Abstract

Instead of the traditional heating method, the cavity length of an internal-mirror He–Ne laser is controlled by air cooling which is implemented by a mini cooling fan. The responsive property of the cooling fan and the thermal expansion of the internal-mirror laser tube are investigated. According to these investigations, a controlling system is designed to drive the cooling fan controlling the cavity length of the laser. Then the frequency is stabilized by comparing the light intensities of two operating longitudinal modes. The results of beating with an iodine stabilized He–Ne laser show that a relative uncertainty (Δf/f) of 4.3×109 in 5 months, a frequency fluctuation of <1.4MHz, and an Allan deviation of 6×1011 (τ=10,000s) in 20 h are obtained.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription