Abstract

For the production of oxide nanoparticles at a commercial scale, flame spray processes are frequently used where mostly oxygen is fed to the flame if high combustion temperatures and thus small primary particle sizes are desired. To improve the understanding of these complex processes in situ, noninvasive optical measurement techniques were applied to characterize the extremely turbulent and unsteady combustion field at those positions where the particles are formed from precursor containing organic solvent droplets. This particle-forming regime was identified by laser-induced breakdown detection. The gas phase temperatures in the surrounding of droplets and particles were measured with O2-based pure rotational coherent anti-Stokes Raman scattering (CARS). Pure rotational CARS measurements benefit from a polarization filtering technique that is essential in particle and droplet environments for acquiring CARS spectra suitable for temperature fitting. Due to different signal disturbing processes only the minority of the collected signals could be used for temperature evaluation. The selection of these suitable signals is one of the major problems to be solved for a reliable evaluation process. Applying these filtering and signal selection steps temperature measurements have successfully been conducted. Time-resolved, single-pulse measurements exhibit temperatures between near-room and combustion temperatures due to the strongly fluctuating and flickering behavior of the particle-generating flame. The mean flame temperatures determined from the single-pulse data are decreasing with increasing particle concentrations. They indicate the dissipation of large amounts of energy from the surrounding gas phase in the presence of particles.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. K. Kammler, L. Mädler, and S. E. Pratsinis, “Flame synthesis of nanoparticles,” Chem. Eng. Technol. 24, 583–596(2001).
    [CrossRef]
  2. R. Wegner and S. E. Pratsinis, “Flame synthesis of nanoparticles,” Chimica Oggi 22, 27–29 (2004).
  3. G. L. Messing, S.-C. Zhang, and G. V. Jayanthi, “Ceramic powder synthesis by spray pyrolysis,” J. Am. Ceram. Soc. 76, 2707–2726 (1993).
    [CrossRef]
  4. L. Mädler, H. K. Kammler, R. Mueller, and S. E. Pratsinis, “Controlled synthesis of nanostructured particles by flame spray pyrolysis,” J. Aerosol Sci. 33, 369–389 (2002).
    [CrossRef]
  5. G. D. Ulrich, “Special report,” Chem. Eng. News 62, 22–29 (1984).
    [CrossRef]
  6. S. Pratsinis, “Flame aerosol synthesis of ceramic powders,” Prog. Energy Combust. Sci. 24, 197–219 (1998).
    [CrossRef]
  7. T. Johannessen, S. E. Pratsinis, and H. Livbjerg, “Computational fluid-particle dynamics for the flame synthesis of alumina particles,” Chem. Eng. Sci. 55, 177–191 (2000).
    [CrossRef]
  8. A. N. Karpetis and A. Gomez, “An experimental study of well-defined turbulent nonpremixed spray flames,” Combust. Flame 121, 1–23 (2000).
    [CrossRef]
  9. S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010).
    [CrossRef]
  10. J. Kiefer and P. Ewart, “Laser diagnostics and minor species detection in combustion using resonant four-wave mixing,” Prog. Energy Combust. Sci. 37, 525–564 (2011).
    [CrossRef]
  11. R. Obertacke, F. Wintrich, H. Wintrich, and A. Leipertz, “A new sensor system for industrial combustion monitoring and control using UV emission spectroscopy and tomography,” Combust. Sci. Technol. 121, 133–151 (1996).
    [CrossRef]
  12. P. W. Morrison, R. Raghavan, A. J. Timpone, C. P. Artelt, and S. E. Pratsinis, “In situ Fourier transform infrared characterization of the effect of electrical fields on the flame synthesis of TiO2 particles,” Chem. Mater. 9, 2702–2708 (1997).
    [CrossRef]
  13. O. I. Arabi-Katbi, S. E. Pratsinis, P. W. Morrison, and C. M. Megaridis, “Monitoring the flame synthesis of TiO2 particles by in situ FTIR spectroscopy and thermophoretic sampling,” Combust. Flame 124, 560–572 (2001).
    [CrossRef]
  14. H. K. Kammler, S. E. Pratsinis, P. W. Morrison, and B. Hemmerling, “Flame temperature measurements during electrically assisted aerosol synthesis of nanoparticles,” Combust. Flame 128, 369–381 (2002).
