Abstract

Several atmospheric lidar techniques rely on the exact knowledge of the spectral line shape of molecular scattered light in air, which, however, has not been accurately measured in real atmosphere up to now. In this paper we report on the investigation of spontaneous Rayleigh–Brillouin scattering within the atmosphere, utilizing horizontal lidar measurements (λ=355nm, θ=180°) performed from the mountain observatory Schneefernerhaus (2650 m), located below Germany’s highest mountain, the Zugspitze. These lidar measurements give proof of the effect of Brillouin scattering within the atmosphere for the first time to our knowledge. The measurements confirm that the Tenti S6 model can be used to adequately describe spontaneous Rayleigh–Brillouin spectra of light scattered in air under real atmospheric conditions. The presented results are of relevance for spectrally resolving lidars like those deployed on the Atmospheric Dynamics Mission Aeolus (ADM–Aeolus) andthe Earth Clouds, Aerosols, and Radiation Explorer Mission (EarthCARE).

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. McGill, W. Skinner, and T. Irgang, “Validation of wind profiles measured with incoherent Doppler lidar,” Appl. Opt. 36, 1928–1932 (1997).
    [CrossRef]
  2. C. Flesia and C. L. Korb, “Theory of the double-edge molecular technique for Doppler lidar wind measurement,” Appl. Opt. 38, 432–440 (1999).
    [CrossRef]
  3. B. M. Gentry, H. Chen, and S. X. Li, “Wind measurements with 355 nm molecular Doppler lidar,” Opt. Lett. 25, 1231–1233 (2000).
    [CrossRef]
  4. A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus A 60, 206–215 (2008).
    [CrossRef]
  5. O. Reitebuch, C. Lemmerz, E. Nagel, and U. Paffrath, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM–Aeolus. Part I: instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26, 2501–2515 (2009).
    [CrossRef]
  6. O. Reitebuch, “Wind lidar for atmospheric research,” in Atmospheric Physics: Background—Methods—Trends, U. Schumann, ed. (Springer, 2012), pp. 487–507.
  7. Z.-S. Liu, D.-C. Bi, X.-Q. Song, J.-B. Xia, R.-Z. Li, Z.-J. Wang, and C.-Y. She, “Iodine-filter-based high spectral resolution lidar for atmospheric temperature measurements,” Opt. Lett. 34, 2712–2714 (2009).
    [CrossRef]
  8. H. Shimizu, K. Noguchi, and C.-Y. She, “Atmospheric temperature measurement by a high spectral resolution lidar,” Appl. Opt. 25, 1460–1466 (1986).
    [CrossRef]
  9. E. Eloranta, “High spectral resolution lidar,” in Lidar, C. Weitkamp, ed. (Springer, 2005), pp. 143–163.
  10. G. Fiocco and B. J. DeWolf, “Frequency spectrum of laser echoes from atmospheric constituents and determination of the aerosol content of air,” J. Atmos. Sci. 25, 488–496 (1968).
    [CrossRef]
  11. B. Y. Liu, M. Esselborn, M. Wirth, A. Fix, D. B. Bi, and G. Ehret, “Influence of molecular scattering models on aerosol optical properties measured by high spectral resolution lidar,” Appl. Opt. 48, 5143–5153 (2009).
    [CrossRef]
  12. M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47, 346–358 (2008).
    [CrossRef]
  13. B. Witschas, “Light scattering on molecules in the atmosphere,” in Atmospheric Physics: Background—Methods—Trends, U. Schumann, ed. (Springer, 2012), pp. 69–83.
  14. L. Fabelinski, The Molecular Scattering of Light (Plenum, 1968).
  15. A. T. Young, “Rayleigh scattering,” Appl. Opt. 20, 533–535 (1981).
    [CrossRef]
  16. B. Witschas, M. O. Vieitez, E.-J. van Duijn, O. Reitebuch, W. van de Water, and W. Ubachs, “Spontaneous Rayleigh–Brillouin scattering of ultraviolet light in nitrogen, dry air, and moist air,” Appl. Opt. 49, 4217–4227 (2010).
    [CrossRef]
  17. V. Ghaem-Maghami and A. D. May, “Rayleigh–Brillouin spectrum of compressed He, Ne, and Ar. I. Scaling,” Phys. Rev. A 22, 692–697 (1980).
    [CrossRef]
  18. E. H. Hara, A. D. May, and H. F. P. Knapp, “Rayleigh–Brillouin scattering in compressed H2, D2, and HD,” Can. J. Phys. 49, 420–431 (1971).
    [CrossRef]
  19. J. A. Lock, R. G. Seasholtz, and W. T. John, “Rayleigh–Brillouin scattering to determine one-dimensional temperature and number density profiles of a gas flow field,” Appl. Opt. 31, 2839–2848 (1992).
    [CrossRef]
  20. T. J. Greytak and G. B. Benedek, “Spectrum of light from thermal fluctuations in gases,” Phys. Rev. Lett. 17, 179–182 (1966).
    [CrossRef]
  21. G. Tenti, C. Boley, and R. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).
    [CrossRef]
  22. C. Boley, R. Desai, and G. Tenti, “Kinetic models and Brillouin scattering in a molecular gas,” Can. J. Phys. 50, 2158–2173 (1972).
    [CrossRef]
  23. U.S. Standard Atmosphere (1976), “U.S. Standard Atmosphere, 1962” (U.S. Government Printing Office, 1962).
  24. X. Pan, “Coherent Rayleigh–Brillouin Scattering,” Ph.D. thesis (Princeton University, 2003).
  25. W. Ubachs, E.-J. van Duijn, M. O. Vieitez, W. van de Water, N. Dam, J. J. ter Meulen, A. S. Meijer, J. de Kloe, A. Stoffelen, and E. A. A. Aben, “A spontaneous Rayleigh–Brillouin scattering experiment for the characterization of atmospheric lidar backscatter,” European Space Research contract final report, no. 1-5467/07/NL/HE (European Space Research and Technology Centre, 2009).
  26. M. O. Vieitez, E.-J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh–Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 043836 (2010).
    [CrossRef]
  27. P. H. Flamant, A. Dabas, M. L. Denneulin, A. Dolfi-Bouteyre, A. Garnier, and D. Rees, “ILIAD: Impact of Line Shape on ADM–Aeolus Doppler Estimates,” European Space Research contract final report, no. 1833404/NL/MM (European Space Research and Technology Centre, 2005).
  28. European Space Agency, “ADM–Aeolus,” science report, ESA SP-1311 (European Space Research and Technology Centre, 2008).
  29. O. Reitebuch, “The spaceborne wind lidar mission ADM–Aeolus,” in Atmospheric Physics: Background—Methods—Trends, U. Schumann, ed. (Springer, 2012), pp. 815–827.
  30. U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM–Aeolus. Part II: simulations and Rayleigh receiver radiometric performance,” J. Atmos. Ocean. Technol. 26, 2516–2530 (2009).
    [CrossRef]
  31. T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87, 437–444 (2007).
    [CrossRef]
  32. B. Witschas, “Characterization of beam profile and frequency stability of an injection-seeded Nd:YAG laser for a Doppler wind lidar system,” master thesis (University of Applied Sciences Munich, 2007).
  33. S. Henderson, E. Yuen, and E. Fry, “Fast resonance-detection technique for single-frequency operation of injection-seeded Nd:YAG lasers,” Opt. Lett. 11, 715–717 (1986).
    [CrossRef]
  34. R. Schmitt and L. Rahn, “Diode-laser-pumped Nd:YAG laser injection seeding system,” Appl. Opt. 25, 629–633(1986).
    [CrossRef]
  35. E. Fry, Q. Hu, and X. Li, “Single frequency operation of an injection-seeded Nd:YAG laser in high noise and vibration environments,” Appl. Opt. 30, 1015–1017 (1991).
    [CrossRef]
  36. G. Hernandez, Fabry–Perot Interferometers (Cambridge University, 1988).
  37. J. M. Vaughan, The Fabry–Perot Interferometer (Adam Hilger, 1989).
  38. P. Wilksch, “Instrument function of the Fabry–Perot spectrometer,” Appl. Opt. 24, 1502–1511 (1985).
    [CrossRef]
  39. G. Hernandez, “Analytical description of a Fabry–Perot photoelectric spectrometer,” Appl. Opt. 5, 1745–1748(1966).
    [CrossRef]
  40. F. Bayer-Helms, “Analyse von Linienprofilen. I. Grundlagen und Messeinrichtungen,” Z. Angew. Phys. 15, 330–338(1963).
  41. E. Palik, H. Boukari, and R. Gammon, “Experimental study of the effect of surface defects on the finesse and contrast of a Fabry–Perot interferometer,” Appl. Opt. 35, 38–50 (1996).
    [CrossRef]
  42. M. McGill, W. Skinner, and T. Irgang, “Analysis techniques for the recovery of winds and backscatter coefficients from a multiple-channel incoherent Doppler lidar,” Appl. Opt. 36, 1253–1268 (1997).
    [CrossRef]
  43. K. Krebs and A. Sauer, “Über die Intensitätsverteilung von Spektrallinien im Pérot–Fabry-Interferometer,” Ann. Phys. 448, 359–368 (1953).
    [CrossRef]
  44. U. Paffrath, “Performance assessment of the Aeolus Doppler wind lidar prototype,” Ph.D. thesis (Technical University of Munich, 2006).
  45. B. Witschas, “Analytical model for Rayleigh–Brillouin line shapes in air,” Appl. Opt. 50, 267–270 (2011).
    [CrossRef]
  46. L. Ries, Federal Environmental Agency (Umweltbundesamt) (personal communication, 2010).
  47. R. Figgins, “Inelastic light scattering in liquids: Brillouin scattering,” Contemp. Phys. 12, 283–297 (1971).
    [CrossRef]

