Abstract

The direct multiangle solution is considered, which allows improving the scanning lidar-data-inversion accuracy when the requirement of the horizontally stratified atmosphere is poorly met. The signal measured at zenith or close to zenith is used as a core source for extracting optical characteristics of the atmospheric aerosol loading. The multiangle signals are used as auxiliary data to extract the vertical transmittance profile from the zenith signal. Details of the retrieval methodology are considered that eliminate, or at least soften, some specific ambiguities in the multiangle measurements in horizontally heterogeneous atmospheres. Simulated and experimental elastic lidar data are presented that illustrate the essentials of the data-processing technique. Finally, the prospects of the utilization of high-spectral-resolution lidar in the multiangle mode are discussed.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kano, “On the determination of backscattering and extinction coefficient of the atmosphere by using a laser radar,” Papers Meteorol. Geophys. 19, 121–129 (1968).
  2. P. M. Hamilton, “Lidar measurement of backscatter and attenuation of atmospheric aerosol,” Atmos. Environ. 3, 221–223 (1969).
    [CrossRef]
  3. J. D. Spinhirne, J. A. Reagan, and B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
    [CrossRef]
  4. T. Takamura, Y. Sasano, and T. Hayasaka, “Tropospheric aerosol optical properties derived from lidar, sun photometer, and optical particle counter measurements,” Appl. Opt. 33, 7132–7140 (1994).
    [CrossRef]
  5. M. Sicard, P. Chazette, J. Pelon, J. G. Won, and S. Yoon, “Variational method for the retrieval of the optical thickness and the backscatter coefficient from multiangle lidar profiles,” Appl. Opt. 41, 493–502 (2002).
    [CrossRef]
  6. J. N. Porter, B. Lienert, and S. K. Sharma, “Using horizontal and slant lidar measurements to obtain calibrated aerosol scattering coefficients from a coastal lidar in Hawaii,” J. Atmos. Ocean. Technol. 17, 1445–1454 (2000).
    [CrossRef]
  7. V. A. Kovalev, “Distortion of the extinction-coefficient profiles caused by systematic distortions in lidar data,” Appl. Opt. 43, 3191–3198 (2004).
    [CrossRef]
  8. V. A. Kovalev, W. M. Hao, C. Wold, and M. Adam, “Experimental method for the examination of systematic distortions in lidar data,” Appl. Opt. 46, 6710–6718 (2007).
    [CrossRef]
  9. V. A. Kovalev, W. M. Hao, and C. Wold, “Determination of the particulate extinction-coefficient profile and the column-integrated lidar ratios using the backscatter-coefficient and optical-depth profiles,” Appl. Opt. 46, 8627–8634 (2007).
    [CrossRef]
  10. V. Kovalev, C. Wold, W. M. Hao, and B. Nordgren, “Improved methodology for the retrieval of the particulate extinction coefficient and lidar ratio from the lidar multiangle measurement,” Proc. SPIE 6750, 67501B (2007).
    [CrossRef]
  11. V. A. Kovalev, A. Petkov, C. Wold, and W. M. Hao, “Modified technique for processing multiangle lidar data measured in clear and moderately polluted atmospheres,” Appl. Opt. 50, 4957–4966 (2011).
    [CrossRef]
  12. M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47, 346–358 (2008).
    [CrossRef]
  13. J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47, 6734–6752 (2008).
    [CrossRef]
  14. B. Liu, M. Esselborn, M. Wirth, A. Fix, D. Bi, and G. Ehret, “Influence of molecular scattering models on aerosol optical properties measured by high spectral resolution lidar,” Appl. Opt. 48, 5143–5154 (2009).
    [CrossRef]
  15. R. R. Rogers, C. A. Hostetler, J. W. Hair, R. A. Ferrare, Z. Liu, M. D. Obland, D. B. Harper, A. L. Cook, K. A. Powell, M. A. Vaughan, and D. M. Winker, “Assessment of the CALIPSO lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne high spectral resolution lidar,” Atmos. Chem. Phys. 11, 1295–1311 (2011).
    [CrossRef]
  16. M. Adam, V. Kovalev, C. Wold, J. Newton, M. Pahlow, W. M. Hao, and M. B. Parlange, “Application of the Kano–Hamilton multiangle inversion method in clear atmospheres,” J. Atmos. Ocean. Technol. 24, 2014–2028 (2007).
    [CrossRef]
  17. D. N. Whiteman, “Application of statistical methods to the determination of slope in lidar data,” Appl. Opt. 38, 3360–3369 (1999).
    [CrossRef]
  18. S. N. Volkov, B. V. Kaul, and D. I. Shelefontuk, “Optimal method of linear regression in laser remote sensing,” Appl. Opt. 41, 5078–5083 (2002).
    [CrossRef]
  19. F. Rocadenbosch, A. Comeron, and D. Pineda, “Assessment of lidar inversion errors for homogeneous atmospheres,” Appl. Opt. 37, 2199–2206 (1998).
    [CrossRef]
  20. M. Adam, “Vertical versus scanning lidar measurements in horizontally homogeneous atmosphere,” Appl. Opt. 51, 4491–4500 (2012).
    [CrossRef]

2012

2011

V. A. Kovalev, A. Petkov, C. Wold, and W. M. Hao, “Modified technique for processing multiangle lidar data measured in clear and moderately polluted atmospheres,” Appl. Opt. 50, 4957–4966 (2011).
[CrossRef]

R. R. Rogers, C. A. Hostetler, J. W. Hair, R. A. Ferrare, Z. Liu, M. D. Obland, D. B. Harper, A. L. Cook, K. A. Powell, M. A. Vaughan, and D. M. Winker, “Assessment of the CALIPSO lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne high spectral resolution lidar,” Atmos. Chem. Phys. 11, 1295–1311 (2011).
[CrossRef]

2009

2008

2007

V. A. Kovalev, W. M. Hao, C. Wold, and M. Adam, “Experimental method for the examination of systematic distortions in lidar data,” Appl. Opt. 46, 6710–6718 (2007).
[CrossRef]

V. A. Kovalev, W. M. Hao, and C. Wold, “Determination of the particulate extinction-coefficient profile and the column-integrated lidar ratios using the backscatter-coefficient and optical-depth profiles,” Appl. Opt. 46, 8627–8634 (2007).
[CrossRef]

M. Adam, V. Kovalev, C. Wold, J. Newton, M. Pahlow, W. M. Hao, and M. B. Parlange, “Application of the Kano–Hamilton multiangle inversion method in clear atmospheres,” J. Atmos. Ocean. Technol. 24, 2014–2028 (2007).
[CrossRef]

V. Kovalev, C. Wold, W. M. Hao, and B. Nordgren, “Improved methodology for the retrieval of the particulate extinction coefficient and lidar ratio from the lidar multiangle measurement,” Proc. SPIE 6750, 67501B (2007).
[CrossRef]

2004

2002

2000

J. N. Porter, B. Lienert, and S. K. Sharma, “Using horizontal and slant lidar measurements to obtain calibrated aerosol scattering coefficients from a coastal lidar in Hawaii,” J. Atmos. Ocean. Technol. 17, 1445–1454 (2000).
[CrossRef]

1999

1998

1994

1980

J. D. Spinhirne, J. A. Reagan, and B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
[CrossRef]

1969

P. M. Hamilton, “Lidar measurement of backscatter and attenuation of atmospheric aerosol,” Atmos. Environ. 3, 221–223 (1969).
[CrossRef]

1968

M. Kano, “On the determination of backscattering and extinction coefficient of the atmosphere by using a laser radar,” Papers Meteorol. Geophys. 19, 121–129 (1968).

Adam, M.

M. Adam, “Vertical versus scanning lidar measurements in horizontally homogeneous atmosphere,” Appl. Opt. 51, 4491–4500 (2012).
[CrossRef]

M. Adam, V. Kovalev, C. Wold, J. Newton, M. Pahlow, W. M. Hao, and M. B. Parlange, “Application of the Kano–Hamilton multiangle inversion method in clear atmospheres,” J. Atmos. Ocean. Technol. 24, 2014–2028 (2007).
[CrossRef]

V. A. Kovalev, W. M. Hao, C. Wold, and M. Adam, “Experimental method for the examination of systematic distortions in lidar data,” Appl. Opt. 46, 6710–6718 (2007).
[CrossRef]

Bi, D.

