Abstract

This paper uses the spectral characteristics of water as a cue to detect biological materials in a scene. The spectra of a wide variety of materials were measured; most of the biological materials showed a spectral feature corresponding to the absorption peak of water at 962 nm. A machine vision system that used two narrowband near infrared light sources and a conventional CCD camera is described. The ability of the system to detect biological material is demonstrated in a series of examples. Water content is not an infallible indicator that a material is biological—wet inanimate surfaces will give a false positive, and some tissues are surrounded by highly scattering, impermeable layers that conceal internal water. Nonetheless, in this paper, we will show that many tissues do give a strong response to this feature and dry, nonbiological materials do not.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Curcio and C. Petty, “The near infrared absorption spectrum of liquid water,” J. Opt. Soc. Am. 41, 302–304 (1951).
    [CrossRef]
  2. J. Workman and L. Weyer, Practical Guide to Interpretive Near-Infrared Spectroscopy (CRC Press, 2007).
  3. B. Datt, “Remote sensing of water content in eucalyptus leaves,” Aust. J. Bot. 47, 909–923 (1999).
    [CrossRef]
  4. J. Clevers, L. Kooistra, and M. Schaepman, “Estimating canopy water content using hyperspectral remote sensing data,” Int. J. Appl. Earth Obs. Geoinform. 12, 119–125. (2010).
  5. E. Hunt and B. Rock, “Detection of changes in leaf water content using near- and middle-infrared reflectances,” Remote Sens. Environ. 30, 43–54 (1989).
    [CrossRef]
  6. J. Hebden, S. Arridge, and D. Delpy, “Optical imaging in medicine I: experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
    [CrossRef]
  7. S. R. Arridge and J. C. Hebden, “Optical imaging in medicine II: modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
    [CrossRef]
  8. C.-L. Tsai, J.-C. Chen, and W.-J. Wang, “Near-infrared absorption property of biological soft tissue constituents,” Jpn. J. Med. Electron. Biol. Eng. 21, 7–14 (2001).
  9. G. McGunnigle, “Detecting wet surfaces using near infrared lighting,” J. Opt. Soc. Am. A 27, 1137–1144 (2010).
    [CrossRef]
  10. G. Zonios, “Diffuse reflectance spectroscopy of human colon tissue,” Ph.D. thesis (Massachusetts Institute of Technology, 1998).
  11. V. Hollis, “Non-invasive monitoring of brain tissue temperature by near-infrared spectroscopy,” Ph.D. thesis (University of London, 2002).
  12. G. Branco, “The development and evaluation of head probes for optical imaging of the infant head,” Ph.D. thesis (University of London, 2007).
  13. Scott Prahl, “Optical absorption of hemoglobin,” http://omlc.ogi.edu/spectra/hemoglobin/index.html .
  14. V. Tuchin, Optical Clearing of Tissues and Blood (SPIE, 2005).
  15. R. Graaff, J. Aarnoudse, J. Zijp, P. Sloot, F. de Mul, J. Greve, and M. Koelink, “Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations,” Appl. Opt. 31, 1370–1376(1992).
    [CrossRef]
  16. H. Jensen, S. Marschner, M. Levoy, and P. Hanrahan, “A practical model for subsurface light transport,” in Proceedings of SIGGRAPH’2001 (ACM, 2001), pp. 511–518.
  17. C. Donner, J. Lawrence, R. Ramamoorthi, T. Hachisuka, H. Jensen, and S. Nayar, “An empirical BSSRDF model,” ACM Trans. Graph. 28(3), 30 (2009).
    [CrossRef]
  18. T. Farrell and M. Patterson: “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
    [CrossRef]
  19. S. Prahl, “Light transport in tissue,” Ph.D. thesis (University of Texas at Austin, 1988).
  20. G. Zonios and A. Dimou, “Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties,” Opt. Express 14, 8661–8674(2006).
    [CrossRef]
  21. D. Gates, H. Keegan, J. Schleter, and V. Weidner, “Spectral properties of plants,” Appl. Opt. 4, 11–20 (1965).
    [CrossRef]
  22. M. Slaton, E. Hunt, and W. Smith, “Estimating near-infrared leaf reflectance from leaf structural characteristics,” Am. J. Bot. 88, 278–284 (2001).
    [CrossRef]

2010

J. Clevers, L. Kooistra, and M. Schaepman, “Estimating canopy water content using hyperspectral remote sensing data,” Int. J. Appl. Earth Obs. Geoinform. 12, 119–125. (2010).