2011 (1)

2010 (2)

B. Witschas, M. O. Vieitez, E.-J. van Duijn, O. Reitebuch, W. van de Water, and W. Ubachs, “Spontaneous Rayleigh–Brillouin scattering of ultraviolet light in nitrogen, dry air, and moist air,” Appl. Opt. 49, 4217–4227 (2010).
[CrossRef]

M. O. Vieitez, E.-J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh–Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 043836 (2010).
[CrossRef]

2009 (4)

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM–Aeolus. Part II: simulations and Rayleigh receiver radiometric performance,” J. Atmos. Ocean. Technol. 26, 2516–2530 (2009).
[CrossRef]

O. Reitebuch, C. Lemmerz, E. Nagel, and U. Paffrath, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM–Aeolus. Part I: instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26, 2501–2515 (2009).
[CrossRef]

Z.-S. Liu, D.-C. Bi, X.-Q. Song, J.-B. Xia, R.-Z. Li, Z.-J. Wang, and C.-Y. She, “Iodine-filter-based high spectral resolution lidar for atmospheric temperature measurements,” Opt. Lett. 34, 2712–2714 (2009).
[CrossRef]

B. Y. Liu, M. Esselborn, M. Wirth, A. Fix, D. B. Bi, and G. Ehret, “Influence of molecular scattering models on aerosol optical properties measured by high spectral resolution lidar,” Appl. Opt. 48, 5143–5153 (2009).
[CrossRef]

2008 (2)

M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47, 346–358 (2008).
[CrossRef]