    [CrossRef]
  15. M. D. Allendorf, J. R. Bautista, and E. Potkay, “Temperature measurements in a vapor axial deposition flame by spontaneous Raman spectroscopy,” J. Appl. Phys. 66, 5046–5051 (1989).
    [CrossRef]
  16. H. Kronemayer, P. Ifeacho, C. Hecht, T. Dreier, H. Wiggers, and C. Schulz, “Gas-temperature imaging in a low-pressure flame reactor for nano-particle synthesis with multi-line NO-LIF thermometry,” Appl. Phys. B 88, 373–377 (2007).
    [CrossRef]
  17. A. Leipertz, S. Pfadler, and R. Schießl, “An overview of combustion diagnostics,” in Handbook of Combustion(Wiley-VCH, 2010).
  18. J. Y. Hwang, Y. S. Gil, J. I. Kim, M. Choi, and S. H. Chung, “Measurements of temperature and OH radical distributions in a silica generating flame using CARS and PLIF,” J. Aerosol Sci. 32, 601–613 (2001).
    [CrossRef]
  19. T. Seeger and A. Leipertz, “Experimental comparison of single shot broadband vibrational and dual broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt. 35, 2665–2671 (1996).
    [CrossRef]
  20. T. Seeger, F. Beyrau, A. Braeuer, and A. Leipertz, “High pressure pure rotational CARS: Comparison of temperature measurements with O2, N2, and synthetic air,” J. Raman Spectrosc. 34, 932–939 (2003).
    [CrossRef]
  21. L. Martinsson, P.-E. Bengtsson, and M. Aldén, “Oxygen concentration and temperature measurements in N2-O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
    [CrossRef]
  22. P.-E. Bengtsson, L. Martinsson, and M. Aldén, “Combined vibrational and rotational CARS for simultaneous measurements of temperature and concentrations of fuel, oxygen, and nitrogen,” Appl. Spectrosc. 49, 188–192 (1995).
    [CrossRef]
  23. T. R. Meyer, S. Roy, R. P. Lucht, and J. R. Gord, “Dual-pump dual-broadband CARS for exhaust-gas temperature and CO2-O2-N2 mole-fraction measurements in model gas-turbine combustors,” Combust. Flame 142, 52–61 (2005).
    [CrossRef]
  24. J. Bood, P.-E. Bengtsson, and T. Dreier, “Rotational coherent anti-Stokes Raman spectroscopy (CARS) in nitrogen at high pressures (0.1–44 MPa): Experimental and modelling results,” J. Raman Spectrosc. 31, 703–710 (2000).
    [CrossRef]
  25. F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Development of rotational CARS for combustion diagnostics using a polarization approach,” Proc. Combust. Inst. 31, 833–840 (2007).
    [CrossRef]
  26. T. Seeger, J. Kiefer, A. Leipertz, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N2 thermometry,” Opt. Lett. 34, 3755–3757 (2009).
    [CrossRef]
  27. M. Weikl, S. Tedder, T. Seeger, and A. Leipertz, “Investigation of porous media combustion by coherent anti-Stokes Raman spectroscopy,” Exp. Fluids 49, 775–781 (2010).
    [CrossRef]
  28. C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy in sooting flames,” Proc. Combust. Inst. 33, 831–838 (2011).
    [CrossRef]
  29. J. D. Black and C. A. Long, “Rotational coherent anti-Stokes Raman spectroscopy measurements in a rotating cavity with axial throughflow of cooling air: oxygen concentration measurements,” Appl. Opt. 31, 4291–4297 (1992).
    [CrossRef]
  30. A. Thumann, M. Schenk, J. Jonuscheit, T. Seeger, and A. Leipertz, “Simultaneous temperature and relative nitrogen—oxygen concentration measurements in air with pure rotational coherent anti-Stokes Raman scattering for temperatures to as high as 2050 K,” Appl. Opt. 36, 3500–3506 (1997).
    [CrossRef]
  31. F. Beyrau, A. Bräuer, T. Seeger, and A. Leipertz, “Gas-phase temperature measurement in the vaporizing spray of a gasoline direct-injection injector by use of pure rotational coherent anti-Stokes Raman scattering,” Opt. Lett. 29, 247–249 (2004).
    [CrossRef]
  32. C. Brackmann, J. Bood, P.-E. Bengtsson, T. Seeger, M. Schenk, and A. Leipertz, “Simultaneous vibrational and pure rotational coherent anti-Stokes Raman spectroscopy for temperature and multispecies concentration measurements demonstrated in sooting flames,” Appl. Opt. 41, 564–572(2002).
    [CrossRef]
  33. P.-E. Bengtsson, L. Martinsson, M. Aldén, and S. Kröll, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129–140 (1992).
    [CrossRef]
