Abstract

The first concurrent measurements of the three-dimensional refractive-index and residual-stress distributions in a CO2-laser-irradiated fiber are presented. A Corning SMF-28 fiber was exposed from one side to focused pulses with durations of 100–500 ms. The cross-sectional form of the index modulation is asymmetric with changes concentrated on the side of the fiber facing the exposure. The longitudinal form is Gaussian-like with a wide top and extends approximately 100  μm from the center of the exposure. Relaxation of frozen-in viscoelasticity results in a maximum index modulation of 5×104 on the side of the fiber facing the exposure with mechanical stress relaxation contributing changes of less than 1×104.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
    [CrossRef]
  2. A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, “Long-period fiber-grating-based gain equalizers,” Opt. Lett. 21, 336–338 (1996).
    [CrossRef]
  3. D. B. Stegall and T. Erdogan, “Dispersion control with use of long-period fiber gratings,” J. Opt. Soc. Am. A 17, 304–312 (2000).
    [CrossRef]
  4. Q. Li, C. H. Lin, A. A. Au, and H. P. Lee, “Compact all-fibre on-line power monitor via core-to-cladding mode coupling,” Electron. Lett. 38, 1013–1015 (2002).
    [CrossRef]
  5. K. S. Chiang, “Development of long-period fiber grating coupling devices,” Appl. Opt. 48, F61–F67 (2009).
    [CrossRef]
  6. S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
    [CrossRef]
  7. D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
    [CrossRef]
  8. D. D. Davis, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler, “Very-high-temperature stable CO2-laser-induced long-period fibre gratings,” Electron. Lett. 35, 740–742 (1999).
    [CrossRef]
  9. G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, “Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings,” Electron. Lett. 36, 1354–1355 (2000).
    [CrossRef]
  10. Y.-J. Rao, Y.-P. Wang, Z.-L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21, 1320–1327 (2003).
    [CrossRef]
  11. L. Drozin, P. Y. Fonjallaz, and L. Stensland, “Long-period fibre gratings written by CO2 exposure of H2-loaded, standard fibres,” Electron. Lett. 36, 742–744 (2000).
    [CrossRef]
  12. A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
    [CrossRef]
  13. P. Helander, “Measurement of fictive temperature of silica glass optical fibers,” J. Mater. Sci. 39, 3799–3800 (2004).
    [CrossRef]
  14. S. Yamasaki, M. Akiyama, K. Nishide, A. Wada, and R. Yamauchi, “Characteristics of long-period fiber grating utilizing periodic stress relaxation,” IEICE Trans. Electron. E83-C, 440–443 (2000).
  15. C.-S. Kim, Y. Han, B. H. Lee, W.-T. Han, U.-C. Paek, and Y. Chung, “Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress,” Opt. Commun. 185, 337–342 (2000).
    [CrossRef]
  16. A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 300–311 (2004).
    [CrossRef]
  17. M. R. Hutsel, R. R. Ingle, and T. K. Gaylord, “Accurate cross-sectional stress profiling of optical fibers,” Appl. Opt. 48, 4985–4995 (2009).
    [CrossRef]
  18. W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30, 779–788 (1959).
    [CrossRef]
  19. B. H. Kim, Y. Park, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Opt. Lett. 26, 1657–1659 (2001).
    [CrossRef]
  20. B. H. Kim, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Effect of CO2 laser irradiation on the refractive-index change in optical fibers,” Appl. Opt. 41, 3809–3815 (2002).
    [CrossRef]
  21. Y. J. Li, T. Wei, J. A. Montoya, S. V. Saini, X. W. Lan, X. L. Tang, J. H. Dong, and H. Xiao, “Measurement of CO2-laser-irradiation-induced refractive index modulation in single-mode fiber toward long-period fiber grating design and fabrication,” Appl. Opt. 47, 5296–5304 (2008).
    [CrossRef]
  22. T. Hirose, K. Saito, and K. Takada, “Mid-infrared spectroscopic detection of refractive index in CO2 laser-written long-period fibre grating,” Electron. Lett. 44, 1187–1189 (2008).
    [CrossRef]
  23. H. S. Ryu, Y. Park, S. T. Oh, Y. J. Chung, and D. Y. Kim, “Effect of asymmetric stress relaxation on the polarization-dependent transmission characteristics of a CO2 laser-written long-period fiber grating,” Opt. Lett. 28, 155–157 (2003).
    [CrossRef]
  24. B. L. Bachim, “Characteristics, applications, and properties of carbon-dioxide-laser-induced long-period fiber gratings,” Ph.D. thesis (Georgia Institute of Technology, 2005).
  25. M. I. Braiwish, B. L. Bachim, and T. K. Gaylord, “Prototype CO2 laser-induced long-period fiber grating variable optical attenuators and optical tunable filters,” Appl. Opt. 43, 1789–1793 (2004).
    [CrossRef]
  26. M. R. Hutsel and T. K. Gaylord, “Concurrent three-dimensional characterization of the refractive-index and residual-stress distributions in optical fibers,” Appl. Opt. 51, 5442–5452 (2012).
    [CrossRef]
  27. M. R. Hutsel, “Characterization of the stress and refractive-index distributions in optical fibers and fiber-based devices,” Ph.D. thesis (Georgia Institute of Technology, 2011).
  28. D. A. Viskoe and G. W. Donohoe, “Optimal computed tomography data acquisition techniques and filter selection for detection of small density variations,” IEEE Trans. Instrum. Meas. 45, 70–76 (1996).
    [CrossRef]
  29. G. W. Scherer, “Stress-induced index profile distortion in optical waveguides,” Appl. Opt. 19, 2000–2006 (1980).
    [CrossRef]
  30. L. Rongved, C. R. Kurjian, and F. T. Geyling, “Mechanical tempering of optical fibers,” J. Non-Cryst. Solids 42, 579–584 (1980).
    [CrossRef]
  31. A. K. Varshneya, D. Varshneya, and V. Jain, “On ‘mechanical tempering of optical fibers’,” J. Non-Cryst. Solids 93, 215–216 (1987).
    [CrossRef]
  32. E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Transmission characteristics of long-period fiber gratings having arbitrary azimuthal/radial refractive index variations,” J. Lightwave Technol. 21, 218–227 (2003).
    [CrossRef]
  33. H. Hochreiner, M. Cada, and P. D. Wentzell, “Modeling the response of a long-period fiber grating to ambient refractive index change in chemical sensing applications,” J. Lightwave Technol. 26, 1986–1992 (2008).
    [CrossRef]