A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus A 60, 206–215 (2008).
[CrossRef]

2007 (1)

T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87, 437–444 (2007).
[CrossRef]

2000 (1)

1999 (1)

1997 (2)

1996 (1)

1992 (1)

1991 (1)

1986 (3)

1985 (1)

1981 (1)

1980 (1)

V. Ghaem-Maghami and A. D. May, “Rayleigh–Brillouin spectrum of compressed He, Ne, and Ar. I. Scaling,” Phys. Rev. A 22, 692–697 (1980).
[CrossRef]

1974 (1)

G. Tenti, C. Boley, and R. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).
[CrossRef]

1972 (1)

C. Boley, R. Desai, and G. Tenti, “Kinetic models and Brillouin scattering in a molecular gas,” Can. J. Phys. 50, 2158–2173 (1972).
[CrossRef]

1971 (2)

E. H. Hara, A. D. May, and H. F. P. Knapp, “Rayleigh–Brillouin scattering in compressed H2, D2, and HD,” Can. J. Phys. 49, 420–431 (1971).
[CrossRef]

R. Figgins, “Inelastic light scattering in liquids: Brillouin scattering,” Contemp. Phys. 12, 283–297 (1971).
[CrossRef]

1968 (1)

G. Fiocco and B. J. DeWolf, “Frequency spectrum of laser echoes from atmospheric constituents and determination of the aerosol content of air,” J. Atmos. Sci. 25, 488–496 (1968).
[CrossRef]

1966 (2)

T. J. Greytak and G. B. Benedek, “Spectrum of light from thermal fluctuations in gases,” Phys. Rev. Lett. 17, 179–182 (1966).
[CrossRef]

G. Hernandez, “Analytical description of a Fabry–Perot photoelectric spectrometer,” Appl. Opt. 5, 1745–1748(1966).
[CrossRef]

1963 (1)

F. Bayer-Helms, “Analyse von Linienprofilen. I. Grundlagen und Messeinrichtungen,” Z. Angew. Phys. 15, 330–338(1963).

1953 (1)

K. Krebs and A. Sauer, “Über die Intensitätsverteilung von Spektrallinien im Pérot–Fabry-Interferometer,” Ann. Phys. 448, 359–368 (1953).
[CrossRef]

Aben, E. A. A.

W. Ubachs, E.-J. van Duijn, M. O. Vieitez, W. van de Water, N. Dam, J. J. ter Meulen, A. S. Meijer, J. de Kloe, A. Stoffelen, and E. A. A. Aben, “A spontaneous Rayleigh–Brillouin scattering experiment for the characterization of atmospheric lidar backscatter,” European Space Research contract final report, no. 1-5467/07/NL/HE (European Space Research and Technology Centre, 2009).

Bayer-Helms, F.

F. Bayer-Helms, “Analyse von Linienprofilen. I. Grundlagen und Messeinrichtungen,” Z. Angew. Phys. 15, 330–338(1963).

Benedek, G. B.

T. J. Greytak and G. B. Benedek, “Spectrum of light from thermal fluctuations in gases,” Phys. Rev. Lett. 17, 179–182 (1966).
[CrossRef]

Bi, D. B.

Bi, D.-C.

Boley, C.

G. Tenti, C. Boley, and R. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).
[CrossRef]

C. Boley, R. Desai, and G. Tenti, “Kinetic models and Brillouin scattering in a molecular gas,” Can. J. Phys. 50, 2158–2173 (1972).
[CrossRef]

Boukari, H.

Chen, H.

Dabas, A.

A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus A 60, 206–215 (2008).
[CrossRef]

P. H. Flamant, A. Dabas, M. L. Denneulin, A. Dolfi-Bouteyre, A. Garnier, and D. Rees, “ILIAD: Impact of Line Shape on ADM–Aeolus Doppler Estimates,” European Space Research contract final report, no. 1833404/NL/MM (European Space Research and Technology Centre, 2005).

Dam, N.

M. O. Vieitez, E.-J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh–Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 043836 (2010).
[CrossRef]

W. Ubachs, E.-J. van Duijn, M. O. Vieitez, W. van de Water, N. Dam, J. J. ter Meulen, A. S. Meijer, J. de Kloe, A. Stoffelen, and E. A. A. Aben, “A spontaneous Rayleigh–Brillouin scattering experiment for the characterization of atmospheric lidar backscatter,” European Space Research contract final report, no. 1-5467/07/NL/HE (European Space Research and Technology Centre, 2009).

de Kloe, J.

W. Ubachs, E.-J. van Duijn, M. O. Vieitez, W. van de Water, N. Dam, J. J. ter Meulen, A. S. Meijer, J. de Kloe, A. Stoffelen, and E. A. A. Aben, “A spontaneous Rayleigh–Brillouin scattering experiment for the characterization of atmospheric lidar backscatter,” European Space Research contract final report, no. 1-5467/07/NL/HE (European Space Research and Technology Centre, 2009).

de Wijn, A.

M. O. Vieitez, E.-J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh–Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 043836 (2010).
[CrossRef]

Denneulin, M.

A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus A 60, 206–215 (2008).
[CrossRef]

Denneulin, M. L.

P. H. Flamant, A. Dabas, M. L. Denneulin, A. Dolfi-Bouteyre, A. Garnier, and D. Rees, “ILIAD: Impact of Line Shape on ADM–Aeolus Doppler Estimates,” European Space Research contract final report, no. 1833404/NL/MM (European Space Research and Technology Centre, 2005).

Desai, R.

G. Tenti, C. Boley, and R. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).
[CrossRef]

C. Boley, R. Desai, and G. Tenti, “Kinetic models and Brillouin scattering in a molecular gas,” Can. J. Phys. 50, 2158–2173 (1972).
[CrossRef]

DeWolf, B. J.

