Abstract

Computing time and retrieval error of the effective particle radius are important considerations when developing an ice crystal scattering database to be used in radiative transfer simulation and satellite remote sensing retrieval. Therefore, the light scattering database should be optimized based on the specifications of the satellite sensor. In this study, the grid system of the complex refractive index in the 1.6 μm (SW3) channel of the Global Change Observation Mission/Second Generation Global Imager satellite sensor is investigated for optimizing the ice crystal scattering database. This grid system is separated into twelve patterns according to the step size of the real and imaginary parts of the refractive index. Specifically, the LIght Scattering solver Applicable to particles of arbitrary Shape/Geometrical-Optics Approximation technique is used to simulate the scattering of light by randomly oriented large hexagonal ice crystals. The difference of radiance with different step size of the refractive index is calculated from the developed light scattering database using the radiative transfer (R-STAR) solver. The results indicated that the step size of the real part is a significant factor in difference of radiance.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. P. Wylie, W. P. Menzel, H. M. Woolf, and K. I. Strabala, “Four years of global cirrus cloud statistics using HIRS,” J. Clim. 7, 1972–1986 (1994).
    [CrossRef]
  2. K. N. Liou, “Influence of cirrus clouds on weather and climate processes: A global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).
    [CrossRef]
  3. G. L. Stephens, S. C. Tsay, P. W. Stackhouse, and P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback,” J. Atmos. Sci. 47, 1742–1754 (1990).
    [CrossRef]
  4. J. Dim, H. Murakami, T. Y. Nakajima, B. Nordell, A. Heidinger, and T. Takamura, “The recent state of the climate: driving components of cloud type variability,” J. Geophys. Res. 116, D11117 (2011).
    [CrossRef]
  5. J. Riedi, M. Doutriaux-Boucher, P. Goloub, and P. Couvert, “Global distribution of cloud top phase from POLDER/ADEOS I,” Geophys. Res. Lett. 27, 1707–1710 (2000).
    [CrossRef]
  6. P. Yang, Z. Zhang, G. W. Kattawar, S. G. Warren, B. A. Baum, H.-L. Huang, Y. Hu, D. Winker, and J. Iaquinta, “Effect of cavities on the optical properties of bullet rosettes: Implications for active and passive remote sensing of ice cloud properties,” J. Appl. Meteorol. Clim. 47, 2311–2330 (2008).
    [CrossRef]
  7. G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 330, 377–445 (1908).
    [CrossRef]
  8. T. Y. Nakajima and T. Nakajima, “Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions,” J. Atmos. Sci. 52, 4043–4059 (1995).
    [CrossRef]
  9. T. Nakajima and M. Tanaka, “Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 35, 13–21 (1986).
    [CrossRef]
  10. A. Macke, “Scattering of light by polyhedral ice crystals,” Appl. Opt. 32, 2780–2788 (1993).
    [CrossRef]
  11. Y. Takano and K. N. Liou, “Radiative transfer in cirrus clouds. III. Light scattering by irregular ice crystals,” J. Atmos. Sci. 52, 818–837 (1995).
    [CrossRef]
  12. P. Yang and K. N. Liou, “Geometric-optics-integral equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996).
    [CrossRef]
  13. H. Ishimoto, K. Masuda, Y. Mano, N. Orikasa, and A. Uchiyama, “Irregularly shaped ice aggregates in optical modeling of convectively generated ice clouds,” J. Quant. Spectrosc. Radiat. Transfer 113, 632–643 (2012).
    [CrossRef]
  14. P. Yang and K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. 13, 2072–2085 (1996).
    [CrossRef]
  15. Y. Mano, “Exact solution of electromagnetic scattering by a three-dimensional hexagonal ice column obtained with the boundary-element method,” Appl. Opt. 39, 5541–5546 (2000).
    [CrossRef]
  16. T. Y. Nakajima, T. Nakajima, K. Yoshimori, S. K. Mishra, and S. N. Tripathi, “Development of a light scattering solver applicable to particles of arbitrary shape on the basis of the surface integral equations method of Müller-type (SIEMM): Part I. Methodology, accuracy of calculation, and electromagnetic current on the particle urface,” Appl. Opt. 48, 3526–3536 (2009).
    [CrossRef]
  17. Q. Fu, “An accurate parameterization of the solar radiative properties of cirrus clouds for climate models,” J. Climate 9, 2058–2082 (1996).
    [CrossRef]
  18. Q. Fu, P. Yang, and W. B. Sun, “An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models,” J. Climate 25, 2223–2237 (1998).
    [CrossRef]
  19. Q. Fu, “A new parameterization of an asymmetry factor of cirrus clouds for climate models,” J. Atmos. Sci. 64, 4144–4154 (2007).
    [CrossRef]
  20. L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, “Single-scattering properties of tri-axial ellipsoidal particles for a size parameter range from the Rayleigh to geometric-optics regimes,” Appl. Opt. 48, 114–126 (2009).
    [CrossRef]
  21. L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112, 1492–1508 (2011).
    [CrossRef]
  22. P. Yang, K. N. Liou, K. Wyser, and D. Mitchell, “Parameterization of the scattering and absorption properties of individual ice crystals,” J. Geophys. Res. 105, 4699–4718 (2000).
    [CrossRef]
  23. P. Yang, H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512–5523 (2005).
    [CrossRef]
  24. M. I. Mishchenko and L. D. Travis, “Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented rotationally symmetric scatterers,” J. Quant. Spectrosc. Radiat. Transfer 60, 309–324 (1998).
    [CrossRef]
  25. A. Heymsfield, “Ice crystal terminal velocities,” J. Atmos. Sci. 29, 1348–1357 (1972).
    [CrossRef]
  26. T. Y. Nakajima, T. Nakajima, and A. K. Alexander, “Radiance transfer through light scattering media with nonspherical large particles: direct and indirect problems,” Proc. SPIE 3220, 2–12 (1997).
    [CrossRef]
  27. K. Tanaka, Y. Okamura, T. Amano, M. Hiramatsu, and K. Shiratama, “Development status of the second-generation global imager (SGLI) on GCOM-C,” Proc. SPIE 7474, 74740N (2009).
    [CrossRef]
  28. M. Hiramatsu, K. Tanaka, Y. Okamura, T. Amano, and K. Shiratama, “Design challenge on forthcoming SGLI boarded on GCOM-C,” Proc. SPIE 6744, 67440L (2007).
    [CrossRef]
  29. T. Y. Nakajima, T. Tsuchiya, H. Ishida, T. N. Matsui, and H. Shimoda, “Cloud detection performance of spaceborne visible-to-infrared multispectral imager,” Appl. Opt. 50, 2601–2616 (2011).
    [CrossRef]
  30. T. Kobayashi, “The growth of snow crystals at low supersaturation,” Philadelphia Mag. 6, 1363–1370 (1961).
    [CrossRef]
  31. Y. Xie, P. Yang, G. W. Kattawar, P. Minnis, Y. X. Hu, and D. L. Wu, “Determination of ice cloud models using MODIS and MISR data,” Int. J. Remote Sens. 33, 4219–4253 (2012).
    [CrossRef]
  32. Z. Meng, P. Yang, G. W. Kattawar, L. Bi, K. N. Liou, and I. Laszlo, “Single-scattering properties of nonspherical mineral dust aerosols: A database for application to radiative transfer calculations,” J. Aerosol Sci. 41, 501–512 (2010).
    [CrossRef]
  33. Y. Xie, P. Yang, G. W. Kattawar, P. Minnis, and Y. X. Hu, “Effect of the inhomogeneity of ice crystals on retrieving ice cloud optical thickness and effective particle size,” J. Geophys. Res. 114, D11203 (2009).
    [CrossRef]
  34. X. Liu, S. Ding, L. Bi, and P. Yang, “On the use of scattering kernels to calculate ice cloud bulk optical properties,” J. Atmos. Ocean. Technol. 29, 50–63 (2012).
    [CrossRef]
  35. T. Y. Nakajima, K. Suzuki, and G. L. Stephens, “Droplet growth in warm water clouds observed by the A-Train. Part I: Sensitivity analysis of the MODIS-derived cloud droplet size,” J. Atmos. Sci. 67, 1884–1896 (2010).
    [CrossRef]
  36. T. Y. Nakajima, K. Suzuki, and G. L. Stephens, “Droplet growth in warm water clouds observed by the A-Train. Part II: A multi-sensor view,” J. Atmos. Sci. 67, 1897–1907 (2010).
    [CrossRef]
  37. S. G. Warren and R. E. Brandt, “Optical constants of ice from the ultraviolet to the microwave: a revised compilation,” J. Geophys. Res. 113, D14220 (2008).
    [CrossRef]

