Abstract

A twin-core fiber Michelson interferometer is evaluated as a high-temperature sensor. Although linear and reproducible operation up to 300°C is obtained, at higher temperatures (700°C) the refractive index shifts plastically and hysteresis is observed, rendering an untreated sensor head unusable. The shift is shown to be greatly reduced by an annealing process of the fiber for 10 h at 900°C, with which the linear response is preserved.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of UV-induced fiber Bragg grating,” J. Appl. Phys. 76, 73–80 (1994).
    [CrossRef]
  2. M. Fokine, “Thermal stability of chemical composition gratings in fluorine-doped silicate fiber,” Opt. Lett. 27, 1016–1018 (2002).
    [CrossRef]
  3. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170–1172 (2004).
    [CrossRef]
  4. B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors 12, 2467–2486 (2012).
    [CrossRef]
  5. W. Eickoff, “Temperature sensing by mode-mode interference in birefringent optical fibers,” Opt. Lett. 6, 204–206 (1981).
    [CrossRef]
  6. Z. Tian, S. S.-H. Yam, and H.-P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20, 1387–1389 (2008).
    [CrossRef]
  7. J.-J. Zhu, A. P. Zhang, T. H. Xia, S. He, and W. Xue, “Fiber-optic high temperature sensor based on thin core fiber modal interferometer,” IEEE Sens. J. 10, 1415–1418(2010).
    [CrossRef]
  8. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16, 11369–11375 (2008).
    [CrossRef]
  9. E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
    [CrossRef]
  10. G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000°C,” Opt. Express 17, 21551–21559(2009).
    [CrossRef]
  11. H. Y. Choi, K. S. Park, and B. H. Lee, “Photonic crystal fiber interferometer composed of a long period fiber grating and one point collapsing of air holes,” Opt. Lett. 33, 812–814(2008).
    [CrossRef]
  12. G. Meltz, J. R. Dunphy, W. W. Morey, and E. Snitzer, “Cross-talk fiber-optic temperature sensor,” Appl. Opt. 22, 464–477 (1983).
    [CrossRef]
  13. S. Feng, H. Li, O. Xu, S. Lu, and S. Jian, “Compact in-fiber Mach-Zehnder interferometer using a twin-core fiber,” Proc. SPIE 7630, 76301R (2009).
    [CrossRef]
  14. R. Romaniuk and J. Dorosz, “Temperature sensor based on double core optical fibre,” Proc. SPIE 4887, 55–66(2001).
    [CrossRef]
  15. B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors 12, 2467–2486 (2012).
    [CrossRef]
  16. L.-E. Nilsson, Å. Claesson, W. Margulis, and P.-Y. Fonjallaz, “Specialty single-mode fibers: manufacturing multicore fibers,” in Specialty optical fibers handbook, A Méndez and T. F. Morse, eds. (Elsevier, 2007), pp. 182–184.
  17. H. S. Huang and H.-C Chang, “Analysis of optical fiber directional coupling based on the HE11 modes—part I: the identical-core case,” J. Lightwave Technol. 8, 823–831(1990).
    [CrossRef]
  18. J. H. Wray and J. Y. Neu, “Refractive index of several glasses as a function of wavelength and temperature,” J. Opt. Soc. Am. 59, 774–776 (1969).
    [CrossRef]
  19. Y. Mohanna, J. M. Saugrain, J. C. Rousseau, and P. Ledox, “Relaxation of internal stresses in optical fibers,” J. Lightwave Technol. 8, 1799–1802 (1990).
    [CrossRef]

2012 (2)

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors 12, 2467–2486 (2012).
[CrossRef]

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors 12, 2467–2486 (2012).
[CrossRef]

2010 (1)

J.-J. Zhu, A. P. Zhang, T. H. Xia, S. He, and W. Xue, “Fiber-optic high temperature sensor based on thin core fiber modal interferometer,” IEEE Sens. J. 10, 1415–1418(2010).
[CrossRef]

2009 (2)

S. Feng, H. Li, O. Xu, S. Lu, and S. Jian, “Compact in-fiber Mach-Zehnder interferometer using a twin-core fiber,” Proc. SPIE 7630, 76301R (2009).
[CrossRef]

G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000°C,” Opt. Express 17, 21551–21559(2009).
[CrossRef]

2008 (3)

2006 (1)

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

2004 (1)

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170–1172 (2004).
[CrossRef]

2002 (1)

2001 (1)