G. Fiocco and B. J. DeWolf, “Frequency spectrum of laser echoes from atmospheric constituents and determination of the aerosol content of air,” J. Atmos. Sci. 25, 488–496 (1968).
[CrossRef]

Dolfi-Bouteyre, A.

A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus A 60, 206–215 (2008).
[CrossRef]

P. H. Flamant, A. Dabas, M. L. Denneulin, A. Dolfi-Bouteyre, A. Garnier, and D. Rees, “ILIAD: Impact of Line Shape on ADM–Aeolus Doppler Estimates,” European Space Research contract final report, no. 1833404/NL/MM (European Space Research and Technology Centre, 2005).

Ehret, G.

Eloranta, E.

E. Eloranta, “High spectral resolution lidar,” in Lidar, C. Weitkamp, ed. (Springer, 2005), pp. 143–163.

Esselborn, M.

Fabelinski, L.

L. Fabelinski, The Molecular Scattering of Light (Plenum, 1968).

Figgins, R.

R. Figgins, “Inelastic light scattering in liquids: Brillouin scattering,” Contemp. Phys. 12, 283–297 (1971).
[CrossRef]

Fiocco, G.

G. Fiocco and B. J. DeWolf, “Frequency spectrum of laser echoes from atmospheric constituents and determination of the aerosol content of air,” J. Atmos. Sci. 25, 488–496 (1968).
[CrossRef]

Fix, A.

Flamant, P.

A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus A 60, 206–215 (2008).
[CrossRef]

Flamant, P. H.

P. H. Flamant, A. Dabas, M. L. Denneulin, A. Dolfi-Bouteyre, A. Garnier, and D. Rees, “ILIAD: Impact of Line Shape on ADM–Aeolus Doppler Estimates,” European Space Research contract final report, no. 1833404/NL/MM (European Space Research and Technology Centre, 2005).

Flesia, C.

Freudenthaler, V.

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM–Aeolus. Part II: simulations and Rayleigh receiver radiometric performance,” J. Atmos. Ocean. Technol. 26, 2516–2530 (2009).
[CrossRef]

Fry, E.

Gammon, R.

Garnier, A.

A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus A 60, 206–215 (2008).
[CrossRef]

P. H. Flamant, A. Dabas, M. L. Denneulin, A. Dolfi-Bouteyre, A. Garnier, and D. Rees, “ILIAD: Impact of Line Shape on ADM–Aeolus Doppler Estimates,” European Space Research contract final report, no. 1833404/NL/MM (European Space Research and Technology Centre, 2005).

Gentry, B. M.

Ghaem-Maghami, V.

V. Ghaem-Maghami and A. D. May, “Rayleigh–Brillouin spectrum of compressed He, Ne, and Ar. I. Scaling,” Phys. Rev. A 22, 692–697 (1980).
[CrossRef]

Greytak, T. J.

T. J. Greytak and G. B. Benedek, “Spectrum of light from thermal fluctuations in gases,” Phys. Rev. Lett. 17, 179–182 (1966).
[CrossRef]

Hara, E. H.

E. H. Hara, A. D. May, and H. F. P. Knapp, “Rayleigh–Brillouin scattering in compressed H2, D2, and HD,” Can. J. Phys. 49, 420–431 (1971).
[CrossRef]

Henderson, S.

Hernandez, G.

Hu, Q.

Irgang, T.

John, W. T.

Knapp, H. F. P.

E. H. Hara, A. D. May, and H. F. P. Knapp, “Rayleigh–Brillouin scattering in compressed H2, D2, and HD,” Can. J. Phys. 49, 420–431 (1971).
[CrossRef]

Korb, C. L.

Krebs, K.

K. Krebs and A. Sauer, “Über die Intensitätsverteilung von Spektrallinien im Pérot–Fabry-Interferometer,” Ann. Phys. 448, 359–368 (1953).
[CrossRef]

Lemmerz, C.

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM–Aeolus. Part II: simulations and Rayleigh receiver radiometric performance,” J. Atmos. Ocean. Technol. 26, 2516–2530 (2009).
[CrossRef]

O. Reitebuch, C. Lemmerz, E. Nagel, and U. Paffrath, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM–Aeolus. Part I: instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26, 2501–2515 (2009).
[CrossRef]

T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87, 437–444 (2007).
[CrossRef]

Li, R.-Z.

Li, S. X.

Li, X.

Liu, B. Y.

Liu, Z.-S.

Lock, J. A.

Loth, C.

A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus A 60, 206–215 (2008).
[CrossRef]

May, A. D.

V. Ghaem-Maghami and A. D. May, “Rayleigh–Brillouin spectrum of compressed He, Ne, and Ar. I. Scaling,” Phys. Rev. A 22, 692–697 (1980).
[CrossRef]

E. H. Hara, A. D. May, and H. F. P. Knapp, “Rayleigh–Brillouin scattering in compressed H2, D2, and HD,” Can. J. Phys. 49, 420–431 (1971).
[CrossRef]

McGill, M.

Meijer, A.

M. O. Vieitez, E.-J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh–Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 043836 (2010).
[CrossRef]

Meijer, A. S.

W. Ubachs, E.-J. van Duijn, M. O. Vieitez, W. van de Water, N. Dam, J. J. ter Meulen, A. S. Meijer, J. de Kloe, A. Stoffelen, and E. A. A. Aben, “A spontaneous Rayleigh–Brillouin scattering experiment for the characterization of atmospheric lidar backscatter,” European Space Research contract final report, no. 1-5467/07/NL/HE (European Space Research and Technology Centre, 2009).

Nagel, E.