2012

H. Ishimoto, K. Masuda, Y. Mano, N. Orikasa, and A. Uchiyama, “Irregularly shaped ice aggregates in optical modeling of convectively generated ice clouds,” J. Quant. Spectrosc. Radiat. Transfer 113, 632–643 (2012).
[CrossRef]

X. Liu, S. Ding, L. Bi, and P. Yang, “On the use of scattering kernels to calculate ice cloud bulk optical properties,” J. Atmos. Ocean. Technol. 29, 50–63 (2012).
[CrossRef]

Y. Xie, P. Yang, G. W. Kattawar, P. Minnis, Y. X. Hu, and D. L. Wu, “Determination of ice cloud models using MODIS and MISR data,” Int. J. Remote Sens. 33, 4219–4253 (2012).
[CrossRef]

2011

L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112, 1492–1508 (2011).
[CrossRef]

J. Dim, H. Murakami, T. Y. Nakajima, B. Nordell, A. Heidinger, and T. Takamura, “The recent state of the climate: driving components of cloud type variability,” J. Geophys. Res. 116, D11117 (2011).
[CrossRef]

T. Y. Nakajima, T. Tsuchiya, H. Ishida, T. N. Matsui, and H. Shimoda, “Cloud detection performance of spaceborne visible-to-infrared multispectral imager,” Appl. Opt. 50, 2601–2616 (2011).
[CrossRef]

2010

Z. Meng, P. Yang, G. W. Kattawar, L. Bi, K. N. Liou, and I. Laszlo, “Single-scattering properties of nonspherical mineral dust aerosols: A database for application to radiative transfer calculations,” J. Aerosol Sci. 41, 501–512 (2010).
[CrossRef]

T. Y. Nakajima, K. Suzuki, and G. L. Stephens, “Droplet growth in warm water clouds observed by the A-Train. Part I: Sensitivity analysis of the MODIS-derived cloud droplet size,” J. Atmos. Sci. 67, 1884–1896 (2010).
[CrossRef]

T. Y. Nakajima, K. Suzuki, and G. L. Stephens, “Droplet growth in warm water clouds observed by the A-Train. Part II: A multi-sensor view,” J. Atmos. Sci. 67, 1897–1907 (2010).
[CrossRef]

2009

2008

S. G. Warren and R. E. Brandt, “Optical constants of ice from the ultraviolet to the microwave: a revised compilation,” J. Geophys. Res. 113, D14220 (2008).
[CrossRef]

P. Yang, Z. Zhang, G. W. Kattawar, S. G. Warren, B. A. Baum, H.-L. Huang, Y. Hu, D. Winker, and J. Iaquinta, “Effect of cavities on the optical properties of bullet rosettes: Implications for active and passive remote sensing of ice cloud properties,” J. Appl. Meteorol. Clim. 47, 2311–2330 (2008).
[CrossRef]

2007

M. Hiramatsu, K. Tanaka, Y. Okamura, T. Amano, and K. Shiratama, “Design challenge on forthcoming SGLI boarded on GCOM-C,” Proc. SPIE 6744, 67440L (2007).
[CrossRef]

Q. Fu, “A new parameterization of an asymmetry factor of cirrus clouds for climate models,” J. Atmos. Sci. 64, 4144–4154 (2007).
[CrossRef]

2005

2000

Y. Mano, “Exact solution of electromagnetic scattering by a three-dimensional hexagonal ice column obtained with the boundary-element method,” Appl. Opt. 39, 5541–5546 (2000).
[CrossRef]

J. Riedi, M. Doutriaux-Boucher, P. Goloub, and P. Couvert, “Global distribution of cloud top phase from POLDER/ADEOS I,” Geophys. Res. Lett. 27, 1707–1710 (2000).
[CrossRef]

P. Yang, K. N. Liou, K. Wyser, and D. Mitchell, “Parameterization of the scattering and absorption properties of individual ice crystals,” J. Geophys. Res. 105, 4699–4718 (2000).
[CrossRef]

1998

M. I. Mishchenko and L. D. Travis, “Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented rotationally symmetric scatterers,” J. Quant. Spectrosc. Radiat. Transfer 60, 309–324 (1998).
[CrossRef]

Q. Fu, P. Yang, and W. B. Sun, “An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models,” J. Climate 25, 2223–2237 (1998).
[CrossRef]

1997

T. Y. Nakajima, T. Nakajima, and A. K. Alexander, “Radiance transfer through light scattering media with nonspherical large particles: direct and indirect problems,” Proc. SPIE 3220, 2–12 (1997).
[CrossRef]