2012 (1)

2009 (2)

2008 (3)

2004 (4)

M. I. Braiwish, B. L. Bachim, and T. K. Gaylord, “Prototype CO2 laser-induced long-period fiber grating variable optical attenuators and optical tunable filters,” Appl. Opt. 43, 1789–1793 (2004).
[CrossRef]

A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 300–311 (2004).
[CrossRef]

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

P. Helander, “Measurement of fictive temperature of silica glass optical fibers,” J. Mater. Sci. 39, 3799–3800 (2004).
[CrossRef]

2003 (4)

2002 (2)

B. H. Kim, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Effect of CO2 laser irradiation on the refractive-index change in optical fibers,” Appl. Opt. 41, 3809–3815 (2002).
[CrossRef]

Q. Li, C. H. Lin, A. A. Au, and H. P. Lee, “Compact all-fibre on-line power monitor via core-to-cladding mode coupling,” Electron. Lett. 38, 1013–1015 (2002).
[CrossRef]

2001 (1)

2000 (5)

D. B. Stegall and T. Erdogan, “Dispersion control with use of long-period fiber gratings,” J. Opt. Soc. Am. A 17, 304–312 (2000).
[CrossRef]

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, “Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings,” Electron. Lett. 36, 1354–1355 (2000).
[CrossRef]

L. Drozin, P. Y. Fonjallaz, and L. Stensland, “Long-period fibre gratings written by CO2 exposure of H2-loaded, standard fibres,” Electron. Lett. 36, 742–744 (2000).
[CrossRef]

S. Yamasaki, M. Akiyama, K. Nishide, A. Wada, and R. Yamauchi, “Characteristics of long-period fiber grating utilizing periodic stress relaxation,” IEICE Trans. Electron. E83-C, 440–443 (2000).