O. Reitebuch, C. Lemmerz, E. Nagel, and U. Paffrath, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM–Aeolus. Part I: instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26, 2501–2515 (2009).
[CrossRef]

Nikolaus, I.

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM–Aeolus. Part II: simulations and Rayleigh receiver radiometric performance,” J. Atmos. Ocean. Technol. 26, 2516–2530 (2009).
[CrossRef]

Noguchi, K.

Paffrath, U.

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM–Aeolus. Part II: simulations and Rayleigh receiver radiometric performance,” J. Atmos. Ocean. Technol. 26, 2516–2530 (2009).
[CrossRef]

O. Reitebuch, C. Lemmerz, E. Nagel, and U. Paffrath, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM–Aeolus. Part I: instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26, 2501–2515 (2009).
[CrossRef]

U. Paffrath, “Performance assessment of the Aeolus Doppler wind lidar prototype,” Ph.D. thesis (Technical University of Munich, 2006).

Palik, E.

Pan, X.

X. Pan, “Coherent Rayleigh–Brillouin Scattering,” Ph.D. thesis (Princeton University, 2003).

Rahn, L.

Rees, D.

P. H. Flamant, A. Dabas, M. L. Denneulin, A. Dolfi-Bouteyre, A. Garnier, and D. Rees, “ILIAD: Impact of Line Shape on ADM–Aeolus Doppler Estimates,” European Space Research contract final report, no. 1833404/NL/MM (European Space Research and Technology Centre, 2005).

Reitebuch, O.

B. Witschas, M. O. Vieitez, E.-J. van Duijn, O. Reitebuch, W. van de Water, and W. Ubachs, “Spontaneous Rayleigh–Brillouin scattering of ultraviolet light in nitrogen, dry air, and moist air,” Appl. Opt. 49, 4217–4227 (2010).
[CrossRef]

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM–Aeolus. Part II: simulations and Rayleigh receiver radiometric performance,” J. Atmos. Ocean. Technol. 26, 2516–2530 (2009).
[CrossRef]

O. Reitebuch, C. Lemmerz, E. Nagel, and U. Paffrath, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM–Aeolus. Part I: instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26, 2501–2515 (2009).
[CrossRef]

T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87, 437–444 (2007).
[CrossRef]

O. Reitebuch, “The spaceborne wind lidar mission ADM–Aeolus,” in Atmospheric Physics: Background—Methods—Trends, U. Schumann, ed. (Springer, 2012), pp. 815–827.

O. Reitebuch, “Wind lidar for atmospheric research,” in Atmospheric Physics: Background—Methods—Trends, U. Schumann, ed. (Springer, 2012), pp. 487–507.

Sauer, A.

K. Krebs and A. Sauer, “Über die Intensitätsverteilung von Spektrallinien im Pérot–Fabry-Interferometer,” Ann. Phys. 448, 359–368 (1953).
[CrossRef]

Schmitt, R.

Schröder, T.

T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87, 437–444 (2007).
[CrossRef]

Seasholtz, R. G.

She, C.-Y.

Shimizu, H.

Skinner, W.

Song, X.-Q.

Stoffelen, A.

W. Ubachs, E.-J. van Duijn, M. O. Vieitez, W. van de Water, N. Dam, J. J. ter Meulen, A. S. Meijer, J. de Kloe, A. Stoffelen, and E. A. A. Aben, “A spontaneous Rayleigh–Brillouin scattering experiment for the characterization of atmospheric lidar backscatter,” European Space Research contract final report, no. 1-5467/07/NL/HE (European Space Research and Technology Centre, 2009).

Tenti, G.

G. Tenti, C. Boley, and R. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).
[CrossRef]

C. Boley, R. Desai, and G. Tenti, “Kinetic models and Brillouin scattering in a molecular gas,” Can. J. Phys. 50, 2158–2173 (1972).
[CrossRef]

ter Meulen, J. J.

W. Ubachs, E.-J. van Duijn, M. O. Vieitez, W. van de Water, N. Dam, J. J. ter Meulen, A. S. Meijer, J. de Kloe, A. Stoffelen, and E. A. A. Aben, “A spontaneous Rayleigh–Brillouin scattering experiment for the characterization of atmospheric lidar backscatter,” European Space Research contract final report, no. 1-5467/07/NL/HE (European Space Research and Technology Centre, 2009).

Tesche, M.

Treichel, R.

T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87, 437–444 (2007).
[CrossRef]

Ubachs, W.

M. O. Vieitez, E.-J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh–Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 043836 (2010).
[CrossRef]

B. Witschas, M. O. Vieitez, E.-J. van Duijn, O. Reitebuch, W. van de Water, and W. Ubachs, “Spontaneous Rayleigh–Brillouin scattering of ultraviolet light in nitrogen, dry air, and moist air,” Appl. Opt. 49, 4217–4227 (2010).
[CrossRef]

W. Ubachs, E.-J. van Duijn, M. O. Vieitez, W. van de Water, N. Dam, J. J. ter Meulen, A. S. Meijer, J. de Kloe, A. Stoffelen, and E. A. A. Aben, “A spontaneous Rayleigh–Brillouin scattering experiment for the characterization of atmospheric lidar backscatter,” European Space Research contract final report, no. 1-5467/07/NL/HE (European Space Research and Technology Centre, 2009).

van de Water, W.