R. Romaniuk and J. Dorosz, “Temperature sensor based on double core optical fibre,” Proc. SPIE 4887, 55–66(2001).
[CrossRef]

1994 (1)

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of UV-induced fiber Bragg grating,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

1990 (2)

H. S. Huang and H.-C Chang, “Analysis of optical fiber directional coupling based on the HE11 modes—part I: the identical-core case,” J. Lightwave Technol. 8, 823–831(1990).
[CrossRef]

Y. Mohanna, J. M. Saugrain, J. C. Rousseau, and P. Ledox, “Relaxation of internal stresses in optical fibers,” J. Lightwave Technol. 8, 1799–1802 (1990).
[CrossRef]

1983 (1)

1981 (1)

1969 (1)

Bennion, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170–1172 (2004).
[CrossRef]

Chang, H.-C

H. S. Huang and H.-C Chang, “Analysis of optical fiber directional coupling based on the HE11 modes—part I: the identical-core case,” J. Lightwave Technol. 8, 823–831(1990).
[CrossRef]

Choi, H. Y.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors 12, 2467–2486 (2012).
[CrossRef]

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors 12, 2467–2486 (2012).
[CrossRef]

H. Y. Choi, K. S. Park, and B. H. Lee, “Photonic crystal fiber interferometer composed of a long period fiber grating and one point collapsing of air holes,” Opt. Lett. 33, 812–814(2008).
[CrossRef]

Chung, Y.

Claesson, Å.

L.-E. Nilsson, Å. Claesson, W. Margulis, and P.-Y. Fonjallaz, “Specialty single-mode fibers: manufacturing multicore fibers,” in Specialty optical fibers handbook, A Méndez and T. F. Morse, eds. (Elsevier, 2007), pp. 182–184.

Coviello, G.

Dorosz, J.

R. Romaniuk and J. Dorosz, “Temperature sensor based on double core optical fibre,” Proc. SPIE 4887, 55–66(2001).
[CrossRef]

Dubov, M.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170–1172 (2004).
[CrossRef]

Dunphy, J. R.

Eickoff, W.

Eom, J. B.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors 12, 2467–2486 (2012).
[CrossRef]

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors 12, 2467–2486 (2012).
[CrossRef]

Erdogan, T.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of UV-induced fiber Bragg grating,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Feng, S.

S. Feng, H. Li, O. Xu, S. Lu, and S. Jian, “Compact in-fiber Mach-Zehnder interferometer using a twin-core fiber,” Proc. SPIE 7630, 76301R (2009).
[CrossRef]

Finazzi, V.

Fokine, M.

Fonjallaz, P.-Y.

L.-E. Nilsson, Å. Claesson, W. Margulis, and P.-Y. Fonjallaz, “Specialty single-mode fibers: manufacturing multicore fibers,” in Specialty optical fibers handbook, A Méndez and T. F. Morse, eds. (Elsevier, 2007), pp. 182–184.

He, S.

J.-J. Zhu, A. P. Zhang, T. H. Xia, S. He, and W. Xue, “Fiber-optic high temperature sensor based on thin core fiber modal interferometer,” IEEE Sens. J. 10, 1415–1418(2010).
[CrossRef]

Huang, H. S.

H. S. Huang and H.-C Chang, “Analysis of optical fiber directional coupling based on the HE11 modes—part I: the identical-core case,” J. Lightwave Technol. 8, 823–831(1990).
[CrossRef]

Hwang, D.

Jian, S.

S. Feng, H. Li, O. Xu, S. Lu, and S. Jian, “Compact in-fiber Mach-Zehnder interferometer using a twin-core fiber,” Proc. SPIE 7630, 76301R (2009).
[CrossRef]

Khrushchev, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170–1172 (2004).
[CrossRef]

Kim, M. J.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors 12, 2467–2486 (2012).
[CrossRef]

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors 12, 2467–2486 (2012).
[CrossRef]

Kim, Y. H.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors 12, 2467–2486 (2012).
[CrossRef]

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors 12, 2467–2486 (2012).
[CrossRef]

Ledox, P.

Y. Mohanna, J. M. Saugrain, J. C. Rousseau, and P. Ledox, “Relaxation of internal stresses in optical fibers,” J. Lightwave Technol. 8, 1799–1802 (1990).
[CrossRef]

Lee, B. H.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors 12, 2467–2486 (2012).
[CrossRef]

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors 12, 2467–2486 (2012).
[CrossRef]

H. Y. Choi, K. S. Park, and B. H. Lee, “Photonic crystal fiber interferometer composed of a long period fiber grating and one point collapsing of air holes,” Opt. Lett. 33, 812–814(2008).
[CrossRef]

Lemaire, P. J.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of UV-induced fiber Bragg grating,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Li, E.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

Li, H.

