using genetic algorithm,” Prog. Electromag. Res. Lett. 22, 95–108 (2011).

Zhao, Y. X.

Y. X. Zhao, F. Chen, Q. Shen, and L. M. Zhang, “Optimizing low loss silver nanowires structure metamaterial at yellow light spectrum with differential evolution,” Phys. Lett. A 376, 252–256 (2012).
[CrossRef]

Y. X. Zhao, F. Chen, Q. Shen, and L. M. Zhang, “Optimal design of light trapping in thin-film solar cells enhanced with graded SiNx and SiOxNy structure,” Opt. Express 20, 11121–11136 (2012).
[CrossRef]

Y. X. Zhao, F. Chen, Q. Shen, Q. W. Liu, and L. M. Zhang, “Optimizing low loss negative index metamaterial for visible spectrum using differential evolution,” Opt. Express 19, 11605–11614 (2011).
[CrossRef]

Y. X. Zhao, F. Chen, H. Y. Chen, N. Li, Q. Shen, and L. M. Zhang, “The microstructure design optimization of negative index metamaterials using genetic algorithm,” Prog. Electromag. Res. Lett. 22, 95–108 (2011).

Zheng, Y.

S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. Kim, K. S. Kim, B. Özyilmaz, J. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30 inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[CrossRef]

Adv. Funct. Mater.

X. Li, J. Gao, L. Xue, and Y. Han, “Porous polymer films with gradient-refractive-index structure for broadband and omnidirectional antireflection coatings,” Adv. Funct. Mater. 20, 259–265 (2010).
[CrossRef]

Appl. Phys. Lett.

Yu. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: metallic or dielectric nanoparticles?,” Appl. Phys. Lett. 96, 073111 (2010).
[CrossRef]

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93, 251108 (2008).
[CrossRef]

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).
[CrossRef]

D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell,” Appl. Phys. Lett. 28, 671–673 (1976).
[CrossRef]

IEEE Trans. Antennas Propag.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[CrossRef]

IEEE Trans. Electromagn. Compat.

R. J. Luebbers, F. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32, 222–227 (1990).
[CrossRef]

J. Global Optim.

R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” J. Global Optim. 11, 341–359 (1997).
[CrossRef]

Mater. Today

J. K. Wassei and R. B. Kaner, “Graphene, a promising transparent conductor,” Mater. Today 13, 52–59 (2010).
[CrossRef]

Nano Lett.

V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, and Y. Yang, “Low-temperature solution processing of graphene–carbon nanotube hybrid materials for high-performance transparent conductors,” Nano Lett. 9, 1949–1955 (2009).
[CrossRef]

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8, 1501–1505 (2008).
[CrossRef]

Nat. Mater.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[CrossRef]

Nat. Nanotechnol.

S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. Kim, K. S. Kim, B. Özyilmaz, J. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30 inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[CrossRef]

Nature

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Lett. A

Y. X. Zhao, F. Chen, Q. Shen, and L. M. Zhang, “Optimizing low loss silver nanowires structure metamaterial at yellow light spectrum with differential evolution,” Phys. Lett. A 376, 252–256 (2012).
[CrossRef]

Prog. Electromag. Res. Lett.

Y. X. Zhao, F. Chen, H. Y. Chen, N. Li, Q. Shen, and L. M. Zhang, “The microstructure design optimization of negative index metamaterials using genetic algorithm,” Prog. Electromag. Res. Lett. 22, 95–108 (2011).

Prog. Electromagn. Res.

K. Siakavara, “Novel fractal antenna arrays for satellite networks: circular ring Sierpinski carpet arrays optimized by genetic algorithms,” Prog. Electromagn. Res. 103, 115–138 (2010).
[CrossRef]

Prog. Photovoltaics

M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solution,” Prog. Photovoltaics 10, 235–241 (2002).
[CrossRef]

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12, 113–142 (2004).
[CrossRef]

Science

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
[CrossRef]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[CrossRef]

Other

http://www.sopra-sa.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Sketch of a thin-film a-Si:H solar cell. An ITO transparent electrode (left) and a graphene transparent electrode (right) are deposited on top of a hydrogenated amorphous silicon (a-Si:H) layer. hv: light energy.

Fig. 2.
Fig. 2.

Spectral absorption rate of the a-Si:H active region as functions of incident wavelength for different number N of graphene layers. The response of the reference cell with bare 20 nm ITO transparent electrode is shown by the black bold line.

Fig. 3.
Fig. 3.

Sketch of a graphene-based thin-film a-Si:H solar cell and geometric structure of SiO2/SiC antireflection coatings deposited on top of graphene transparent electrodes. hv: light energy.

Fig. 4.
Fig. 4.

Spectral absorption rate of the a-Si:H active region as functions of incident wavelength for optimal SiO2/SiC/Graphene structure and bare 20 nm ITO structure.

Fig. 5.
Fig. 5.

Spectral absorption rate of the a-Si:H active region as functions of incident wavelength for optimal SiO2/SiC/Graphene structure and optimal SiO2/SiC/ITO structure.

Fig. 6.
Fig. 6.

Electric field intensity distribution of a-Si:H thin-film solar cell for reference cell with bare ITO structure and cell with SiO2/SiC/Graphene structure at the case of normal incidence at the (a) red light wavelength of 700 nm, (b) orange light of 625 nm, (c) yellow light of 600 nm, (d) green light of 525 nm, (e) blue light of 500 nm, and (f) violet light of 400 nm, respectively.

Tables (3)

Tables Icon

Table 1. Parameters for the DE Optimization

Tables Icon

Table 2. Optimal Solutions of SiO2/SiC/Graphene Structure

Tables Icon

Table 3. Optimal Solutions of SiO2/SiC/ITO Structure

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Qabs(ω)=ωε02VIm[ε(ω)]·|E|2dV.
P=AM1.5GQabs(ω)dω.
G=PP(Ref)P(Ref).
Maximize:G=PP(Ref)P(Ref),
Subject to:0nm<dSiO2100nm,
0nm<dSiC100nm.

Metrics