G. McGunnigle, “Detecting wet surfaces using near infrared lighting,” J. Opt. Soc. Am. A 27, 1137–1144 (2010).
[CrossRef]

2009

C. Donner, J. Lawrence, R. Ramamoorthi, T. Hachisuka, H. Jensen, and S. Nayar, “An empirical BSSRDF model,” ACM Trans. Graph. 28(3), 30 (2009).
[CrossRef]

2006

2001

C.-L. Tsai, J.-C. Chen, and W.-J. Wang, “Near-infrared absorption property of biological soft tissue constituents,” Jpn. J. Med. Electron. Biol. Eng. 21, 7–14 (2001).

M. Slaton, E. Hunt, and W. Smith, “Estimating near-infrared leaf reflectance from leaf structural characteristics,” Am. J. Bot. 88, 278–284 (2001).
[CrossRef]

1999

B. Datt, “Remote sensing of water content in eucalyptus leaves,” Aust. J. Bot. 47, 909–923 (1999).
[CrossRef]

1997

J. Hebden, S. Arridge, and D. Delpy, “Optical imaging in medicine I: experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine II: modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
[CrossRef]

1992

R. Graaff, J. Aarnoudse, J. Zijp, P. Sloot, F. de Mul, J. Greve, and M. Koelink, “Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations,” Appl. Opt. 31, 1370–1376(1992).
[CrossRef]

T. Farrell and M. Patterson: “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef]

1989

E. Hunt and B. Rock, “Detection of changes in leaf water content using near- and middle-infrared reflectances,” Remote Sens. Environ. 30, 43–54 (1989).
[CrossRef]

1965

1951

Aarnoudse, J.

Arridge, S.

J. Hebden, S. Arridge, and D. Delpy, “Optical imaging in medicine I: experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef]

Arridge, S. R.

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine II: modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
[CrossRef]

Branco, G.

G. Branco, “The development and evaluation of head probes for optical imaging of the infant head,” Ph.D. thesis (University of London, 2007).

Chen, J.-C.

C.-L. Tsai, J.-C. Chen, and W.-J. Wang, “Near-infrared absorption property of biological soft tissue constituents,” Jpn. J. Med. Electron. Biol. Eng. 21, 7–14 (2001).

Clevers, J.

J. Clevers, L. Kooistra, and M. Schaepman, “Estimating canopy water content using hyperspectral remote sensing data,” Int. J. Appl. Earth Obs. Geoinform. 12, 119–125. (2010).

Curcio, J.

Datt, B.

B. Datt, “Remote sensing of water content in eucalyptus leaves,” Aust. J. Bot. 47, 909–923 (1999).
[CrossRef]

de Mul, F.

Delpy, D.

J. Hebden, S. Arridge, and D. Delpy, “Optical imaging in medicine I: experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef]

Dimou, A.

Donner, C.

C. Donner, J. Lawrence, R. Ramamoorthi, T. Hachisuka, H. Jensen, and S. Nayar, “An empirical BSSRDF model,” ACM Trans. Graph. 28(3), 30 (2009).
[CrossRef]

Farrell, T.

T. Farrell and M. Patterson: “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef]

Gates, D.

Graaff, R.

Greve, J.

Hachisuka, T.

C. Donner, J. Lawrence, R. Ramamoorthi, T. Hachisuka, H. Jensen, and S. Nayar, “An empirical BSSRDF model,” ACM Trans. Graph. 28(3), 30 (2009).
[CrossRef]

Hanrahan, P.

H. Jensen, S. Marschner, M. Levoy, and P. Hanrahan, “A practical model for subsurface light transport,” in Proceedings of SIGGRAPH’2001 (ACM, 2001), pp. 511–518.

Hebden, J.

J. Hebden, S. Arridge, and D. Delpy, “Optical imaging in medicine I: experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef]

Hebden, J. C.

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine II: modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
[CrossRef]

Hollis, V.

V. Hollis, “Non-invasive monitoring of brain tissue temperature by near-infrared spectroscopy,” Ph.D. thesis (University of London, 2002).

Hunt, E.

M. Slaton, E. Hunt, and W. Smith, “Estimating near-infrared leaf reflectance from leaf structural characteristics,” Am. J. Bot. 88, 278–284 (2001).
[CrossRef]

E. Hunt and B. Rock, “Detection of changes in leaf water content using near- and middle-infrared reflectances,” Remote Sens. Environ. 30, 43–54 (1989).
[CrossRef]

Jensen, H.