S. Feng, H. Li, O. Xu, S. Lu, and S. Jian, “Compact in-fiber Mach-Zehnder interferometer using a twin-core fiber,” Proc. SPIE 7630, 76301R (2009).
[CrossRef]

Loock, H.-P.

Z. Tian, S. S.-H. Yam, and H.-P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20, 1387–1389 (2008).
[CrossRef]

Lu, S.

S. Feng, H. Li, O. Xu, S. Lu, and S. Jian, “Compact in-fiber Mach-Zehnder interferometer using a twin-core fiber,” Proc. SPIE 7630, 76301R (2009).
[CrossRef]

Margulis, W.

L.-E. Nilsson, Å. Claesson, W. Margulis, and P.-Y. Fonjallaz, “Specialty single-mode fibers: manufacturing multicore fibers,” in Specialty optical fibers handbook, A Méndez and T. F. Morse, eds. (Elsevier, 2007), pp. 182–184.

Martinez, A.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170–1172 (2004).
[CrossRef]

Meltz, G.

Mizrahi, V.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of UV-induced fiber Bragg grating,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Mohanna, Y.

Y. Mohanna, J. M. Saugrain, J. C. Rousseau, and P. Ledox, “Relaxation of internal stresses in optical fibers,” J. Lightwave Technol. 8, 1799–1802 (1990).
[CrossRef]

Monroe, D.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of UV-induced fiber Bragg grating,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Moon, D. S.

Moon, S.

Morey, W. W.

Neu, J. Y.

Nguyen, L. V.

Nilsson, L.-E.

L.-E. Nilsson, Å. Claesson, W. Margulis, and P.-Y. Fonjallaz, “Specialty single-mode fibers: manufacturing multicore fibers,” in Specialty optical fibers handbook, A Méndez and T. F. Morse, eds. (Elsevier, 2007), pp. 182–184.

Park, K. S.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors 12, 2467–2486 (2012).
[CrossRef]

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors 12, 2467–2486 (2012).
[CrossRef]

H. Y. Choi, K. S. Park, and B. H. Lee, “Photonic crystal fiber interferometer composed of a long period fiber grating and one point collapsing of air holes,” Opt. Lett. 33, 812–814(2008).
[CrossRef]

Pruneri, V.

Rho, B. S.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors 12, 2467–2486 (2012).
[CrossRef]

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors 12, 2467–2486 (2012).
[CrossRef]

Romaniuk, R.

R. Romaniuk and J. Dorosz, “Temperature sensor based on double core optical fibre,” Proc. SPIE 4887, 55–66(2001).
[CrossRef]

Rousseau, J. C.

Y. Mohanna, J. M. Saugrain, J. C. Rousseau, and P. Ledox, “Relaxation of internal stresses in optical fibers,” J. Lightwave Technol. 8, 1799–1802 (1990).
[CrossRef]

Saugrain, J. M.

Y. Mohanna, J. M. Saugrain, J. C. Rousseau, and P. Ledox, “Relaxation of internal stresses in optical fibers,” J. Lightwave Technol. 8, 1799–1802 (1990).
[CrossRef]

Snitzer, E.

Tian, Z.

Z. Tian, S. S.-H. Yam, and H.-P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20, 1387–1389 (2008).
[CrossRef]

Villatoro, J.

Wang, X.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

Wray, J. H.

Xia, T. H.

J.-J. Zhu, A. P. Zhang, T. H. Xia, S. He, and W. Xue, “Fiber-optic high temperature sensor based on thin core fiber modal interferometer,” IEEE Sens. J. 10, 1415–1418(2010).
[CrossRef]

Xu, O.

S. Feng, H. Li, O. Xu, S. Lu, and S. Jian, “Compact in-fiber Mach-Zehnder interferometer using a twin-core fiber,” Proc. SPIE 7630, 76301R (2009).
[CrossRef]

Xue, W.

J.-J. Zhu, A. P. Zhang, T. H. Xia, S. He, and W. Xue, “Fiber-optic high temperature sensor based on thin core fiber modal interferometer,” IEEE Sens. J. 10, 1415–1418(2010).
[CrossRef]

Yam, S. S.-H.

Z. Tian, S. S.-H. Yam, and H.-P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20, 1387–1389 (2008).
[CrossRef]

Zhang, A. P.