C.-S. Kim, Y. Han, B. H. Lee, W.-T. Han, U.-C. Paek, and Y. Chung, “Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress,” Opt. Commun. 185, 337–342 (2000).
[CrossRef]

1999 (1)

D. D. Davis, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler, “Very-high-temperature stable CO2-laser-induced long-period fibre gratings,” Electron. Lett. 35, 740–742 (1999).
[CrossRef]

1998 (1)

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

1996 (3)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, “Long-period fiber-grating-based gain equalizers,” Opt. Lett. 21, 336–338 (1996).
[CrossRef]

D. A. Viskoe and G. W. Donohoe, “Optimal computed tomography data acquisition techniques and filter selection for detection of small density variations,” IEEE Trans. Instrum. Meas. 45, 70–76 (1996).
[CrossRef]

1987 (1)

A. K. Varshneya, D. Varshneya, and V. Jain, “On ‘mechanical tempering of optical fibers’,” J. Non-Cryst. Solids 93, 215–216 (1987).
[CrossRef]

1980 (2)

G. W. Scherer, “Stress-induced index profile distortion in optical waveguides,” Appl. Opt. 19, 2000–2006 (1980).
[CrossRef]

L. Rongved, C. R. Kurjian, and F. T. Geyling, “Mechanical tempering of optical fibers,” J. Non-Cryst. Solids 42, 579–584 (1980).
[CrossRef]

1959 (1)

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30, 779–788 (1959).
[CrossRef]

Ahn, T. J.

Akiyama, M.

S. Yamasaki, M. Akiyama, K. Nishide, A. Wada, and R. Yamauchi, “Characteristics of long-period fiber grating utilizing periodic stress relaxation,” IEICE Trans. Electron. E83-C, 440–443 (2000).

Anemogiannis, E.

E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Transmission characteristics of long-period fiber gratings having arbitrary azimuthal/radial refractive index variations,” J. Lightwave Technol. 21, 218–227 (2003).
[CrossRef]

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, “Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings,” Electron. Lett. 36, 1354–1355 (2000).
[CrossRef]

Au, A. A.

Q. Li, C. H. Lin, A. A. Au, and H. P. Lee, “Compact all-fibre on-line power monitor via core-to-cladding mode coupling,” Electron. Lett. 38, 1013–1015 (2002).
[CrossRef]

Bachim, B. L.

M. I. Braiwish, B. L. Bachim, and T. K. Gaylord, “Prototype CO2 laser-induced long-period fiber grating variable optical attenuators and optical tunable filters,” Appl. Opt. 43, 1789–1793 (2004).
[CrossRef]

B. L. Bachim, “Characteristics, applications, and properties of carbon-dioxide-laser-induced long-period fiber gratings,” Ph.D. thesis (Georgia Institute of Technology, 2005).

Bergano, N. S.

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Braiwish, M. I.

M. I. Braiwish, B. L. Bachim, and T. K. Gaylord, “Prototype CO2 laser-induced long-period fiber grating variable optical attenuators and optical tunable filters,” Appl. Opt. 43, 1789–1793 (2004).
[CrossRef]

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, “Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings,” Electron. Lett. 36, 1354–1355 (2000).
[CrossRef]

Cada, M.

Chiang, K. S.

Chung, Y.

Chung, Y. J.

Davidson, C. R.

Davis, D. D.

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, “Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings,” Electron. Lett. 36, 1354–1355 (2000).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler, “Very-high-temperature stable CO2-laser-induced long-period fibre gratings,” Electron. Lett. 35, 740–742 (1999).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

DiGiovanni, D. J.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

DiMarcello, F. V.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

Dong, J. H.

Donohoe, G. W.

D. A. Viskoe and G. W. Donohoe, “Optimal computed tomography data acquisition techniques and filter selection for detection of small density variations,” IEEE Trans. Instrum. Meas. 45, 70–76 (1996).
[CrossRef]

Drozin, L.

L. Drozin, P. Y. Fonjallaz, and L. Stensland, “Long-period fibre gratings written by CO2 exposure of H2-loaded, standard fibres,” Electron. Lett. 36, 742–744 (2000).
[CrossRef]

Erdogan, T.

D. B. Stegall and T. Erdogan, “Dispersion control with use of long-period fiber gratings,” J. Opt. Soc. Am. A 17, 304–312 (2000).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Fleming, J. W.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

Fonjallaz, P. Y.

L. Drozin, P. Y. Fonjallaz, and L. Stensland, “Long-period fibre gratings written by CO2 exposure of H2-loaded, standard fibres,” Electron. Lett. 36, 742–744 (2000).
[CrossRef]

Garrett, B. D.

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, “Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings,” Electron. Lett. 36, 1354–1355 (2000).
[CrossRef]

Gaylord, T. K.