Chazette, P.

Comeron, A.

Cook, A. L.

R. R. Rogers, C. A. Hostetler, J. W. Hair, R. A. Ferrare, Z. Liu, M. D. Obland, D. B. Harper, A. L. Cook, K. A. Powell, M. A. Vaughan, and D. M. Winker, “Assessment of the CALIPSO lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne high spectral resolution lidar,” Atmos. Chem. Phys. 11, 1295–1311 (2011).
[CrossRef]

J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47, 6734–6752 (2008).
[CrossRef]

Ehret, G.

Esselborn, M.

Ferrare, R. A.

R. R. Rogers, C. A. Hostetler, J. W. Hair, R. A. Ferrare, Z. Liu, M. D. Obland, D. B. Harper, A. L. Cook, K. A. Powell, M. A. Vaughan, and D. M. Winker, “Assessment of the CALIPSO lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne high spectral resolution lidar,” Atmos. Chem. Phys. 11, 1295–1311 (2011).
[CrossRef]

J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47, 6734–6752 (2008).
[CrossRef]

Fix, A.

Hair, J. W.

R. R. Rogers, C. A. Hostetler, J. W. Hair, R. A. Ferrare, Z. Liu, M. D. Obland, D. B. Harper, A. L. Cook, K. A. Powell, M. A. Vaughan, and D. M. Winker, “Assessment of the CALIPSO lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne high spectral resolution lidar,” Atmos. Chem. Phys. 11, 1295–1311 (2011).
[CrossRef]

J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47, 6734–6752 (2008).
[CrossRef]

Hamilton, P. M.

P. M. Hamilton, “Lidar measurement of backscatter and attenuation of atmospheric aerosol,” Atmos. Environ. 3, 221–223 (1969).
[CrossRef]

Hao, W. M.

V. A. Kovalev, A. Petkov, C. Wold, and W. M. Hao, “Modified technique for processing multiangle lidar data measured in clear and moderately polluted atmospheres,” Appl. Opt. 50, 4957–4966 (2011).
[CrossRef]

M. Adam, V. Kovalev, C. Wold, J. Newton, M. Pahlow, W. M. Hao, and M. B. Parlange, “Application of the Kano–Hamilton multiangle inversion method in clear atmospheres,” J. Atmos. Ocean. Technol. 24, 2014–2028 (2007).
[CrossRef]

V. Kovalev, C. Wold, W. M. Hao, and B. Nordgren, “Improved methodology for the retrieval of the particulate extinction coefficient and lidar ratio from the lidar multiangle measurement,” Proc. SPIE 6750, 67501B (2007).
[CrossRef]

V. A. Kovalev, W. M. Hao, and C. Wold, “Determination of the particulate extinction-coefficient profile and the column-integrated lidar ratios using the backscatter-coefficient and optical-depth profiles,” Appl. Opt. 46, 8627–8634 (2007).
[CrossRef]

V. A. Kovalev, W. M. Hao, C. Wold, and M. Adam, “Experimental method for the examination of systematic distortions in lidar data,” Appl. Opt. 46, 6710–6718 (2007).
[CrossRef]

Harper, D. B.

R. R. Rogers, C. A. Hostetler, J. W. Hair, R. A. Ferrare, Z. Liu, M. D. Obland, D. B. Harper, A. L. Cook, K. A. Powell, M. A. Vaughan, and D. M. Winker, “Assessment of the CALIPSO lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne high spectral resolution lidar,” Atmos. Chem. Phys. 11, 1295–1311 (2011).
[CrossRef]

J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47, 6734–6752 (2008).
[CrossRef]

Hayasaka, T.

Herman, B. M.

J. D. Spinhirne, J. A. Reagan, and B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
[CrossRef]

Hostetler, C. A.

R. R. Rogers, C. A. Hostetler, J. W. Hair, R. A. Ferrare, Z. Liu, M. D. Obland, D. B. Harper, A. L. Cook, K. A. Powell, M. A. Vaughan, and D. M. Winker, “Assessment of the CALIPSO lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne high spectral resolution lidar,” Atmos. Chem. Phys. 11, 1295–1311 (2011).
[CrossRef]

J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47, 6734–6752 (2008).
[CrossRef]

Hovis, F. E.