M. O. Vieitez, E.-J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh–Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 043836 (2010).
[CrossRef]

B. Witschas, M. O. Vieitez, E.-J. van Duijn, O. Reitebuch, W. van de Water, and W. Ubachs, “Spontaneous Rayleigh–Brillouin scattering of ultraviolet light in nitrogen, dry air, and moist air,” Appl. Opt. 49, 4217–4227 (2010).
[CrossRef]

W. Ubachs, E.-J. van Duijn, M. O. Vieitez, W. van de Water, N. Dam, J. J. ter Meulen, A. S. Meijer, J. de Kloe, A. Stoffelen, and E. A. A. Aben, “A spontaneous Rayleigh–Brillouin scattering experiment for the characterization of atmospheric lidar backscatter,” European Space Research contract final report, no. 1-5467/07/NL/HE (European Space Research and Technology Centre, 2009).

van Duijn, E.-J.

M. O. Vieitez, E.-J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh–Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 043836 (2010).
[CrossRef]

B. Witschas, M. O. Vieitez, E.-J. van Duijn, O. Reitebuch, W. van de Water, and W. Ubachs, “Spontaneous Rayleigh–Brillouin scattering of ultraviolet light in nitrogen, dry air, and moist air,” Appl. Opt. 49, 4217–4227 (2010).
[CrossRef]

W. Ubachs, E.-J. van Duijn, M. O. Vieitez, W. van de Water, N. Dam, J. J. ter Meulen, A. S. Meijer, J. de Kloe, A. Stoffelen, and E. A. A. Aben, “A spontaneous Rayleigh–Brillouin scattering experiment for the characterization of atmospheric lidar backscatter,” European Space Research contract final report, no. 1-5467/07/NL/HE (European Space Research and Technology Centre, 2009).

Vaughan, J. M.

J. M. Vaughan, The Fabry–Perot Interferometer (Adam Hilger, 1989).

Vieitez, M. O.

M. O. Vieitez, E.-J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh–Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 043836 (2010).
[CrossRef]

B. Witschas, M. O. Vieitez, E.-J. van Duijn, O. Reitebuch, W. van de Water, and W. Ubachs, “Spontaneous Rayleigh–Brillouin scattering of ultraviolet light in nitrogen, dry air, and moist air,” Appl. Opt. 49, 4217–4227 (2010).
[CrossRef]

W. Ubachs, E.-J. van Duijn, M. O. Vieitez, W. van de Water, N. Dam, J. J. ter Meulen, A. S. Meijer, J. de Kloe, A. Stoffelen, and E. A. A. Aben, “A spontaneous Rayleigh–Brillouin scattering experiment for the characterization of atmospheric lidar backscatter,” European Space Research contract final report, no. 1-5467/07/NL/HE (European Space Research and Technology Centre, 2009).

Wang, Z.-J.

Wilksch, P.

Wirth, M.

Witschas, B.

B. Witschas, “Analytical model for Rayleigh–Brillouin line shapes in air,” Appl. Opt. 50, 267–270 (2011).
[CrossRef]

B. Witschas, M. O. Vieitez, E.-J. van Duijn, O. Reitebuch, W. van de Water, and W. Ubachs, “Spontaneous Rayleigh–Brillouin scattering of ultraviolet light in nitrogen, dry air, and moist air,” Appl. Opt. 49, 4217–4227 (2010).
[CrossRef]

M. O. Vieitez, E.-J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh–Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 043836 (2010).
[CrossRef]

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM–Aeolus. Part II: simulations and Rayleigh receiver radiometric performance,” J. Atmos. Ocean. Technol. 26, 2516–2530 (2009).
[CrossRef]

B. Witschas, “Characterization of beam profile and frequency stability of an injection-seeded Nd:YAG laser for a Doppler wind lidar system,” master thesis (University of Applied Sciences Munich, 2007).

B. Witschas, “Light scattering on molecules in the atmosphere,” in Atmospheric Physics: Background—Methods—Trends, U. Schumann, ed. (Springer, 2012), pp. 69–83.

Wührer, C.

T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87, 437–444 (2007).
[CrossRef]

Xia, J.-B.

Young, A. T.

Yuen, E.

Ann. Phys. (1)

K. Krebs and A. Sauer, “Über die Intensitätsverteilung von Spektrallinien im Pérot–Fabry-Interferometer,” Ann. Phys. 448, 359–368 (1953).
[CrossRef]

Appl. Opt. (15)

G. Hernandez, “Analytical description of a Fabry–Perot photoelectric spectrometer,” Appl. Opt. 5, 1745–1748(1966).
[CrossRef]

A. T. Young, “Rayleigh scattering,” Appl. Opt. 20, 533–535 (1981).
[CrossRef]

P. Wilksch, “Instrument function of the Fabry–Perot spectrometer,” Appl. Opt. 24, 1502–1511 (1985).
[CrossRef]

R. Schmitt and L. Rahn, “Diode-laser-pumped Nd:YAG laser injection seeding system,” Appl. Opt. 25, 629–633(1986).
[CrossRef]

H. Shimizu, K. Noguchi, and C.-Y. She, “Atmospheric temperature measurement by a high spectral resolution lidar,” Appl. Opt. 25, 1460–1466 (1986).
[CrossRef]

J. A. Lock, R. G. Seasholtz, and W. T. John, “Rayleigh–Brillouin scattering to determine one-dimensional temperature and number density profiles of a gas flow field,” Appl. Opt. 31, 2839–2848 (1992).
[CrossRef]

M. McGill, W. Skinner, and T. Irgang, “Analysis techniques for the recovery of winds and backscatter coefficients from a multiple-channel incoherent Doppler lidar,” Appl. Opt. 36, 1253–1268 (1997).
[CrossRef]

M. McGill, W. Skinner, and T. Irgang, “Validation of wind profiles measured with incoherent Doppler lidar,” Appl. Opt. 36, 1928–1932 (1997).
[CrossRef]

E. Palik, H. Boukari, and R. Gammon, “Experimental study of the effect of surface defects on the finesse and contrast of a Fabry–Perot interferometer,” Appl. Opt. 35, 38–50 (1996).
[CrossRef]