1996

P. Yang and K. N. Liou, “Geometric-optics-integral equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996).
[CrossRef]

P. Yang and K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. 13, 2072–2085 (1996).
[CrossRef]

Q. Fu, “An accurate parameterization of the solar radiative properties of cirrus clouds for climate models,” J. Climate 9, 2058–2082 (1996).
[CrossRef]

1995

T. Y. Nakajima and T. Nakajima, “Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions,” J. Atmos. Sci. 52, 4043–4059 (1995).
[CrossRef]

Y. Takano and K. N. Liou, “Radiative transfer in cirrus clouds. III. Light scattering by irregular ice crystals,” J. Atmos. Sci. 52, 818–837 (1995).
[CrossRef]

1994

D. P. Wylie, W. P. Menzel, H. M. Woolf, and K. I. Strabala, “Four years of global cirrus cloud statistics using HIRS,” J. Clim. 7, 1972–1986 (1994).
[CrossRef]

1993

1990

G. L. Stephens, S. C. Tsay, P. W. Stackhouse, and P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback,” J. Atmos. Sci. 47, 1742–1754 (1990).
[CrossRef]

1986

K. N. Liou, “Influence of cirrus clouds on weather and climate processes: A global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).
[CrossRef]

T. Nakajima and M. Tanaka, “Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 35, 13–21 (1986).
[CrossRef]

1972

A. Heymsfield, “Ice crystal terminal velocities,” J. Atmos. Sci. 29, 1348–1357 (1972).
[CrossRef]

1961

T. Kobayashi, “The growth of snow crystals at low supersaturation,” Philadelphia Mag. 6, 1363–1370 (1961).
[CrossRef]

1908

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 330, 377–445 (1908).
[CrossRef]

Alexander, A. K.

T. Y. Nakajima, T. Nakajima, and A. K. Alexander, “Radiance transfer through light scattering media with nonspherical large particles: direct and indirect problems,” Proc. SPIE 3220, 2–12 (1997).
[CrossRef]

Amano, T.

K. Tanaka, Y. Okamura, T. Amano, M. Hiramatsu, and K. Shiratama, “Development status of the second-generation global imager (SGLI) on GCOM-C,” Proc. SPIE 7474, 74740N (2009).
[CrossRef]

M. Hiramatsu, K. Tanaka, Y. Okamura, T. Amano, and K. Shiratama, “Design challenge on forthcoming SGLI boarded on GCOM-C,” Proc. SPIE 6744, 67440L (2007).
[CrossRef]

Baum, B. A.

L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112, 1492–1508 (2011).
[CrossRef]

P. Yang, Z. Zhang, G. W. Kattawar, S. G. Warren, B. A. Baum, H.-L. Huang, Y. Hu, D. Winker, and J. Iaquinta, “Effect of cavities on the optical properties of bullet rosettes: Implications for active and passive remote sensing of ice cloud properties,” J. Appl. Meteorol. Clim. 47, 2311–2330 (2008).
[CrossRef]

P. Yang, H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512–5523 (2005).
[CrossRef]

Bi, L.

X. Liu, S. Ding, L. Bi, and P. Yang, “On the use of scattering kernels to calculate ice cloud bulk optical properties,” J. Atmos. Ocean. Technol. 29, 50–63 (2012).
[CrossRef]

L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112, 1492–1508 (2011).
[CrossRef]

Z. Meng, P. Yang, G. W. Kattawar, L. Bi, K. N. Liou, and I. Laszlo, “Single-scattering properties of nonspherical mineral dust aerosols: A database for application to radiative transfer calculations,” J. Aerosol Sci. 41, 501–512 (2010).
[CrossRef]

L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, “Single-scattering properties of tri-axial ellipsoidal particles for a size parameter range from the Rayleigh to geometric-optics regimes,” Appl. Opt. 48, 114–126 (2009).
[CrossRef]

Brandt, R. E.

S. G. Warren and R. E. Brandt, “Optical constants of ice from the ultraviolet to the microwave: a revised compilation,” J. Geophys. Res. 113, D14220 (2008).
[CrossRef]

Couvert, P.

J. Riedi, M. Doutriaux-Boucher, P. Goloub, and P. Couvert, “Global distribution of cloud top phase from POLDER/ADEOS I,” Geophys. Res. Lett. 27, 1707–1710 (2000).
[CrossRef]

Dim, J.

J. Dim, H. Murakami, T. Y. Nakajima, B. Nordell, A. Heidinger, and T. Takamura, “The recent state of the climate: driving components of cloud type variability,” J. Geophys. Res. 116, D11117 (2011).
[CrossRef]

Ding, S.

X. Liu, S. Ding, L. Bi, and P. Yang, “On the use of scattering kernels to calculate ice cloud bulk optical properties,” J. Atmos. Ocean. Technol. 29, 50–63 (2012).
[CrossRef]

Doutriaux-Boucher, M.

J. Riedi, M. Doutriaux-Boucher, P. Goloub, and P. Couvert, “Global distribution of cloud top phase from POLDER/ADEOS I,” Geophys. Res. Lett. 27, 1707–1710 (2000).
[CrossRef]

Flatau, P. J.

G. L. Stephens, S. C. Tsay, P. W. Stackhouse, and P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback,” J. Atmos. Sci. 47, 1742–1754 (1990).
[CrossRef]

Fu, Q.

Q. Fu, “A new parameterization of an asymmetry factor of cirrus clouds for climate models,” J. Atmos. Sci. 64, 4144–4154 (2007).
[CrossRef]

P. Yang, H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512–5523 (2005).
[CrossRef]

Q. Fu, P. Yang, and W. B. Sun, “An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models,” J. Climate 25, 2223–2237 (1998).
[CrossRef]

Q. Fu, “An accurate parameterization of the solar radiative properties of cirrus clouds for climate models,” J. Climate 9, 2058–2082 (1996).
[CrossRef]

Goloub, P.

J. Riedi, M. Doutriaux-Boucher, P. Goloub, and P. Couvert, “Global distribution of cloud top phase from POLDER/ADEOS I,” Geophys. Res. Lett. 27, 1707–1710 (2000).
[CrossRef]

Heidinger, A.

J. Dim, H. Murakami, T. Y. Nakajima, B. Nordell, A. Heidinger, and T. Takamura, “The recent state of the climate: driving components of cloud type variability,” J. Geophys. Res. 116, D11117 (2011).
[CrossRef]

Heymsfield, A.