M. R. Hutsel and T. K. Gaylord, “Concurrent three-dimensional characterization of the refractive-index and residual-stress distributions in optical fibers,” Appl. Opt. 51, 5442–5452 (2012).
[CrossRef]

M. R. Hutsel, R. R. Ingle, and T. K. Gaylord, “Accurate cross-sectional stress profiling of optical fibers,” Appl. Opt. 48, 4985–4995 (2009).
[CrossRef]

M. I. Braiwish, B. L. Bachim, and T. K. Gaylord, “Prototype CO2 laser-induced long-period fiber grating variable optical attenuators and optical tunable filters,” Appl. Opt. 43, 1789–1793 (2004).
[CrossRef]

E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Transmission characteristics of long-period fiber gratings having arbitrary azimuthal/radial refractive index variations,” J. Lightwave Technol. 21, 218–227 (2003).
[CrossRef]

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, “Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings,” Electron. Lett. 36, 1354–1355 (2000).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler, “Very-high-temperature stable CO2-laser-induced long-period fibre gratings,” Electron. Lett. 35, 740–742 (1999).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

Geyling, F. T.

L. Rongved, C. R. Kurjian, and F. T. Geyling, “Mechanical tempering of optical fibers,” J. Non-Cryst. Solids 42, 579–584 (1980).
[CrossRef]

Glytsis, E. N.

E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Transmission characteristics of long-period fiber gratings having arbitrary azimuthal/radial refractive index variations,” J. Lightwave Technol. 21, 218–227 (2003).
[CrossRef]

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, “Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings,” Electron. Lett. 36, 1354–1355 (2000).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler, “Very-high-temperature stable CO2-laser-induced long-period fibre gratings,” Electron. Lett. 35, 740–742 (1999).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

Han, W. T.

Han, W.-T.

C.-S. Kim, Y. Han, B. H. Lee, W.-T. Han, U.-C. Paek, and Y. Chung, “Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress,” Opt. Commun. 185, 337–342 (2000).
[CrossRef]

Han, Y.

C.-S. Kim, Y. Han, B. H. Lee, W.-T. Han, U.-C. Paek, and Y. Chung, “Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress,” Opt. Commun. 185, 337–342 (2000).
[CrossRef]

Helander, P.

P. Helander, “Measurement of fictive temperature of silica glass optical fibers,” J. Mater. Sci. 39, 3799–3800 (2004).
[CrossRef]

Hirose, T.

T. Hirose, K. Saito, and K. Takada, “Mid-infrared spectroscopic detection of refractive index in CO2 laser-written long-period fibre grating,” Electron. Lett. 44, 1187–1189 (2008).
[CrossRef]

Hochreiner, H.

Hutsel, M. R.

Ingle, R. R.

Jain, V.

A. K. Varshneya, D. Varshneya, and V. Jain, “On ‘mechanical tempering of optical fibers’,” J. Non-Cryst. Solids 93, 215–216 (1987).
[CrossRef]

James, S. W.

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
[CrossRef]

Jasapara, J.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, “Long-period fiber-grating-based gain equalizers,” Opt. Lett. 21, 336–338 (1996).
[CrossRef]

Kim, B. H.

Kim, C.-S.

C.-S. Kim, Y. Han, B. H. Lee, W.-T. Han, U.-C. Paek, and Y. Chung, “Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress,” Opt. Commun. 185, 337–342 (2000).
[CrossRef]

Kim, D. Y.

Kosinski, S. G.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

Kurjian, C. R.

L. Rongved, C. R. Kurjian, and F. T. Geyling, “Mechanical tempering of optical fibers,” J. Non-Cryst. Solids 42, 579–584 (1980).
[CrossRef]

Lan, X. W.

Lee, B. H.

Lee, H. P.

Q. Li, C. H. Lin, A. A. Au, and H. P. Lee, “Compact all-fibre on-line power monitor via core-to-cladding mode coupling,” Electron. Lett. 38, 1013–1015 (2002).
[CrossRef]

Lemaire, P. J.

A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, “Long-period fiber-grating-based gain equalizers,” Opt. Lett. 21, 336–338 (1996).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Li, Q.

Q. Li, C. H. Lin, A. A. Au, and H. P. Lee, “Compact all-fibre on-line power monitor via core-to-cladding mode coupling,” Electron. Lett. 38, 1013–1015 (2002).
[CrossRef]

Li, Y. J.

Lin, C. H.

Q. Li, C. H. Lin, A. A. Au, and H. P. Lee, “Compact all-fibre on-line power monitor via core-to-cladding mode coupling,” Electron. Lett. 38, 1013–1015 (2002).
[CrossRef]

Lines, M. E.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

Mettler, S. C.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler, “Very-high-temperature stable CO2-laser-induced long-period fibre gratings,” Electron. Lett. 35, 740–742 (1999).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

Monberg, E. M.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

Montoya, J. A.