C. Flesia and C. L. Korb, “Theory of the double-edge molecular technique for Doppler lidar wind measurement,” Appl. Opt. 38, 432–440 (1999).
[CrossRef]

M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47, 346–358 (2008).
[CrossRef]

E. Fry, Q. Hu, and X. Li, “Single frequency operation of an injection-seeded Nd:YAG laser in high noise and vibration environments,” Appl. Opt. 30, 1015–1017 (1991).
[CrossRef]

B. Y. Liu, M. Esselborn, M. Wirth, A. Fix, D. B. Bi, and G. Ehret, “Influence of molecular scattering models on aerosol optical properties measured by high spectral resolution lidar,” Appl. Opt. 48, 5143–5153 (2009).
[CrossRef]

B. Witschas, M. O. Vieitez, E.-J. van Duijn, O. Reitebuch, W. van de Water, and W. Ubachs, “Spontaneous Rayleigh–Brillouin scattering of ultraviolet light in nitrogen, dry air, and moist air,” Appl. Opt. 49, 4217–4227 (2010).
[CrossRef]

B. Witschas, “Analytical model for Rayleigh–Brillouin line shapes in air,” Appl. Opt. 50, 267–270 (2011).
[CrossRef]

Appl. Phys. B (1)

T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87, 437–444 (2007).
[CrossRef]

Can. J. Phys. (3)

E. H. Hara, A. D. May, and H. F. P. Knapp, “Rayleigh–Brillouin scattering in compressed H2, D2, and HD,” Can. J. Phys. 49, 420–431 (1971).
[CrossRef]

G. Tenti, C. Boley, and R. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).
[CrossRef]

C. Boley, R. Desai, and G. Tenti, “Kinetic models and Brillouin scattering in a molecular gas,” Can. J. Phys. 50, 2158–2173 (1972).
[CrossRef]

Contemp. Phys. (1)

R. Figgins, “Inelastic light scattering in liquids: Brillouin scattering,” Contemp. Phys. 12, 283–297 (1971).
[CrossRef]

J. Atmos. Ocean. Technol. (2)

O. Reitebuch, C. Lemmerz, E. Nagel, and U. Paffrath, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM–Aeolus. Part I: instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26, 2501–2515 (2009).
[CrossRef]

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM–Aeolus. Part II: simulations and Rayleigh receiver radiometric performance,” J. Atmos. Ocean. Technol. 26, 2516–2530 (2009).
[CrossRef]

J. Atmos. Sci. (1)

G. Fiocco and B. J. DeWolf, “Frequency spectrum of laser echoes from atmospheric constituents and determination of the aerosol content of air,” J. Atmos. Sci. 25, 488–496 (1968).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (2)

V. Ghaem-Maghami and A. D. May, “Rayleigh–Brillouin spectrum of compressed He, Ne, and Ar. I. Scaling,” Phys. Rev. A 22, 692–697 (1980).
[CrossRef]

M. O. Vieitez, E.-J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. de Wijn, N. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh–Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82, 043836 (2010).
[CrossRef]

Phys. Rev. Lett. (1)

T. J. Greytak and G. B. Benedek, “Spectrum of light from thermal fluctuations in gases,” Phys. Rev. Lett. 17, 179–182 (1966).
[CrossRef]

Tellus A (1)

A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus A 60, 206–215 (2008).
[CrossRef]

Z. Angew. Phys. (1)

F. Bayer-Helms, “Analyse von Linienprofilen. I. Grundlagen und Messeinrichtungen,” Z. Angew. Phys. 15, 330–338(1963).

Other (15)

U. Paffrath, “Performance assessment of the Aeolus Doppler wind lidar prototype,” Ph.D. thesis (Technical University of Munich, 2006).

L. Ries, Federal Environmental Agency (Umweltbundesamt) (personal communication, 2010).

B. Witschas, “Characterization of beam profile and frequency stability of an injection-seeded Nd:YAG laser for a Doppler wind lidar system,” master thesis (University of Applied Sciences Munich, 2007).

G. Hernandez, Fabry–Perot Interferometers (Cambridge University, 1988).

J. M. Vaughan, The Fabry–Perot Interferometer (Adam Hilger, 1989).

B. Witschas, “Light scattering on molecules in the atmosphere,” in Atmospheric Physics: Background—Methods—Trends, U. Schumann, ed. (Springer, 2012), pp. 69–83.

L. Fabelinski, The Molecular Scattering of Light (Plenum, 1968).

O. Reitebuch, “Wind lidar for atmospheric research,” in Atmospheric Physics: Background—Methods—Trends, U. Schumann, ed. (Springer, 2012), pp. 487–507.

E. Eloranta, “High spectral resolution lidar,” in Lidar, C. Weitkamp, ed. (Springer, 2005), pp. 143–163.

P. H. Flamant, A. Dabas, M. L. Denneulin, A. Dolfi-Bouteyre, A. Garnier, and D. Rees, “ILIAD: Impact of Line Shape on ADM–Aeolus Doppler Estimates,” European Space Research contract final report, no. 1833404/NL/MM (European Space Research and Technology Centre, 2005).

European Space Agency, “ADM–Aeolus,” science report, ESA SP-1311 (European Space Research and Technology Centre, 2008).

O. Reitebuch, “The spaceborne wind lidar mission ADM–Aeolus,” in Atmospheric Physics: Background—Methods—Trends, U. Schumann, ed. (Springer, 2012), pp. 815–827.

U.S. Standard Atmosphere (1976), “U.S. Standard Atmosphere, 1962” (U.S. Government Printing Office, 1962).