  34. H. Lindner, K. H. Loper, D. W. Hahn, and K. Niemax, “The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry,” Spectrochim. Acta Part B 66, 179–185(2011).
    [CrossRef]
  35. H. Fujimori, T. Matsui, T. Ajiro, K. Yokose, Y.-M. Hsueh, and S. Izumi, “Detection of fine particles in liquids by laser breakdown method,” Jpn. J. Appl. Phys. 31, 1514–1518 (1992).
    [CrossRef]
  36. A. W. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (Cambridge University, 2006).
  37. J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).
  38. J. Kiefer, J. W. Tröger, T. Seeger, A. Leipertz, B. Li, Z. S. Li, and M. Alden, “Laser-induced breakdown spectroscopy in gases using ungated detection in combination with polarization filtering and online background correction,” Meas. Sci. Technol. 21, 065303 (2010).
    [CrossRef]
  39. R. Strobel and S. Pratsinis, “Flame aerosol synthesis of smart nanostructured materials,” J. Mater. Chem. 17, 4743–4756 (2007).
    [CrossRef]
  40. T. T. Kodas and M. J. Hampden-Smith, Aerosol Processing of Materials (Wiley-VCH, 1999).
  41. S. Brunauer, P. Emmett, and E. Teller, “Adsorption of gases in multilayers,” J. Am. Chem. Soc. 60, 309–319 (1938).
    [CrossRef]
  42. S. A. Tedder, M. C. Weikl, T. Seeger, and A. Leipertz, “Determination of probe volume dimensions in coherent measurement techniques,” Appl. Opt. 47, 6601–6605 (2008).
    [CrossRef]
  43. A. Leipertz and T. Seeger, “Combustion diagnostics by pure rotational coherent anti-Stokes Raman scattering,” in Optical Processes in Microparticles and Nanostructures: a Festschrift Dedicated to Richard Kounai Chang on His Retirement from Yale University (World Scientific, 2011).
  44. E. Magens, “Nutzung von Rotations-CARS zur Temperatur- und Konzentrationsmessung in Flammen,” Ph.D. dissertation (University Erlangen-Nuremberg, 1992).
  45. F. Beyrau, A. Datta, T. Seeger, and A. Leipertz, “Dual-pump CARS for the simultaneous detection of N2, O2 and CO in CH4-flames,” J. Raman Spectrosc. 33, 919–924 (2002).
    [CrossRef]
  46. L. A. Rahn and R. E. Palmer, “Studies of nitrogen self-broadening at high temperature with inverse Raman spectroscopy,” J. Opt. Soc. Am. B 3, 1164–1169 (1986).
    [CrossRef]
  47. G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, and J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2 and O2-N2,” J. Chem. Phys. 96, 961–971 (1992).
    [CrossRef]
  48. A. Bohlin and P.-E. Bengtsson, “Rotational CARS thermometry in diffusion flames: On the influence of nitrogen spectral line-broadening by CH4 and H2,” Proc. Combust. Inst. 33, 823–830 (2011).
    [CrossRef]
  49. F. Vestin, M. Afzelius, C. Brackmann, and P.-E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Inst. 30, 1673–1680 (2005).
    [CrossRef]
  50. J. Egermann, T. Seeger, and A. Leipertz, “Application of 266 nm and 355 nm Nd:YAG laser radiation for the investigation of fuel-rich sooting hydrocarbon flames by Raman scattering,” Appl. Opt. 43, 5564–5574 (2004).
    [CrossRef]
  51. T. Seeger, J. Jonuscheit, M. Schenk, and A. Leipertz, “Simultaneous temperature and relative oxygen and methane concentration measurements in a partially premixed sooting flame using a novel CARS-technique,” J. Mol. Struct. 661–662, 515–524 (2003).
    [CrossRef]
  52. F. Vestin, M. Afzelius, H. Berger, F. Chaussard, R. Saint-Loup, and P. E. Bengtsson, “Rotational CARS thermometry at high temperature (1800 K) and high pressure (0.1–1.55 MPa),” J. Raman Spectrosc. 38, 963–968 (2007).
    [CrossRef]
  53. L. Goss, D. Trump, and W. Roquemore, “Simultaneous CARS and LDA measurements in a turbulent flame,” in 20th Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, 1984), paper AIAA-84-1458.
  54. D. Dunn-Rankin, G. L. Switzer, C. A. Obringer, and T. A. Jackson, “Effect of droplet-induced breakdown on CARS temperature measurements,” Appl. Opt. 29, 3150–3159 (1990).
    [CrossRef]
  55. F. Liu, H. Guo, G. J. Smallwood, and Ö. L. Gülder, “Numerical study of the superadiabatic flame temperature phenomenon in hydrocarbon premixed flames,” Proc. Combust. Inst. 29, 1543–1550 (2002).
    [CrossRef]
  56. C. K. Law, A. Makino, and T. F. Lu, “On the off-stoichiometric peaking of adiabatic flame temperature,” Combust. Flame 145, 808–819 (2006).
    [CrossRef]