Nishide, K.

S. Yamasaki, M. Akiyama, K. Nishide, A. Wada, and R. Yamauchi, “Characteristics of long-period fiber grating utilizing periodic stress relaxation,” IEICE Trans. Electron. E83-C, 440–443 (2000).

Oh, S. T.

Paek, U. C.

Paek, U.-C.

C.-S. Kim, Y. Han, B. H. Lee, W.-T. Han, U.-C. Paek, and Y. Chung, “Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress,” Opt. Commun. 185, 337–342 (2000).
[CrossRef]

Park, Y.

Pedrazzani, J. R.

Post, D.

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30, 779–788 (1959).
[CrossRef]

Primak, W.

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30, 779–788 (1959).
[CrossRef]

Ran, Z.-L.

Rao, Y.-J.

Reed, W. A.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

Rongved, L.

L. Rongved, C. R. Kurjian, and F. T. Geyling, “Mechanical tempering of optical fibers,” J. Non-Cryst. Solids 42, 579–584 (1980).
[CrossRef]

Ryu, H. S.

Saini, S. V.

Saito, K.

T. Hirose, K. Saito, and K. Takada, “Mid-infrared spectroscopic detection of refractive index in CO2 laser-written long-period fibre grating,” Electron. Lett. 44, 1187–1189 (2008).
[CrossRef]

Scherer, G. W.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Stegall, D. B.

Stensland, L.

L. Drozin, P. Y. Fonjallaz, and L. Stensland, “Long-period fibre gratings written by CO2 exposure of H2-loaded, standard fibres,” Electron. Lett. 36, 742–744 (2000).
[CrossRef]

Takada, K.

T. Hirose, K. Saito, and K. Takada, “Mid-infrared spectroscopic detection of refractive index in CO2 laser-written long-period fibre grating,” Electron. Lett. 44, 1187–1189 (2008).
[CrossRef]

Tang, X. L.

Tatam, R. P.

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
[CrossRef]

VanWiggeren, G. D.

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, “Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings,” Electron. Lett. 36, 1354–1355 (2000).
[CrossRef]

Varshneya, A. K.

A. K. Varshneya, D. Varshneya, and V. Jain, “On ‘mechanical tempering of optical fibers’,” J. Non-Cryst. Solids 93, 215–216 (1987).
[CrossRef]

Varshneya, D.

A. K. Varshneya, D. Varshneya, and V. Jain, “On ‘mechanical tempering of optical fibers’,” J. Non-Cryst. Solids 93, 215–216 (1987).
[CrossRef]

Vengsarkar, A. M.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, “Long-period fiber-grating-based gain equalizers,” Opt. Lett. 21, 336–338 (1996).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Viskoe, D. A.

D. A. Viskoe and G. W. Donohoe, “Optimal computed tomography data acquisition techniques and filter selection for detection of small density variations,” IEEE Trans. Instrum. Meas. 45, 70–76 (1996).
[CrossRef]

Wada, A.

S. Yamasaki, M. Akiyama, K. Nishide, A. Wada, and R. Yamauchi, “Characteristics of long-period fiber grating utilizing periodic stress relaxation,” IEICE Trans. Electron. E83-C, 440–443 (2000).

Wang, Y.-P.

Wei, T.

Wentzell, P. D.

Wisk, P.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

Xiao, H.

Yablon, A. D.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 300–311 (2004).
[CrossRef]

Yamasaki, S.

S. Yamasaki, M. Akiyama, K. Nishide, A. Wada, and R. Yamauchi, “Characteristics of long-period fiber grating utilizing periodic stress relaxation,” IEICE Trans. Electron. E83-C, 440–443 (2000).

Yamauchi, R.

S. Yamasaki, M. Akiyama, K. Nishide, A. Wada, and R. Yamauchi, “Characteristics of long-period fiber grating utilizing periodic stress relaxation,” IEICE Trans. Electron. E83-C, 440–443 (2000).

Yan, M. F.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

Zhu, T.