A. Heymsfield, “Ice crystal terminal velocities,” J. Atmos. Sci. 29, 1348–1357 (1972).
[CrossRef]

Hiramatsu, M.

K. Tanaka, Y. Okamura, T. Amano, M. Hiramatsu, and K. Shiratama, “Development status of the second-generation global imager (SGLI) on GCOM-C,” Proc. SPIE 7474, 74740N (2009).
[CrossRef]

M. Hiramatsu, K. Tanaka, Y. Okamura, T. Amano, and K. Shiratama, “Design challenge on forthcoming SGLI boarded on GCOM-C,” Proc. SPIE 6744, 67440L (2007).
[CrossRef]

Hu, Y.

L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112, 1492–1508 (2011).
[CrossRef]

P. Yang, Z. Zhang, G. W. Kattawar, S. G. Warren, B. A. Baum, H.-L. Huang, Y. Hu, D. Winker, and J. Iaquinta, “Effect of cavities on the optical properties of bullet rosettes: Implications for active and passive remote sensing of ice cloud properties,” J. Appl. Meteorol. Clim. 47, 2311–2330 (2008).
[CrossRef]

Hu, Y. X.

Y. Xie, P. Yang, G. W. Kattawar, P. Minnis, Y. X. Hu, and D. L. Wu, “Determination of ice cloud models using MODIS and MISR data,” Int. J. Remote Sens. 33, 4219–4253 (2012).
[CrossRef]

Y. Xie, P. Yang, G. W. Kattawar, P. Minnis, and Y. X. Hu, “Effect of the inhomogeneity of ice crystals on retrieving ice cloud optical thickness and effective particle size,” J. Geophys. Res. 114, D11203 (2009).
[CrossRef]

P. Yang, H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512–5523 (2005).
[CrossRef]

Huang, H.-L.

P. Yang, Z. Zhang, G. W. Kattawar, S. G. Warren, B. A. Baum, H.-L. Huang, Y. Hu, D. Winker, and J. Iaquinta, “Effect of cavities on the optical properties of bullet rosettes: Implications for active and passive remote sensing of ice cloud properties,” J. Appl. Meteorol. Clim. 47, 2311–2330 (2008).
[CrossRef]

P. Yang, H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512–5523 (2005).
[CrossRef]

Iaquinta, J.

P. Yang, Z. Zhang, G. W. Kattawar, S. G. Warren, B. A. Baum, H.-L. Huang, Y. Hu, D. Winker, and J. Iaquinta, “Effect of cavities on the optical properties of bullet rosettes: Implications for active and passive remote sensing of ice cloud properties,” J. Appl. Meteorol. Clim. 47, 2311–2330 (2008).
[CrossRef]

Ishida, H.

Ishimoto, H.

H. Ishimoto, K. Masuda, Y. Mano, N. Orikasa, and A. Uchiyama, “Irregularly shaped ice aggregates in optical modeling of convectively generated ice clouds,” J. Quant. Spectrosc. Radiat. Transfer 113, 632–643 (2012).
[CrossRef]

Kahn, R.

Kattawar, G. W.

Y. Xie, P. Yang, G. W. Kattawar, P. Minnis, Y. X. Hu, and D. L. Wu, “Determination of ice cloud models using MODIS and MISR data,” Int. J. Remote Sens. 33, 4219–4253 (2012).
[CrossRef]

L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112, 1492–1508 (2011).
[CrossRef]

Z. Meng, P. Yang, G. W. Kattawar, L. Bi, K. N. Liou, and I. Laszlo, “Single-scattering properties of nonspherical mineral dust aerosols: A database for application to radiative transfer calculations,” J. Aerosol Sci. 41, 501–512 (2010).
[CrossRef]

L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, “Single-scattering properties of tri-axial ellipsoidal particles for a size parameter range from the Rayleigh to geometric-optics regimes,” Appl. Opt. 48, 114–126 (2009).
[CrossRef]

Y. Xie, P. Yang, G. W. Kattawar, P. Minnis, and Y. X. Hu, “Effect of the inhomogeneity of ice crystals on retrieving ice cloud optical thickness and effective particle size,” J. Geophys. Res. 114, D11203 (2009).
[CrossRef]

P. Yang, Z. Zhang, G. W. Kattawar, S. G. Warren, B. A. Baum, H.-L. Huang, Y. Hu, D. Winker, and J. Iaquinta, “Effect of cavities on the optical properties of bullet rosettes: Implications for active and passive remote sensing of ice cloud properties,” J. Appl. Meteorol. Clim. 47, 2311–2330 (2008).
[CrossRef]

P. Yang, H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512–5523 (2005).
[CrossRef]

Kobayashi, T.

T. Kobayashi, “The growth of snow crystals at low supersaturation,” Philadelphia Mag. 6, 1363–1370 (1961).
[CrossRef]

Laszlo, I.

Z. Meng, P. Yang, G. W. Kattawar, L. Bi, K. N. Liou, and I. Laszlo, “Single-scattering properties of nonspherical mineral dust aerosols: A database for application to radiative transfer calculations,” J. Aerosol Sci. 41, 501–512 (2010).
[CrossRef]

Liou, K. N.

Z. Meng, P. Yang, G. W. Kattawar, L. Bi, K. N. Liou, and I. Laszlo, “Single-scattering properties of nonspherical mineral dust aerosols: A database for application to radiative transfer calculations,” J. Aerosol Sci. 41, 501–512 (2010).
[CrossRef]

P. Yang, K. N. Liou, K. Wyser, and D. Mitchell, “Parameterization of the scattering and absorption properties of individual ice crystals,” J. Geophys. Res. 105, 4699–4718 (2000).
[CrossRef]

P. Yang and K. N. Liou, “Geometric-optics-integral equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996).
[CrossRef]

P. Yang and K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. 13, 2072–2085 (1996).
[CrossRef]

Y. Takano and K. N. Liou, “Radiative transfer in cirrus clouds. III. Light scattering by irregular ice crystals,” J. Atmos. Sci. 52, 818–837 (1995).
[CrossRef]

K. N. Liou, “Influence of cirrus clouds on weather and climate processes: A global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).
[CrossRef]

Liu, X.

X. Liu, S. Ding, L. Bi, and P. Yang, “On the use of scattering kernels to calculate ice cloud bulk optical properties,” J. Atmos. Ocean. Technol. 29, 50–63 (2012).
[CrossRef]

Macke, A.

Mano, Y.