X. Pan, “Coherent Rayleigh–Brillouin Scattering,” Ph.D. thesis (Princeton University, 2003).

W. Ubachs, E.-J. van Duijn, M. O. Vieitez, W. van de Water, N. Dam, J. J. ter Meulen, A. S. Meijer, J. de Kloe, A. Stoffelen, and E. A. A. Aben, “A spontaneous Rayleigh–Brillouin scattering experiment for the characterization of atmospheric lidar backscatter,” European Space Research contract final report, no. 1-5467/07/NL/HE (European Space Research and Technology Centre, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Evolution of the Rayleigh–Brillouin spectrum simulated by using the Tenti S6 model [21] (N2, T=290K, λ=355nm, θ=180°). The gas pressure is varied to cover the region from y=0 (Knudsen regime, indicated in black) to y=10.3 (hydrodynamic regime, indicated in light gray). The intermediate regime, which is of special interest for atmospheric applications, is called kinetic regime (y0.33) and is indicated in dark gray. The respective line shapes are normalized to equal integrated intensity.

Fig. 2.
Fig. 2.

(Top) Simulated SRB spectra using the Gaussian approximation (T=263K, dashed line) and the Tenti S6 model (T=263K, p=724hPa, y=0.32, solid line). (Bottom) Difference between Tenti S6 line shape and Gaussian line shape normalized to the center intensity of the Tenti S6 spectrum.

Fig. 3.
Fig. 3.

Schematic diagram of the A2D laser transmitter. Gray lines, Nd:YAG laser beam (1064 nm); straight black lines, frequency-tripled laser beam (355 nm); curved black lines, optical fibers; LPO, low-power oscillator; PLL, phase-locked loop; FC, fiber coupler; SHG, second-harmonic generation; THG, third-harmonic generation.

Fig. 4.
Fig. 4.

Schematic diagram of the A2D receiver. Thick black arrows, UV laser beam that is sent into the atmosphere; thin black arrows, backscattered light that is collected by the telescope and directed through the front optics toward the Fizeau interferometer, where it is partly transmitted and detected by the ACCD; dashed black arrows, light that is reflected from the Fizeau interferometer and directed to the first FPI, where it is partly transmitted and detected by the ACCD; dotted black arrows, light that is reflected from the first FPI is directed to the second FPI, where it is transmitted and detected by the ACCD; gray arrow, internal reference signal from the laser that is coupled into receiver, following the thin dashed and dotted black arrows.

Fig. 5.
Fig. 5.

(Top) Measured transmission curve of the plane-parallel FPI (in arbitrary units) versus absolute frequency, obtained with the narrowband laser signal by changing the laser frequency in 50 MHz steps over a frequency range of 20 GHz (black dots), showing two FSRs and details of the transmission curve (inset). The best fit of Eq. (2) is indicated by the dashed gray line, the one of Eq. (6) by the solid gray line. (Bottom) The relative deviation between the measured transmission and the best fit of Eqs. (2) and (6) is indicated by the dashed and the solid black line, respectively.

Fig. 6.
Fig. 6.

Schematic diagram of the analysis procedure used to analyze the measured SRB line shapes. A detailed explanation is given in the text.

Fig. 7.
Fig. 7.

(Left, top) Measured SRB line shapes for different range gates versus absolute frequency (gray dots). The best fit of the analytical SRB line-shape model according to Eq. (10) to the measurement is indicated by the black lines. (Left, bottom) Residual between measurement and fit. (Right, top) Simulated SRB line shape, calculated by using the Tenti S6 model (gray line). The best fit of the analytical SRB line-shape model according to Eq. (10) to the simulated line shape is indicated in black. (Right, bottom) Residual between simulation and fit.

Fig. 8.
Fig. 8.

(Top) Comparison of the residuals (fingerprints) between measured SRB line shapes (for different range gates) and best fit of Eq. (10) and simulated SRB line shape and best fit of Eq. (10). The light gray lines indicate the various residuals calculated from eight range gates shown in Fig. 7 (bottom), and the dark gray line indicates their (unweighted) average. The black line represents the simulated residual as is already depicted in Fig. 7 (right, bottom). (Bottom) Residual between measured and simulated fingerprint.

Fig. 9.
Fig. 9.

Comparison of the residuals (fingerprints) between measured SRB line shapes (for different range gates) and best fit of Eq. (10) to it and simulated SRB line shape and best fit of Eq. (10) to it according to Fig. 8. The measurements shown were performed on (left) 26 January at 19:23 UTC and (right) 31 January at 15:30 UTC. The measurements were identically analyzed as demonstrated for the example of the SRB measurement from 31 January at 17:00 UTC. Labels are the same as in Fig. 8.

Tables (2)

Tables Icon

Table 1. Overview of the A2D System Specifications

Tables Icon

Table 2. FPI Transmission Curve Parameters

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

y=pksv0η=nkBTksv0η,
A(f)=I0[1+(2ΓFSRπΔfFWHM)2sin2(πΓFSRf)]1,
I(f)=A(f)*Dx(f)=Dx(g)A(fg)dg.
Dg(f)=12πσgexp(f22σg2),
A(f)=1ΓFSR(1+2k=1Rkcos(2kπfΓFSR)).
Ag(f)=1ΓFSR(1+2k=1Rkcos(2πkfΓFSR)exp(2π2k2σg2ΓFSR2)).
I(f)=S*Ag=S(f)Ag(fg)dg.
I˜(k)=S˜(k)·A˜g(k),
S(f)=12πσspexp(12(ff0σsp)2)withσsp=2λ0kBTM,
I(f)=1ΓFSR(1+2k=1Rkcos(2πk(ff0)ΓFSR)exp(2π2k2(σg2+σsp2)ΓFSR2)).

Metrics