Izquierdo, L. R.

Kano, M.

M. Kano, “On the determination of backscattering and extinction coefficient of the atmosphere by using a laser radar,” Papers Meteorol. Geophys. 19, 121–129 (1968).

Kaul, B. V.

Kovalev, V.

V. Kovalev, C. Wold, W. M. Hao, and B. Nordgren, “Improved methodology for the retrieval of the particulate extinction coefficient and lidar ratio from the lidar multiangle measurement,” Proc. SPIE 6750, 67501B (2007).
[CrossRef]

M. Adam, V. Kovalev, C. Wold, J. Newton, M. Pahlow, W. M. Hao, and M. B. Parlange, “Application of the Kano–Hamilton multiangle inversion method in clear atmospheres,” J. Atmos. Ocean. Technol. 24, 2014–2028 (2007).
[CrossRef]

Kovalev, V. A.

Lienert, B.

J. N. Porter, B. Lienert, and S. K. Sharma, “Using horizontal and slant lidar measurements to obtain calibrated aerosol scattering coefficients from a coastal lidar in Hawaii,” J. Atmos. Ocean. Technol. 17, 1445–1454 (2000).
[CrossRef]

Liu, B.

Liu, Z.

R. R. Rogers, C. A. Hostetler, J. W. Hair, R. A. Ferrare, Z. Liu, M. D. Obland, D. B. Harper, A. L. Cook, K. A. Powell, M. A. Vaughan, and D. M. Winker, “Assessment of the CALIPSO lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne high spectral resolution lidar,” Atmos. Chem. Phys. 11, 1295–1311 (2011).
[CrossRef]

Mack, T. L.

Newton, J.

M. Adam, V. Kovalev, C. Wold, J. Newton, M. Pahlow, W. M. Hao, and M. B. Parlange, “Application of the Kano–Hamilton multiangle inversion method in clear atmospheres,” J. Atmos. Ocean. Technol. 24, 2014–2028 (2007).
[CrossRef]

Nordgren, B.

V. Kovalev, C. Wold, W. M. Hao, and B. Nordgren, “Improved methodology for the retrieval of the particulate extinction coefficient and lidar ratio from the lidar multiangle measurement,” Proc. SPIE 6750, 67501B (2007).
[CrossRef]

Obland, M. D.

R. R. Rogers, C. A. Hostetler, J. W. Hair, R. A. Ferrare, Z. Liu, M. D. Obland, D. B. Harper, A. L. Cook, K. A. Powell, M. A. Vaughan, and D. M. Winker, “Assessment of the CALIPSO lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne high spectral resolution lidar,” Atmos. Chem. Phys. 11, 1295–1311 (2011).
[CrossRef]

Pahlow, M.

M. Adam, V. Kovalev, C. Wold, J. Newton, M. Pahlow, W. M. Hao, and M. B. Parlange, “Application of the Kano–Hamilton multiangle inversion method in clear atmospheres,” J. Atmos. Ocean. Technol. 24, 2014–2028 (2007).
[CrossRef]

Parlange, M. B.

M. Adam, V. Kovalev, C. Wold, J. Newton, M. Pahlow, W. M. Hao, and M. B. Parlange, “Application of the Kano–Hamilton multiangle inversion method in clear atmospheres,” J. Atmos. Ocean. Technol. 24, 2014–2028 (2007).
[CrossRef]

Pelon, J.

Petkov, A.

Pineda, D.

Porter, J. N.

J. N. Porter, B. Lienert, and S. K. Sharma, “Using horizontal and slant lidar measurements to obtain calibrated aerosol scattering coefficients from a coastal lidar in Hawaii,” J. Atmos. Ocean. Technol. 17, 1445–1454 (2000).
[CrossRef]

Powell, K. A.

R. R. Rogers, C. A. Hostetler, J. W. Hair, R. A. Ferrare, Z. Liu, M. D. Obland, D. B. Harper, A. L. Cook, K. A. Powell, M. A. Vaughan, and D. M. Winker, “Assessment of the CALIPSO lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne high spectral resolution lidar,” Atmos. Chem. Phys. 11, 1295–1311 (2011).
[CrossRef]

Reagan, J. A.