C. Donner, J. Lawrence, R. Ramamoorthi, T. Hachisuka, H. Jensen, and S. Nayar, “An empirical BSSRDF model,” ACM Trans. Graph. 28(3), 30 (2009).
[CrossRef]

H. Jensen, S. Marschner, M. Levoy, and P. Hanrahan, “A practical model for subsurface light transport,” in Proceedings of SIGGRAPH’2001 (ACM, 2001), pp. 511–518.

Keegan, H.

Koelink, M.

Kooistra, L.

J. Clevers, L. Kooistra, and M. Schaepman, “Estimating canopy water content using hyperspectral remote sensing data,” Int. J. Appl. Earth Obs. Geoinform. 12, 119–125. (2010).

Lawrence, J.

C. Donner, J. Lawrence, R. Ramamoorthi, T. Hachisuka, H. Jensen, and S. Nayar, “An empirical BSSRDF model,” ACM Trans. Graph. 28(3), 30 (2009).
[CrossRef]

Levoy, M.

H. Jensen, S. Marschner, M. Levoy, and P. Hanrahan, “A practical model for subsurface light transport,” in Proceedings of SIGGRAPH’2001 (ACM, 2001), pp. 511–518.

Marschner, S.

H. Jensen, S. Marschner, M. Levoy, and P. Hanrahan, “A practical model for subsurface light transport,” in Proceedings of SIGGRAPH’2001 (ACM, 2001), pp. 511–518.

McGunnigle, G.

Nayar, S.

C. Donner, J. Lawrence, R. Ramamoorthi, T. Hachisuka, H. Jensen, and S. Nayar, “An empirical BSSRDF model,” ACM Trans. Graph. 28(3), 30 (2009).
[CrossRef]

Patterson, M.

T. Farrell and M. Patterson: “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef]

Petty, C.

Prahl, S.

S. Prahl, “Light transport in tissue,” Ph.D. thesis (University of Texas at Austin, 1988).

Ramamoorthi, R.

C. Donner, J. Lawrence, R. Ramamoorthi, T. Hachisuka, H. Jensen, and S. Nayar, “An empirical BSSRDF model,” ACM Trans. Graph. 28(3), 30 (2009).
[CrossRef]

Rock, B.

E. Hunt and B. Rock, “Detection of changes in leaf water content using near- and middle-infrared reflectances,” Remote Sens. Environ. 30, 43–54 (1989).
[CrossRef]

Schaepman, M.

J. Clevers, L. Kooistra, and M. Schaepman, “Estimating canopy water content using hyperspectral remote sensing data,” Int. J. Appl. Earth Obs. Geoinform. 12, 119–125. (2010).

Schleter, J.

Slaton, M.

M. Slaton, E. Hunt, and W. Smith, “Estimating near-infrared leaf reflectance from leaf structural characteristics,” Am. J. Bot. 88, 278–284 (2001).
[CrossRef]

Sloot, P.

Smith, W.

M. Slaton, E. Hunt, and W. Smith, “Estimating near-infrared leaf reflectance from leaf structural characteristics,” Am. J. Bot. 88, 278–284 (2001).
[CrossRef]

Tsai, C.-L.

C.-L. Tsai, J.-C. Chen, and W.-J. Wang, “Near-infrared absorption property of biological soft tissue constituents,” Jpn. J. Med. Electron. Biol. Eng. 21, 7–14 (2001).

Tuchin, V.

V. Tuchin, Optical Clearing of Tissues and Blood (SPIE, 2005).

Wang, W.-J.

C.-L. Tsai, J.-C. Chen, and W.-J. Wang, “Near-infrared absorption property of biological soft tissue constituents,” Jpn. J. Med. Electron. Biol. Eng. 21, 7–14 (2001).

Weidner, V.

Weyer, L.

J. Workman and L. Weyer, Practical Guide to Interpretive Near-Infrared Spectroscopy (CRC Press, 2007).

Workman, J.

J. Workman and L. Weyer, Practical Guide to Interpretive Near-Infrared Spectroscopy (CRC Press, 2007).

Zijp, J.

Zonios, G.

G. Zonios and A. Dimou, “Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties,” Opt. Express 14, 8661–8674(2006).
[CrossRef]

G. Zonios, “Diffuse reflectance spectroscopy of human colon tissue,” Ph.D. thesis (Massachusetts Institute of Technology, 1998).

ACM Trans. Graph.

C. Donner, J. Lawrence, R. Ramamoorthi, T. Hachisuka, H. Jensen, and S. Nayar, “An empirical BSSRDF model,” ACM Trans. Graph. 28(3), 30 (2009).
[CrossRef]

Am. J. Bot.