2011 (4)

J. Kiefer and P. Ewart, “Laser diagnostics and minor species detection in combustion using resonant four-wave mixing,” Prog. Energy Combust. Sci. 37, 525–564 (2011).
[CrossRef]

C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy in sooting flames,” Proc. Combust. Inst. 33, 831–838 (2011).
[CrossRef]

H. Lindner, K. H. Loper, D. W. Hahn, and K. Niemax, “The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry,” Spectrochim. Acta Part B 66, 179–185(2011).
[CrossRef]

A. Bohlin and P.-E. Bengtsson, “Rotational CARS thermometry in diffusion flames: On the influence of nitrogen spectral line-broadening by CH4 and H2,” Proc. Combust. Inst. 33, 823–830 (2011).
[CrossRef]

2010 (3)

J. Kiefer, J. W. Tröger, T. Seeger, A. Leipertz, B. Li, Z. S. Li, and M. Alden, “Laser-induced breakdown spectroscopy in gases using ungated detection in combination with polarization filtering and online background correction,” Meas. Sci. Technol. 21, 065303 (2010).
[CrossRef]

M. Weikl, S. Tedder, T. Seeger, and A. Leipertz, “Investigation of porous media combustion by coherent anti-Stokes Raman spectroscopy,” Exp. Fluids 49, 775–781 (2010).
[CrossRef]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010).
[CrossRef]

2009 (1)

2008 (1)

2007 (4)

F. Vestin, M. Afzelius, H. Berger, F. Chaussard, R. Saint-Loup, and P. E. Bengtsson, “Rotational CARS thermometry at high temperature (1800 K) and high pressure (0.1–1.55 MPa),” J. Raman Spectrosc. 38, 963–968 (2007).
[CrossRef]

F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Development of rotational CARS for combustion diagnostics using a polarization approach,” Proc. Combust. Inst. 31, 833–840 (2007).
[CrossRef]

R. Strobel and S. Pratsinis, “Flame aerosol synthesis of smart nanostructured materials,” J. Mater. Chem. 17, 4743–4756 (2007).
[CrossRef]

H. Kronemayer, P. Ifeacho, C. Hecht, T. Dreier, H. Wiggers, and C. Schulz, “Gas-temperature imaging in a low-pressure flame reactor for nano-particle synthesis with multi-line NO-LIF thermometry,” Appl. Phys. B 88, 373–377 (2007).
[CrossRef]