J. D. Spinhirne, J. A. Reagan, and B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
[CrossRef]

Rocadenbosch, F.

Rogers, R. R.

R. R. Rogers, C. A. Hostetler, J. W. Hair, R. A. Ferrare, Z. Liu, M. D. Obland, D. B. Harper, A. L. Cook, K. A. Powell, M. A. Vaughan, and D. M. Winker, “Assessment of the CALIPSO lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne high spectral resolution lidar,” Atmos. Chem. Phys. 11, 1295–1311 (2011).
[CrossRef]

Sasano, Y.

Sharma, S. K.

J. N. Porter, B. Lienert, and S. K. Sharma, “Using horizontal and slant lidar measurements to obtain calibrated aerosol scattering coefficients from a coastal lidar in Hawaii,” J. Atmos. Ocean. Technol. 17, 1445–1454 (2000).
[CrossRef]

Shelefontuk, D. I.

Sicard, M.

Spinhirne, J. D.

J. D. Spinhirne, J. A. Reagan, and B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
[CrossRef]

Takamura, T.

Tesche, M.

Vaughan, M. A.

R. R. Rogers, C. A. Hostetler, J. W. Hair, R. A. Ferrare, Z. Liu, M. D. Obland, D. B. Harper, A. L. Cook, K. A. Powell, M. A. Vaughan, and D. M. Winker, “Assessment of the CALIPSO lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne high spectral resolution lidar,” Atmos. Chem. Phys. 11, 1295–1311 (2011).
[CrossRef]

Volkov, S. N.

Welch, W.

Whiteman, D. N.

Winker, D. M.

R. R. Rogers, C. A. Hostetler, J. W. Hair, R. A. Ferrare, Z. Liu, M. D. Obland, D. B. Harper, A. L. Cook, K. A. Powell, M. A. Vaughan, and D. M. Winker, “Assessment of the CALIPSO lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne high spectral resolution lidar,” Atmos. Chem. Phys. 11, 1295–1311 (2011).
[CrossRef]

Wirth, M.

Wold, C.

V. A. Kovalev, A. Petkov, C. Wold, and W. M. Hao, “Modified technique for processing multiangle lidar data measured in clear and moderately polluted atmospheres,” Appl. Opt. 50, 4957–4966 (2011).
[CrossRef]

V. A. Kovalev, W. M. Hao, C. Wold, and M. Adam, “Experimental method for the examination of systematic distortions in lidar data,” Appl. Opt. 46, 6710–6718 (2007).
[CrossRef]

V. A. Kovalev, W. M. Hao, and C. Wold, “Determination of the particulate extinction-coefficient profile and the column-integrated lidar ratios using the backscatter-coefficient and optical-depth profiles,” Appl. Opt. 46, 8627–8634 (2007).
[CrossRef]

V. Kovalev, C. Wold, W. M. Hao, and B. Nordgren, “Improved methodology for the retrieval of the particulate extinction coefficient and lidar ratio from the lidar multiangle measurement,” Proc. SPIE 6750, 67501B (2007).
[CrossRef]

M. Adam, V. Kovalev, C. Wold, J. Newton, M. Pahlow, W. M. Hao, and M. B. Parlange, “Application of the Kano–Hamilton multiangle inversion method in clear atmospheres,” J. Atmos. Ocean. Technol. 24, 2014–2028 (2007).
[CrossRef]

Won, J. G.

Yoon, S.

Appl. Opt.

T. Takamura, Y. Sasano, and T. Hayasaka, “Tropospheric aerosol optical properties derived from lidar, sun photometer, and optical particle counter measurements,” Appl. Opt. 33, 7132–7140 (1994).
[CrossRef]

F. Rocadenbosch, A. Comeron, and D. Pineda, “Assessment of lidar inversion errors for homogeneous atmospheres,” Appl. Opt. 37, 2199–2206 (1998).
[CrossRef]

D. N. Whiteman, “Application of statistical methods to the determination of slope in lidar data,” Appl. Opt. 38, 3360–3369 (1999).
[CrossRef]