M. Slaton, E. Hunt, and W. Smith, “Estimating near-infrared leaf reflectance from leaf structural characteristics,” Am. J. Bot. 88, 278–284 (2001).
[CrossRef]

Appl. Opt.

Aust. J. Bot.

B. Datt, “Remote sensing of water content in eucalyptus leaves,” Aust. J. Bot. 47, 909–923 (1999).
[CrossRef]

Int. J. Appl. Earth Obs. Geoinform.

J. Clevers, L. Kooistra, and M. Schaepman, “Estimating canopy water content using hyperspectral remote sensing data,” Int. J. Appl. Earth Obs. Geoinform. 12, 119–125. (2010).

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Jpn. J. Med. Electron. Biol. Eng.

C.-L. Tsai, J.-C. Chen, and W.-J. Wang, “Near-infrared absorption property of biological soft tissue constituents,” Jpn. J. Med. Electron. Biol. Eng. 21, 7–14 (2001).

Med. Phys.

T. Farrell and M. Patterson: “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef]

Opt. Express

Phys. Med. Biol.

J. Hebden, S. Arridge, and D. Delpy, “Optical imaging in medicine I: experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine II: modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
[CrossRef]

Remote Sens. Environ.

E. Hunt and B. Rock, “Detection of changes in leaf water content using near- and middle-infrared reflectances,” Remote Sens. Environ. 30, 43–54 (1989).
[CrossRef]

Other

J. Workman and L. Weyer, Practical Guide to Interpretive Near-Infrared Spectroscopy (CRC Press, 2007).

G. Zonios, “Diffuse reflectance spectroscopy of human colon tissue,” Ph.D. thesis (Massachusetts Institute of Technology, 1998).

V. Hollis, “Non-invasive monitoring of brain tissue temperature by near-infrared spectroscopy,” Ph.D. thesis (University of London, 2002).

G. Branco, “The development and evaluation of head probes for optical imaging of the infant head,” Ph.D. thesis (University of London, 2007).

Scott Prahl, “Optical absorption of hemoglobin,” http://omlc.ogi.edu/spectra/hemoglobin/index.html .

V. Tuchin, Optical Clearing of Tissues and Blood (SPIE, 2005).

H. Jensen, S. Marschner, M. Levoy, and P. Hanrahan, “A practical model for subsurface light transport,” in Proceedings of SIGGRAPH’2001 (ACM, 2001), pp. 511–518.

S. Prahl, “Light transport in tissue,” Ph.D. thesis (University of Texas at Austin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

Example of aqueous surface detection. Test scene lit with VIS light (left) and classification result (right, detected regions marked with stripes).

Fig. 2.
Fig. 2.

Absorption spectra for water, lipids (olive oil), and haemoglobin (taken from [13] with a concentration of 150gL1).

Fig. 3.
Fig. 3.

The predicted relationships between the concentration parameter and the total reflectance.

Fig. 4.
Fig. 4.

Light propagation through a material with low scattering (left) and high scattering (right).

Fig. 5.
Fig. 5.

Experimental layout.

Fig. 6.
Fig. 6.

Reflectance spectra for TiO2 at various dilutions, and the fits obtained using the water absorption spectrum and the Zonios model.

Fig. 7.
Fig. 7.

Reflectance spectra for various biological tissues.

Fig. 8.
Fig. 8.

Reflectance spectra for various nonbiological materials.

Fig. 9.
Fig. 9.

Measured spectra and fitted model.

Fig. 10.
Fig. 10.

Development of the classification feature in this paper.

Fig. 11.
Fig. 11.

Design of the lighting head.

Fig. 12.
Fig. 12.

Illumination spectra from the lighting head. Measured peaks occur at 921.2 and 966.83 nm.

Fig. 13.
Fig. 13.

Experimental layout.

Fig. 14.
Fig. 14.

Example combining photometric stereo (PS) and water detection. Test image (left) and result (right).

Fig. 15.
Fig. 15.

Example combining PS and water detection. Test image (left) and result (right).

Tables (2)

Tables Icon

Table 1. Accuracy of the AS Model for Measured Spectra

Tables Icon

Table 2. Opponent Feature Values

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

μs=3.28ρ(2πaλ)0.37(m1)2.09,
RT(λ)=11+kzμa(λ)μs(λ).
RAS(λ)=t1+k1μaw(λ).
e=100λtλ0λ=λ0λt|Im(λ)Ip(λ)|,
F=R(920)R(970)R(920)+R(970),
1F=11+ak1+11+bk111+ak111+bk1=2k+a+b.

Metrics