Appl. Opt. (7)

Appl. Phys. Lett. (1)

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

Electron. Lett. (6)

L. Drozin, P. Y. Fonjallaz, and L. Stensland, “Long-period fibre gratings written by CO2 exposure of H2-loaded, standard fibres,” Electron. Lett. 36, 742–744 (2000).
[CrossRef]

Q. Li, C. H. Lin, A. A. Au, and H. P. Lee, “Compact all-fibre on-line power monitor via core-to-cladding mode coupling,” Electron. Lett. 38, 1013–1015 (2002).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler, “Very-high-temperature stable CO2-laser-induced long-period fibre gratings,” Electron. Lett. 35, 740–742 (1999).
[CrossRef]

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, “Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings,” Electron. Lett. 36, 1354–1355 (2000).
[CrossRef]

T. Hirose, K. Saito, and K. Takada, “Mid-infrared spectroscopic detection of refractive index in CO2 laser-written long-period fibre grating,” Electron. Lett. 44, 1187–1189 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 300–311 (2004).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

D. A. Viskoe and G. W. Donohoe, “Optimal computed tomography data acquisition techniques and filter selection for detection of small density variations,” IEEE Trans. Instrum. Meas. 45, 70–76 (1996).
[CrossRef]

IEICE Trans. Electron. (1)

S. Yamasaki, M. Akiyama, K. Nishide, A. Wada, and R. Yamauchi, “Characteristics of long-period fiber grating utilizing periodic stress relaxation,” IEICE Trans. Electron. E83-C, 440–443 (2000).

J. Appl. Phys. (1)

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30, 779–788 (1959).
[CrossRef]

J. Lightwave Technol. (4)

J. Mater. Sci. (1)

P. Helander, “Measurement of fictive temperature of silica glass optical fibers,” J. Mater. Sci. 39, 3799–3800 (2004).
[CrossRef]

J. Non-Cryst. Solids (2)

L. Rongved, C. R. Kurjian, and F. T. Geyling, “Mechanical tempering of optical fibers,” J. Non-Cryst. Solids 42, 579–584 (1980).
[CrossRef]

A. K. Varshneya, D. Varshneya, and V. Jain, “On ‘mechanical tempering of optical fibers’,” J. Non-Cryst. Solids 93, 215–216 (1987).
[CrossRef]

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (1)

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
[CrossRef]

Opt. Commun. (1)

C.-S. Kim, Y. Han, B. H. Lee, W.-T. Han, U.-C. Paek, and Y. Chung, “Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress,” Opt. Commun. 185, 337–342 (2000).
[CrossRef]

Opt. Lett. (3)

Other (2)

B. L. Bachim, “Characteristics, applications, and properties of carbon-dioxide-laser-induced long-period fiber gratings,” Ph.D. thesis (Georgia Institute of Technology, 2005).

M. R. Hutsel, “Characterization of the stress and refractive-index distributions in optical fibers and fiber-based devices,” Ph.D. thesis (Georgia Institute of Technology, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Diagram of incrementally exposed fiber. The spacing between each exposed region is 2 mm. The large arrows indicate one-sided exposure to a focused CO2-laser pulse with the duration specified below the arrow.

Fig. 2.
Fig. 2.

Relative RIDs (left column) and RSDs (right column) at the longitudinal position z=0 in the unperturbed region (top row) and the incrementally exposed regions (subsequent rows) of the fiber. The longitudinal position z=0 corresponds approximately to the longitudinal center of the exposure to the focused CO2 laser. The arrows below the 500 ms distributions indicate the exposure direction.

Fig. 3.
Fig. 3.

Longitudinal profiles of the measured refractive-index change (a) and the axial-stress change (b) in the cladding facing the exposure for various exposure durations. The exposure durations are listed near their respective profiles. Shown for reference in (a) is the longitudinal Gaussian intensity profile of the focused CO2-laser beam.

Fig. 4.
Fig. 4.

Measured index changes (circles) and predicted stress-induced index changes (x’s) in the cladding facing the exposure at the longitudinal center of the exposure.

Fig. 5.
Fig. 5.

Longitudinal profiles of the measured refractive-index change (a) and the axial-stress change (b) in the cladding opposite the exposure at various exposure durations. The exposure durations are listed near their respective profiles.

Fig. 6.
Fig. 6.

Measured index changes (circles) and predicted stress-induced index changes (x’s) in the cladding opposite the exposure at the longitudinal center of the exposure.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δnr=C2Δσz,
nr=n0+C1σr+C2(σθ+σz),nθ=n0+C1σθ+C2(σr+σz),nz=n0+C1σz+C2(σr+σθ),
Δnr,σ=C2Δσz,Δnθ,σ=C2Δσz,Δnz,σ=C1Δσz,
Δnσ=2C2+C13Δσz.

Metrics