M. Sicard, P. Chazette, J. Pelon, J. G. Won, and S. Yoon, “Variational method for the retrieval of the optical thickness and the backscatter coefficient from multiangle lidar profiles,” Appl. Opt. 41, 493–502 (2002).
[CrossRef]

S. N. Volkov, B. V. Kaul, and D. I. Shelefontuk, “Optimal method of linear regression in laser remote sensing,” Appl. Opt. 41, 5078–5083 (2002).
[CrossRef]

V. A. Kovalev, “Distortion of the extinction-coefficient profiles caused by systematic distortions in lidar data,” Appl. Opt. 43, 3191–3198 (2004).
[CrossRef]

V. A. Kovalev, W. M. Hao, C. Wold, and M. Adam, “Experimental method for the examination of systematic distortions in lidar data,” Appl. Opt. 46, 6710–6718 (2007).
[CrossRef]

V. A. Kovalev, W. M. Hao, and C. Wold, “Determination of the particulate extinction-coefficient profile and the column-integrated lidar ratios using the backscatter-coefficient and optical-depth profiles,” Appl. Opt. 46, 8627–8634 (2007).
[CrossRef]

M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47, 346–358 (2008).
[CrossRef]

J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47, 6734–6752 (2008).
[CrossRef]

B. Liu, M. Esselborn, M. Wirth, A. Fix, D. Bi, and G. Ehret, “Influence of molecular scattering models on aerosol optical properties measured by high spectral resolution lidar,” Appl. Opt. 48, 5143–5154 (2009).
[CrossRef]

V. A. Kovalev, A. Petkov, C. Wold, and W. M. Hao, “Modified technique for processing multiangle lidar data measured in clear and moderately polluted atmospheres,” Appl. Opt. 50, 4957–4966 (2011).
[CrossRef]

M. Adam, “Vertical versus scanning lidar measurements in horizontally homogeneous atmosphere,” Appl. Opt. 51, 4491–4500 (2012).
[CrossRef]

Atmos. Chem. Phys.

R. R. Rogers, C. A. Hostetler, J. W. Hair, R. A. Ferrare, Z. Liu, M. D. Obland, D. B. Harper, A. L. Cook, K. A. Powell, M. A. Vaughan, and D. M. Winker, “Assessment of the CALIPSO lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne high spectral resolution lidar,” Atmos. Chem. Phys. 11, 1295–1311 (2011).
[CrossRef]

Atmos. Environ.

P. M. Hamilton, “Lidar measurement of backscatter and attenuation of atmospheric aerosol,” Atmos. Environ. 3, 221–223 (1969).
[CrossRef]

J. Appl. Meteorol.

J. D. Spinhirne, J. A. Reagan, and B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
[CrossRef]

J. Atmos. Ocean. Technol.

J. N. Porter, B. Lienert, and S. K. Sharma, “Using horizontal and slant lidar measurements to obtain calibrated aerosol scattering coefficients from a coastal lidar in Hawaii,” J. Atmos. Ocean. Technol. 17, 1445–1454 (2000).
[CrossRef]

M. Adam, V. Kovalev, C. Wold, J. Newton, M. Pahlow, W. M. Hao, and M. B. Parlange, “Application of the Kano–Hamilton multiangle inversion method in clear atmospheres,” J. Atmos. Ocean. Technol. 24, 2014–2028 (2007).
[CrossRef]

Papers Meteorol. Geophys.

M. Kano, “On the determination of backscattering and extinction coefficient of the atmosphere by using a laser radar,” Papers Meteorol. Geophys. 19, 121–129 (1968).

Proc. SPIE

V. Kovalev, C. Wold, W. M. Hao, and B. Nordgren, “Improved methodology for the retrieval of the particulate extinction coefficient and lidar ratio from the lidar multiangle measurement,” Proc. SPIE 6750, 67501B (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Data points C β π , φ ( h ) (filled squares), τ φ ( 0 , h ) (filled triangles), and τ φ ( 0 , h ) sin φ i (empty triangles) versus the elevation angle φ i for the angles selected for the numerical experiment.

Fig. 2.
Fig. 2.

Dependence of the data points y i ( h ) (filled circles) and the linear fit y ( h ) (dashed line) on x = 1 / sin φ i . The actual intercept A 90 ( h ) for the zenith direction is shown on the y axis as the empty circle. The intercept points of the linear fit, A ( h ) and A ( h ) , are shown as the filled triangle and the filled square, respectively.