2006 (1)

C. K. Law, A. Makino, and T. F. Lu, “On the off-stoichiometric peaking of adiabatic flame temperature,” Combust. Flame 145, 808–819 (2006).
[CrossRef]

2005 (2)

F. Vestin, M. Afzelius, C. Brackmann, and P.-E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Inst. 30, 1673–1680 (2005).
[CrossRef]

T. R. Meyer, S. Roy, R. P. Lucht, and J. R. Gord, “Dual-pump dual-broadband CARS for exhaust-gas temperature and CO2-O2-N2 mole-fraction measurements in model gas-turbine combustors,” Combust. Flame 142, 52–61 (2005).
[CrossRef]

2004 (3)

2003 (2)

T. Seeger, J. Jonuscheit, M. Schenk, and A. Leipertz, “Simultaneous temperature and relative oxygen and methane concentration measurements in a partially premixed sooting flame using a novel CARS-technique,” J. Mol. Struct. 661–662, 515–524 (2003).
[CrossRef]

T. Seeger, F. Beyrau, A. Braeuer, and A. Leipertz, “High pressure pure rotational CARS: Comparison of temperature measurements with O2, N2, and synthetic air,” J. Raman Spectrosc. 34, 932–939 (2003).
[CrossRef]

2002 (5)

C. Brackmann, J. Bood, P.-E. Bengtsson, T. Seeger, M. Schenk, and A. Leipertz, “Simultaneous vibrational and pure rotational coherent anti-Stokes Raman spectroscopy for temperature and multispecies concentration measurements demonstrated in sooting flames,” Appl. Opt. 41, 564–572(2002).
[CrossRef]

L. Mädler, H. K. Kammler, R. Mueller, and S. E. Pratsinis, “Controlled synthesis of nanostructured particles by flame spray pyrolysis,” J. Aerosol Sci. 33, 369–389 (2002).
[CrossRef]

H. K. Kammler, S. E. Pratsinis, P. W. Morrison, and B. Hemmerling, “Flame temperature measurements during electrically assisted aerosol synthesis of nanoparticles,” Combust. Flame 128, 369–381 (2002).
[CrossRef]

F. Beyrau, A. Datta, T. Seeger, and A. Leipertz, “Dual-pump CARS for the simultaneous detection of N2, O2 and CO in CH4-flames,” J. Raman Spectrosc. 33, 919–924 (2002).
[CrossRef]

F. Liu, H. Guo, G. J. Smallwood, and Ö. L. Gülder, “Numerical study of the superadiabatic flame temperature phenomenon in hydrocarbon premixed flames,” Proc. Combust. Inst. 29, 1543–1550 (2002).
[CrossRef]

2001 (3)

J. Y. Hwang, Y. S. Gil, J. I. Kim, M. Choi, and S. H. Chung, “Measurements of temperature and OH radical distributions in a silica generating flame using CARS and PLIF,” J. Aerosol Sci. 32, 601–613 (2001).
[CrossRef]

H. K. Kammler, L. Mädler, and S. E. Pratsinis, “Flame synthesis of nanoparticles,” Chem. Eng. Technol. 24, 583–596(2001).
[CrossRef]

O. I. Arabi-Katbi, S. E. Pratsinis, P. W. Morrison, and C. M. Megaridis, “Monitoring the flame synthesis of TiO2 particles by in situ FTIR spectroscopy and thermophoretic sampling,” Combust. Flame 124, 560–572 (2001).
[CrossRef]

2000 (3)

J. Bood, P.-E. Bengtsson, and T. Dreier, “Rotational coherent anti-Stokes Raman spectroscopy (CARS) in nitrogen at high pressures (0.1–44 MPa): Experimental and modelling results,” J. Raman Spectrosc. 31, 703–710 (2000).
[CrossRef]

T. Johannessen, S. E. Pratsinis, and H. Livbjerg, “Computational fluid-particle dynamics for the flame synthesis of alumina particles,” Chem. Eng. Sci. 55, 177–191 (2000).
[CrossRef]