H. Ishimoto, K. Masuda, Y. Mano, N. Orikasa, and A. Uchiyama, “Irregularly shaped ice aggregates in optical modeling of convectively generated ice clouds,” J. Quant. Spectrosc. Radiat. Transfer 113, 632–643 (2012).
[CrossRef]

Y. Mano, “Exact solution of electromagnetic scattering by a three-dimensional hexagonal ice column obtained with the boundary-element method,” Appl. Opt. 39, 5541–5546 (2000).
[CrossRef]

Masuda, K.

H. Ishimoto, K. Masuda, Y. Mano, N. Orikasa, and A. Uchiyama, “Irregularly shaped ice aggregates in optical modeling of convectively generated ice clouds,” J. Quant. Spectrosc. Radiat. Transfer 113, 632–643 (2012).
[CrossRef]

Matsui, T. N.

Meng, Z.

Z. Meng, P. Yang, G. W. Kattawar, L. Bi, K. N. Liou, and I. Laszlo, “Single-scattering properties of nonspherical mineral dust aerosols: A database for application to radiative transfer calculations,” J. Aerosol Sci. 41, 501–512 (2010).
[CrossRef]

Menzel, W. P.

D. P. Wylie, W. P. Menzel, H. M. Woolf, and K. I. Strabala, “Four years of global cirrus cloud statistics using HIRS,” J. Clim. 7, 1972–1986 (1994).
[CrossRef]

Mie, G.

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 330, 377–445 (1908).
[CrossRef]

Minnis, P.

Y. Xie, P. Yang, G. W. Kattawar, P. Minnis, Y. X. Hu, and D. L. Wu, “Determination of ice cloud models using MODIS and MISR data,” Int. J. Remote Sens. 33, 4219–4253 (2012).
[CrossRef]

Y. Xie, P. Yang, G. W. Kattawar, P. Minnis, and Y. X. Hu, “Effect of the inhomogeneity of ice crystals on retrieving ice cloud optical thickness and effective particle size,” J. Geophys. Res. 114, D11203 (2009).
[CrossRef]

Mishchenko, M. I.

P. Yang, H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512–5523 (2005).
[CrossRef]

M. I. Mishchenko and L. D. Travis, “Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented rotationally symmetric scatterers,” J. Quant. Spectrosc. Radiat. Transfer 60, 309–324 (1998).
[CrossRef]

Mishra, S. K.

Mitchell, D.

P. Yang, K. N. Liou, K. Wyser, and D. Mitchell, “Parameterization of the scattering and absorption properties of individual ice crystals,” J. Geophys. Res. 105, 4699–4718 (2000).
[CrossRef]

Murakami, H.

J. Dim, H. Murakami, T. Y. Nakajima, B. Nordell, A. Heidinger, and T. Takamura, “The recent state of the climate: driving components of cloud type variability,” J. Geophys. Res. 116, D11117 (2011).
[CrossRef]

Nakajima, T.

T. Y. Nakajima, T. Nakajima, K. Yoshimori, S. K. Mishra, and S. N. Tripathi, “Development of a light scattering solver applicable to particles of arbitrary shape on the basis of the surface integral equations method of Müller-type (SIEMM): Part I. Methodology, accuracy of calculation, and electromagnetic current on the particle urface,” Appl. Opt. 48, 3526–3536 (2009).
[CrossRef]

T. Y. Nakajima, T. Nakajima, and A. K. Alexander, “Radiance transfer through light scattering media with nonspherical large particles: direct and indirect problems,” Proc. SPIE 3220, 2–12 (1997).
[CrossRef]

T. Y. Nakajima and T. Nakajima, “Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions,” J. Atmos. Sci. 52, 4043–4059 (1995).
[CrossRef]

T. Nakajima and M. Tanaka, “Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 35, 13–21 (1986).
[CrossRef]

Nakajima, T. Y.

T. Y. Nakajima, T. Tsuchiya, H. Ishida, T. N. Matsui, and H. Shimoda, “Cloud detection performance of spaceborne visible-to-infrared multispectral imager,” Appl. Opt. 50, 2601–2616 (2011).
[CrossRef]

J. Dim, H. Murakami, T. Y. Nakajima, B. Nordell, A. Heidinger, and T. Takamura, “The recent state of the climate: driving components of cloud type variability,” J. Geophys. Res. 116, D11117 (2011).
[CrossRef]

T. Y. Nakajima, K. Suzuki, and G. L. Stephens, “Droplet growth in warm water clouds observed by the A-Train. Part II: A multi-sensor view,” J. Atmos. Sci. 67, 1897–1907 (2010).
[CrossRef]

T. Y. Nakajima, K. Suzuki, and G. L. Stephens, “Droplet growth in warm water clouds observed by the A-Train. Part I: Sensitivity analysis of the MODIS-derived cloud droplet size,” J. Atmos. Sci. 67, 1884–1896 (2010).
[CrossRef]

T. Y. Nakajima, T. Nakajima, K. Yoshimori, S. K. Mishra, and S. N. Tripathi, “Development of a light scattering solver applicable to particles of arbitrary shape on the basis of the surface integral equations method of Müller-type (SIEMM): Part I. Methodology, accuracy of calculation, and electromagnetic current on the particle urface,” Appl. Opt. 48, 3526–3536 (2009).
[CrossRef]

T. Y. Nakajima, T. Nakajima, and A. K. Alexander, “Radiance transfer through light scattering media with nonspherical large particles: direct and indirect problems,” Proc. SPIE 3220, 2–12 (1997).
[CrossRef]

T. Y. Nakajima and T. Nakajima, “Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions,” J. Atmos. Sci. 52, 4043–4059 (1995).
[CrossRef]

Nordell, B.

J. Dim, H. Murakami, T. Y. Nakajima, B. Nordell, A. Heidinger, and T. Takamura, “The recent state of the climate: driving components of cloud type variability,” J. Geophys. Res. 116, D11117 (2011).
[CrossRef]

Okamura, Y.

K. Tanaka, Y. Okamura, T. Amano, M. Hiramatsu, and K. Shiratama, “Development status of the second-generation global imager (SGLI) on GCOM-C,” Proc. SPIE 7474, 74740N (2009).
[CrossRef]

M. Hiramatsu, K. Tanaka, Y. Okamura, T. Amano, and K. Shiratama, “Design challenge on forthcoming SGLI boarded on GCOM-C,” Proc. SPIE 6744, 67440L (2007).
[CrossRef]

Orikasa, N.

H. Ishimoto, K. Masuda, Y. Mano, N. Orikasa, and A. Uchiyama, “Irregularly shaped ice aggregates in optical modeling of convectively generated ice clouds,” J. Quant. Spectrosc. Radiat. Transfer 113, 632–643 (2012).
[CrossRef]

Riedi, J.

J. Riedi, M. Doutriaux-Boucher, P. Goloub, and P. Couvert, “Global distribution of cloud top phase from POLDER/ADEOS I,” Geophys. Res. Lett. 27, 1707–1710 (2000).
[CrossRef]

Shimoda, H.

Shiratama, K.

K. Tanaka, Y. Okamura, T. Amano, M. Hiramatsu, and K. Shiratama, “Development status of the second-generation global imager (SGLI) on GCOM-C,” Proc. SPIE 7474, 74740N (2009).
[CrossRef]

M. Hiramatsu, K. Tanaka, Y. Okamura, T. Amano, and K. Shiratama, “Design challenge on forthcoming SGLI boarded on GCOM-C,” Proc. SPIE 6744, 67440L (2007).
[CrossRef]

Stackhouse, P. W.

G. L. Stephens, S. C. Tsay, P. W. Stackhouse, and P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback,” J. Atmos. Sci. 47, 1742–1754 (1990).
[CrossRef]

Stephens, G. L.

T. Y. Nakajima, K. Suzuki, and G. L. Stephens, “Droplet growth in warm water clouds observed by the A-Train. Part I: Sensitivity analysis of the MODIS-derived cloud droplet size,” J. Atmos. Sci. 67, 1884–1896 (2010).
[CrossRef]

T. Y. Nakajima, K. Suzuki, and G. L. Stephens, “Droplet growth in warm water clouds observed by the A-Train. Part II: A multi-sensor view,” J. Atmos. Sci. 67, 1897–1907 (2010).
[CrossRef]

G. L. Stephens, S. C. Tsay, P. W. Stackhouse, and P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback,” J. Atmos. Sci. 47, 1742–1754 (1990).
[CrossRef]

Strabala, K. I.

D. P. Wylie, W. P. Menzel, H. M. Woolf, and K. I. Strabala, “Four years of global cirrus cloud statistics using HIRS,” J. Clim. 7, 1972–1986 (1994).
[CrossRef]

Sun, W. B.

Q. Fu, P. Yang, and W. B. Sun, “An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models,” J. Climate 25, 2223–2237 (1998).
[CrossRef]

Suzuki, K.

T. Y. Nakajima, K. Suzuki, and G. L. Stephens, “Droplet growth in warm water clouds observed by the A-Train. Part II: A multi-sensor view,” J. Atmos. Sci. 67, 1897–1907 (2010).
[CrossRef]

T. Y. Nakajima, K. Suzuki, and G. L. Stephens, “Droplet growth in warm water clouds observed by the A-Train. Part I: Sensitivity analysis of the MODIS-derived cloud droplet size,” J. Atmos. Sci. 67, 1884–1896 (2010).
[CrossRef]

Takamura, T.

J. Dim, H. Murakami, T. Y. Nakajima, B. Nordell, A. Heidinger, and T. Takamura, “The recent state of the climate: driving components of cloud type variability,” J. Geophys. Res. 116, D11117 (2011).
[CrossRef]

Takano, Y.

Y. Takano and K. N. Liou, “Radiative transfer in cirrus clouds. III. Light scattering by irregular ice crystals,” J. Atmos. Sci. 52, 818–837 (1995).
[CrossRef]

Tanaka, K.

K. Tanaka, Y. Okamura, T. Amano, M. Hiramatsu, and K. Shiratama, “Development status of the second-generation global imager (SGLI) on GCOM-C,” Proc. SPIE 7474, 74740N (2009).
[CrossRef]

M. Hiramatsu, K. Tanaka, Y. Okamura, T. Amano, and K. Shiratama, “Design challenge on forthcoming SGLI boarded on GCOM-C,” Proc. SPIE 6744, 67440L (2007).
[CrossRef]

Tanaka, M.

T. Nakajima and M. Tanaka, “Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 35, 13–21 (1986).
[CrossRef]

Travis, L. D.

M. I. Mishchenko and L. D. Travis, “Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented rotationally symmetric scatterers,” J. Quant. Spectrosc. Radiat. Transfer 60, 309–324 (1998).
[CrossRef]

Tripathi, S. N.

Tsay, S. C.

G. L. Stephens, S. C. Tsay, P. W. Stackhouse, and P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback,” J. Atmos. Sci. 47, 1742–1754 (1990).
[CrossRef]

Tsuchiya, T.

Uchiyama, A.

H. Ishimoto, K. Masuda, Y. Mano, N. Orikasa, and A. Uchiyama, “Irregularly shaped ice aggregates in optical modeling of convectively generated ice clouds,” J. Quant. Spectrosc. Radiat. Transfer 113, 632–643 (2012).
[CrossRef]

Warren, S. G.

P. Yang, Z. Zhang, G. W. Kattawar, S. G. Warren, B. A. Baum, H.-L. Huang, Y. Hu, D. Winker, and J. Iaquinta, “Effect of cavities on the optical properties of bullet rosettes: Implications for active and passive remote sensing of ice cloud properties,” J. Appl. Meteorol. Clim. 47, 2311–2330 (2008).
[CrossRef]

S. G. Warren and R. E. Brandt, “Optical constants of ice from the ultraviolet to the microwave: a revised compilation,” J. Geophys. Res. 113, D14220 (2008).
[CrossRef]

Wei, H.

Winker, D.

P. Yang, Z. Zhang, G. W. Kattawar, S. G. Warren, B. A. Baum, H.-L. Huang, Y. Hu, D. Winker, and J. Iaquinta, “Effect of cavities on the optical properties of bullet rosettes: Implications for active and passive remote sensing of ice cloud properties,” J. Appl. Meteorol. Clim. 47, 2311–2330 (2008).
[CrossRef]

Woolf, H. M.

D. P. Wylie, W. P. Menzel, H. M. Woolf, and K. I. Strabala, “Four years of global cirrus cloud statistics using HIRS,” J. Clim. 7, 1972–1986 (1994).
[CrossRef]

Wu, D. L.

Y. Xie, P. Yang, G. W. Kattawar, P. Minnis, Y. X. Hu, and D. L. Wu, “Determination of ice cloud models using MODIS and MISR data,” Int. J. Remote Sens. 33, 4219–4253 (2012).
[CrossRef]

Wylie, D. P.

D. P. Wylie, W. P. Menzel, H. M. Woolf, and K. I. Strabala, “Four years of global cirrus cloud statistics using HIRS,” J. Clim. 7, 1972–1986 (1994).
[CrossRef]

Wyser, K.

P. Yang, K. N. Liou, K. Wyser, and D. Mitchell, “Parameterization of the scattering and absorption properties of individual ice crystals,” J. Geophys. Res. 105, 4699–4718 (2000).
[CrossRef]

Xie, Y.