Fig. 3.
Fig. 3.

Dependencies of the data points on x used for the second numerical experiment. The symbols are the same as in Fig. 1.

Fig. 4.
Fig. 4.

Dependencies of the data points on x used for the second numerical experiment. The symbols are the same as in Fig. 1. The data points shown in Fig. 3 are used and b ( h ) is replaced by b mol ( h ) .

Fig. 5.
Fig. 5.

Logarithms of the square-range-corrected signals versus height for 12 elevation angles retrieved from the lidar data at 355 nm in a smoke-polluted atmosphere on 28 August 2009. The height intervals for the signals shown in the figure are taken arbitrarily to provide better visualization of the specifics of the functions y i ( h ) in the searched atmosphere.

Fig. 6.
Fig. 6.

Particulate extinction coefficient profiles, extracted from the functions y i ( h ) shown in Fig. 5 with the sliding range resolution of 300 m using the conventional Kano–Hamilton retrieval procedure. The values of r max in meters selected for the inversion are shown in the legend.

Fig. 7.
Fig. 7.

Two-way vertical particulate transmission profiles, T 90 , p 2 ( 0 , h ) , extracted with Eq. (15) from the functions y i ( h ) in Fig. 5, and their average, T 90 , p , aver 2 ( 0 , h ) , obtained after excluding three marginal profiles.

Fig. 8.
Fig. 8.

Vertical profile of the particulate extinction coefficient extracted from the average profile T 90 , p , aver 2 ( 0 , h ) shown in Fig. 7 (thick curve) and that extracted using the Kano–Hamilton solution with r max = 7000 m (dotted curve).

Fig. 9.
Fig. 9.

Dependence of the data points y i ( h ) (filled circles) and the linear fit y ( h ) (dashed line) on x for the scanning HSRL, operating in the atmospheric conditions shown in Fig. 3.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

P 90 ( h ) h 2 = C β π , 90 ( h ) T 90 2 ( 0 , h ) .
T 90 2 ( 0 , h ) = exp [ 2 τ 90 ( 0 , h ) ] ,
T 90 2 ( 0 , h ) = P 90 ( h ) h 2 / C β π , 90 ( h ) ,
y i ( h ) = ln [ P i ( h ) ( h / sin φ i ) 2 ] .
y ( h ) = A ( h ) + b ( h ) x ,
y 90 ( h ) = ln [ P 90 ( h ) h 2 ] .
A ( h ) = y 90 ( h ) b ( h ) .
C β π , 90 ( h ) = exp [ A ( h ) ] .
C β π , 90 ( h ) C β π , 90 ( h ) = exp [ 2 τ 90 ( 0 , h ) b ( h ) ] .
δ [ T 90 2 ( 0 , h ) ] = exp [ 2 τ 90 ( 0 , h ) b ( h ) ] 1 .
b mol ( h ) = 2 0 h κ m ( h ) d h ,
b ( h ) = min [ b ( h min ) , b ( h min + Δ h ) , , b ( h Δ h ) , b ( h ) ] .
A ( h ) = y ( h , x min ) b ( h ) x min .
A adj ( h ) = max [ A ( h min ) , A ( h min + Δ h ) , , A ( h Δ h ) , h ] .
T 90 , p 2 ( 0 , h ) = [ T 80 2 ( 0 , h ) T 80 , m 2 ( 0 , h ) ] ( 1 / x min ) = [ P 80 ( h ) ( h x min ) 2 T 80 , m 2 ( 0 , h ) exp [ A adj ( h ) ] ] ( 1 / x min ) .
P m ( h ) h 2 sin 2 φ = C m Δ h sin φ f m ( T , p ) β π , m ( h ) exp { 2 [ τ m , φ ( 0 , h ) + τ p , φ ( 0 , h ) ] } ,
ln [ P m ( h ) h 2 sin φ ] = A m ( h ) 2 sin φ [ τ m , 90 ( 0 , h ) + τ p , 90 ( 0 , h ) ] ,
A m ( h ) = ln [ C m Δ h sin φ f m ( T , p ) β π , m ( h ) ] ,

Metrics