J.-J. Zhu, A. P. Zhang, T. H. Xia, S. He, and W. Xue, “Fiber-optic high temperature sensor based on thin core fiber modal interferometer,” IEEE Sens. J. 10, 1415–1418(2010).
[CrossRef]

Zhang, C.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

Zhu, J.-J.

J.-J. Zhu, A. P. Zhang, T. H. Xia, S. He, and W. Xue, “Fiber-optic high temperature sensor based on thin core fiber modal interferometer,” IEEE Sens. J. 10, 1415–1418(2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

Electron. Lett. (1)

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170–1172 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Z. Tian, S. S.-H. Yam, and H.-P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20, 1387–1389 (2008).
[CrossRef]

IEEE Sens. J. (1)

J.-J. Zhu, A. P. Zhang, T. H. Xia, S. He, and W. Xue, “Fiber-optic high temperature sensor based on thin core fiber modal interferometer,” IEEE Sens. J. 10, 1415–1418(2010).
[CrossRef]

J. Appl. Phys. (1)

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of UV-induced fiber Bragg grating,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

J. Lightwave Technol. (2)

H. S. Huang and H.-C Chang, “Analysis of optical fiber directional coupling based on the HE11 modes—part I: the identical-core case,” J. Lightwave Technol. 8, 823–831(1990).
[CrossRef]

Y. Mohanna, J. M. Saugrain, J. C. Rousseau, and P. Ledox, “Relaxation of internal stresses in optical fibers,” J. Lightwave Technol. 8, 1799–1802 (1990).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Express (2)

Opt. Lett. (3)

Proc. SPIE (2)

S. Feng, H. Li, O. Xu, S. Lu, and S. Jian, “Compact in-fiber Mach-Zehnder interferometer using a twin-core fiber,” Proc. SPIE 7630, 76301R (2009).
[CrossRef]

R. Romaniuk and J. Dorosz, “Temperature sensor based on double core optical fibre,” Proc. SPIE 4887, 55–66(2001).
[CrossRef]

Sensors (2)

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors 12, 2467–2486 (2012).
[CrossRef]

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors 12, 2467–2486 (2012).
[CrossRef]

Other (1)

L.-E. Nilsson, Å. Claesson, W. Margulis, and P.-Y. Fonjallaz, “Specialty single-mode fibers: manufacturing multicore fibers,” in Specialty optical fibers handbook, A Méndez and T. F. Morse, eds. (Elsevier, 2007), pp. 182–184.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Cross section of twin-core fiber. Indentation in the cladding is to simplify alignment of the two cores when needed.

Fig. 2.
Fig. 2.

(a) Symmetric mode of the TCF. (b) Electric field distribution along the two cores. (c) Antisymmetric mode of the TCF.

Fig. 3.
Fig. 3.

Illustration of the optical coupling between cores in TCF and simulation of the power coupling back and forth between the cores.

Fig. 4.
Fig. 4.

(a) Interference spectra of 4 cm long TCF at different temperatures when heated from 24°C to 300°C. (b) Time evolution of the wavelength shift and temperature during heating. (inset) Linear fit of wavelength shift.

Fig. 5.
Fig. 5.

(a) Interference spectra of 4 cm long TCF at different temperatures when heated from 23°C to 684°C (note that the spectrum at 684°C has blue shifted compared to the spectrum at 670°C). (b) Time evolution of the wavelength shift and temperature during heating. (inset) Linear fit of wavelength shift.

Fig. 6.
Fig. 6.

Time evolution of wavelength shift and temperature of (a) when heating to 700°C after 4.5 h annealing at 900°C and (b) during second round of annealing at 900°C (measurement terminated before returning to room temperature).

Fig. 7.
Fig. 7.

(a) Interference spectra of annealed 4 cm long TCF at different temperatures when heated from 25°C to 700°C. (b) Linear fit of wavelength shift. (c) Time evolution of the wavelength shift and temperature during heating.

Fig. 8.
Fig. 8.

Time evolution of signal intensity for thermally annealed TCF at a single wavelength (1586.5 nm) fitted to temperature. The right axis shows the intensity in a nonlinear sinusoidal scale. (inset) sinusoidal fit of signal at single wavelength.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

PA(L)=cos2(CL),
PB(L)=sin2(CL),
C=πλ(nsna)=πλΔn
LC=π2C=λ2(nsna).
Δλmin=λ0ξ(T0)ΔT.

Metrics