Y. Xie, P. Yang, G. W. Kattawar, P. Minnis, Y. X. Hu, and D. L. Wu, “Determination of ice cloud models using MODIS and MISR data,” Int. J. Remote Sens. 33, 4219–4253 (2012).
[CrossRef]

Y. Xie, P. Yang, G. W. Kattawar, P. Minnis, and Y. X. Hu, “Effect of the inhomogeneity of ice crystals on retrieving ice cloud optical thickness and effective particle size,” J. Geophys. Res. 114, D11203 (2009).
[CrossRef]

Yang, P.

Y. Xie, P. Yang, G. W. Kattawar, P. Minnis, Y. X. Hu, and D. L. Wu, “Determination of ice cloud models using MODIS and MISR data,” Int. J. Remote Sens. 33, 4219–4253 (2012).
[CrossRef]

X. Liu, S. Ding, L. Bi, and P. Yang, “On the use of scattering kernels to calculate ice cloud bulk optical properties,” J. Atmos. Ocean. Technol. 29, 50–63 (2012).
[CrossRef]

L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112, 1492–1508 (2011).
[CrossRef]

Z. Meng, P. Yang, G. W. Kattawar, L. Bi, K. N. Liou, and I. Laszlo, “Single-scattering properties of nonspherical mineral dust aerosols: A database for application to radiative transfer calculations,” J. Aerosol Sci. 41, 501–512 (2010).
[CrossRef]

Y. Xie, P. Yang, G. W. Kattawar, P. Minnis, and Y. X. Hu, “Effect of the inhomogeneity of ice crystals on retrieving ice cloud optical thickness and effective particle size,” J. Geophys. Res. 114, D11203 (2009).
[CrossRef]

L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, “Single-scattering properties of tri-axial ellipsoidal particles for a size parameter range from the Rayleigh to geometric-optics regimes,” Appl. Opt. 48, 114–126 (2009).
[CrossRef]

P. Yang, Z. Zhang, G. W. Kattawar, S. G. Warren, B. A. Baum, H.-L. Huang, Y. Hu, D. Winker, and J. Iaquinta, “Effect of cavities on the optical properties of bullet rosettes: Implications for active and passive remote sensing of ice cloud properties,” J. Appl. Meteorol. Clim. 47, 2311–2330 (2008).
[CrossRef]

P. Yang, H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512–5523 (2005).
[CrossRef]

P. Yang, K. N. Liou, K. Wyser, and D. Mitchell, “Parameterization of the scattering and absorption properties of individual ice crystals,” J. Geophys. Res. 105, 4699–4718 (2000).
[CrossRef]

Q. Fu, P. Yang, and W. B. Sun, “An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models,” J. Climate 25, 2223–2237 (1998).
[CrossRef]

P. Yang and K. N. Liou, “Geometric-optics-integral equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996).
[CrossRef]

P. Yang and K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. 13, 2072–2085 (1996).
[CrossRef]

Yoshimori, K.

Zhang, Z.

P. Yang, Z. Zhang, G. W. Kattawar, S. G. Warren, B. A. Baum, H.-L. Huang, Y. Hu, D. Winker, and J. Iaquinta, “Effect of cavities on the optical properties of bullet rosettes: Implications for active and passive remote sensing of ice cloud properties,” J. Appl. Meteorol. Clim. 47, 2311–2330 (2008).
[CrossRef]

Ann. Phys.

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 330, 377–445 (1908).
[CrossRef]

Appl. Opt.

A. Macke, “Scattering of light by polyhedral ice crystals,” Appl. Opt. 32, 2780–2788 (1993).
[CrossRef]

P. Yang and K. N. Liou, “Geometric-optics-integral equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996).
[CrossRef]

Y. Mano, “Exact solution of electromagnetic scattering by a three-dimensional hexagonal ice column obtained with the boundary-element method,” Appl. Opt. 39, 5541–5546 (2000).
[CrossRef]

P. Yang, H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512–5523 (2005).
[CrossRef]

L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, “Single-scattering properties of tri-axial ellipsoidal particles for a size parameter range from the Rayleigh to geometric-optics regimes,” Appl. Opt. 48, 114–126 (2009).
[CrossRef]

T. Y. Nakajima, T. Nakajima, K. Yoshimori, S. K. Mishra, and S. N. Tripathi, “Development of a light scattering solver applicable to particles of arbitrary shape on the basis of the surface integral equations method of Müller-type (SIEMM): Part I. Methodology, accuracy of calculation, and electromagnetic current on the particle urface,” Appl. Opt. 48, 3526–3536 (2009).
[CrossRef]

T. Y. Nakajima, T. Tsuchiya, H. Ishida, T. N. Matsui, and H. Shimoda, “Cloud detection performance of spaceborne visible-to-infrared multispectral imager,” Appl. Opt. 50, 2601–2616 (2011).
[CrossRef]

Geophys. Res. Lett.

J. Riedi, M. Doutriaux-Boucher, P. Goloub, and P. Couvert, “Global distribution of cloud top phase from POLDER/ADEOS I,” Geophys. Res. Lett. 27, 1707–1710 (2000).
[CrossRef]

Int. J. Remote Sens.

Y. Xie, P. Yang, G. W. Kattawar, P. Minnis, Y. X. Hu, and D. L. Wu, “Determination of ice cloud models using MODIS and MISR data,” Int. J. Remote Sens. 33, 4219–4253 (2012).
[CrossRef]

J. Aerosol Sci.

Z. Meng, P. Yang, G. W. Kattawar, L. Bi, K. N. Liou, and I. Laszlo, “Single-scattering properties of nonspherical mineral dust aerosols: A database for application to radiative transfer calculations,” J. Aerosol Sci. 41, 501–512 (2010).
[CrossRef]

J. Appl. Meteorol. Clim.

P. Yang, Z. Zhang, G. W. Kattawar, S. G. Warren, B. A. Baum, H.-L. Huang, Y. Hu, D. Winker, and J. Iaquinta, “Effect of cavities on the optical properties of bullet rosettes: Implications for active and passive remote sensing of ice cloud properties,” J. Appl. Meteorol. Clim. 47, 2311–2330 (2008).
[CrossRef]

J. Atmos. Ocean. Technol.

X. Liu, S. Ding, L. Bi, and P. Yang, “On the use of scattering kernels to calculate ice cloud bulk optical properties,” J. Atmos. Ocean. Technol. 29, 50–63 (2012).
[CrossRef]

J. Atmos. Sci.

T. Y. Nakajima, K. Suzuki, and G. L. Stephens, “Droplet growth in warm water clouds observed by the A-Train. Part I: Sensitivity analysis of the MODIS-derived cloud droplet size,” J. Atmos. Sci. 67, 1884–1896 (2010).
[CrossRef]

T. Y. Nakajima, K. Suzuki, and G. L. Stephens, “Droplet growth in warm water clouds observed by the A-Train. Part II: A multi-sensor view,” J. Atmos. Sci. 67, 1897–1907 (2010).
[CrossRef]

A. Heymsfield, “Ice crystal terminal velocities,” J. Atmos. Sci. 29, 1348–1357 (1972).
[CrossRef]

Q. Fu, “A new parameterization of an asymmetry factor of cirrus clouds for climate models,” J. Atmos. Sci. 64, 4144–4154 (2007).
[CrossRef]

Y. Takano and K. N. Liou, “Radiative transfer in cirrus clouds. III. Light scattering by irregular ice crystals,” J. Atmos. Sci. 52, 818–837 (1995).
[CrossRef]

T. Y. Nakajima and T. Nakajima, “Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions,” J. Atmos. Sci. 52, 4043–4059 (1995).
[CrossRef]

G. L. Stephens, S. C. Tsay, P. W. Stackhouse, and P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback,” J. Atmos. Sci. 47, 1742–1754 (1990).
[CrossRef]

J. Clim.

D. P. Wylie, W. P. Menzel, H. M. Woolf, and K. I. Strabala, “Four years of global cirrus cloud statistics using HIRS,” J. Clim. 7, 1972–1986 (1994).
[CrossRef]

J. Climate

Q. Fu, “An accurate parameterization of the solar radiative properties of cirrus clouds for climate models,” J. Climate 9, 2058–2082 (1996).
[CrossRef]

Q. Fu, P. Yang, and W. B. Sun, “An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models,” J. Climate 25, 2223–2237 (1998).
[CrossRef]

J. Geophys. Res.

P. Yang, K. N. Liou, K. Wyser, and D. Mitchell, “Parameterization of the scattering and absorption properties of individual ice crystals,” J. Geophys. Res. 105, 4699–4718 (2000).
[CrossRef]

J. Dim, H. Murakami, T. Y. Nakajima, B. Nordell, A. Heidinger, and T. Takamura, “The recent state of the climate: driving components of cloud type variability,” J. Geophys. Res. 116, D11117 (2011).
[CrossRef]

Y. Xie, P. Yang, G. W. Kattawar, P. Minnis, and Y. X. Hu, “Effect of the inhomogeneity of ice crystals on retrieving ice cloud optical thickness and effective particle size,” J. Geophys. Res. 114, D11203 (2009).
[CrossRef]

S. G. Warren and R. E. Brandt, “Optical constants of ice from the ultraviolet to the microwave: a revised compilation,” J. Geophys. Res. 113, D14220 (2008).
[CrossRef]

J. Opt. Soc. Am.

P. Yang and K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. 13, 2072–2085 (1996).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

T. Nakajima and M. Tanaka, “Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 35, 13–21 (1986).
[CrossRef]

H. Ishimoto, K. Masuda, Y. Mano, N. Orikasa, and A. Uchiyama, “Irregularly shaped ice aggregates in optical modeling of convectively generated ice clouds,” J. Quant. Spectrosc. Radiat. Transfer 113, 632–643 (2012).
[CrossRef]

M. I. Mishchenko and L. D. Travis, “Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented rotationally symmetric scatterers,” J. Quant. Spectrosc. Radiat. Transfer 60, 309–324 (1998).
[CrossRef]

L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112, 1492–1508 (2011).
[CrossRef]

Mon. Weather Rev.

K. N. Liou, “Influence of cirrus clouds on weather and climate processes: A global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).
[CrossRef]

Philadelphia Mag.

T. Kobayashi, “The growth of snow crystals at low supersaturation,” Philadelphia Mag. 6, 1363–1370 (1961).
[CrossRef]

Proc. SPIE

T. Y. Nakajima, T. Nakajima, and A. K. Alexander, “Radiance transfer through light scattering media with nonspherical large particles: direct and indirect problems,” Proc. SPIE 3220, 2–12 (1997).
[CrossRef]

K. Tanaka, Y. Okamura, T. Amano, M. Hiramatsu, and K. Shiratama, “Development status of the second-generation global imager (SGLI) on GCOM-C,” Proc. SPIE 7474, 74740N (2009).
[CrossRef]

M. Hiramatsu, K. Tanaka, Y. Okamura, T. Amano, and K. Shiratama, “Design challenge on forthcoming SGLI boarded on GCOM-C,” Proc. SPIE 6744, 67440L (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Definition of the hexagonal column and plate.

Fig. 2.
Fig. 2.

Grid system of the real and imaginary parts of refractive index in the SW3 channel where transmissivity of the response function is greater than 1% (step size of the real part (Δmr) is 0.001, step size of the imaginary part (ln(Δmi)) is 1.28).

Fig. 3.
Fig. 3.

(a) Difference of radiance at different step sizes of the imaginary part (I(Δmi): radiance with variance in step size of the imaginary part; Itrue: exact radiance at finest step size of 0.04). (b) Difference of radiance at different step sizes of the real part of ice refractive index in the SGLI-SW3 channel calculated by R-STAR (I(Δmr): radiance with variance step size of the real part; Itrue: exact radiance at the finest step size of 0.001; noise: 1.75%, SGLI sensor noise in SW3 channel; aspect ratio of hexagonal: 2a/L=1, solar zenith angle=30°, satellite zenith angle=0°, relative azimuthal angle=0°, atmospheric model: US-standard, optical thickness=8).

Fig. 4.
Fig. 4.

Cloud retrieval error of the effective particle radius with different step sizes of the real part of ice refractive index in SGLI-SW3 channel (aspect ratio of hexagonal: 2a/L=1, solar zenithangle=30°, satellite zenith angle=0°, relative azimuthal angle=0°, atmospheric model: US-standard, optical thickness=8).

Tables (3)

Tables Icon

Table 1. Specification of the SGLI

Tables Icon

Table 2. Size Parameter Resolutions Selected for Calculating Light Scattering Properties

Tables Icon

Table 3. Step Sizes of the Real and Imaginary Parts of Complex Refractive Index in the SGLI-SW3 Channela

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

α=2πreqvλ,
ar=2aL,
reqv=3v4A,
De=20r3n(r)dr0r2n(r)dr,
n(r)=Nσ2πexp[(LnrLnr0)22σ2],
Ere=|ΔreΔL|(|ΔLsensor|+|ΔLm|),

Metrics