A. N. Karpetis and A. Gomez, “An experimental study of well-defined turbulent nonpremixed spray flames,” Combust. Flame 121, 1–23 (2000).
[CrossRef]

1998 (1)

S. Pratsinis, “Flame aerosol synthesis of ceramic powders,” Prog. Energy Combust. Sci. 24, 197–219 (1998).
[CrossRef]

1997 (2)

P. W. Morrison, R. Raghavan, A. J. Timpone, C. P. Artelt, and S. E. Pratsinis, “In situ Fourier transform infrared characterization of the effect of electrical fields on the flame synthesis of TiO2 particles,” Chem. Mater. 9, 2702–2708 (1997).
[CrossRef]

A. Thumann, M. Schenk, J. Jonuscheit, T. Seeger, and A. Leipertz, “Simultaneous temperature and relative nitrogen—oxygen concentration measurements in air with pure rotational coherent anti-Stokes Raman scattering for temperatures to as high as 2050 K,” Appl. Opt. 36, 3500–3506 (1997).
[CrossRef]

1996 (3)

R. Obertacke, F. Wintrich, H. Wintrich, and A. Leipertz, “A new sensor system for industrial combustion monitoring and control using UV emission spectroscopy and tomography,” Combust. Sci. Technol. 121, 133–151 (1996).
[CrossRef]

T. Seeger and A. Leipertz, “Experimental comparison of single shot broadband vibrational and dual broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt. 35, 2665–2671 (1996).
[CrossRef]

L. Martinsson, P.-E. Bengtsson, and M. Aldén, “Oxygen concentration and temperature measurements in N2-O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

1995 (1)

1993 (1)

G. L. Messing, S.-C. Zhang, and G. V. Jayanthi, “Ceramic powder synthesis by spray pyrolysis,” J. Am. Ceram. Soc. 76, 2707–2726 (1993).
[CrossRef]

1992 (4)

P.-E. Bengtsson, L. Martinsson, M. Aldén, and S. Kröll, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129–140 (1992).
[CrossRef]

J. D. Black and C. A. Long, “Rotational coherent anti-Stokes Raman spectroscopy measurements in a rotating cavity with axial throughflow of cooling air: oxygen concentration measurements,” Appl. Opt. 31, 4291–4297 (1992).
[CrossRef]

H. Fujimori, T. Matsui, T. Ajiro, K. Yokose, Y.-M. Hsueh, and S. Izumi, “Detection of fine particles in liquids by laser breakdown method,” Jpn. J. Appl. Phys. 31, 1514–1518 (1992).
[CrossRef]

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, and J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2 and O2-N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

1990 (1)

1989 (1)

M. D. Allendorf, J. R. Bautista, and E. Potkay, “Temperature measurements in a vapor axial deposition flame by spontaneous Raman spectroscopy,” J. Appl. Phys. 66, 5046–5051 (1989).
[CrossRef]

1986 (1)

1984 (1)

G. D. Ulrich, “Special report,” Chem. Eng. News 62, 22–29 (1984).
[CrossRef]

1938 (1)

S. Brunauer, P. Emmett, and E. Teller, “Adsorption of gases in multilayers,” J. Am. Chem. Soc. 60, 309–319 (1938).
[CrossRef]

Afzelius, M.

F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Development of rotational CARS for combustion diagnostics using a polarization approach,” Proc. Combust. Inst. 31, 833–840 (2007).
[CrossRef]

F. Vestin, M. Afzelius, H. Berger, F. Chaussard, R. Saint-Loup, and P. E. Bengtsson, “Rotational CARS thermometry at high temperature (1800 K) and high pressure (0.1–1.55 MPa),” J. Raman Spectrosc. 38, 963–968 (2007).
[CrossRef]

F. Vestin, M. Afzelius, C. Brackmann, and P.-E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Inst. 30, 1673–1680 (2005).
[CrossRef]

Ajiro, T.

H. Fujimori, T. Matsui, T. Ajiro, K. Yokose, Y.-M. Hsueh, and S. Izumi, “Detection of fine particles in liquids by laser breakdown method,” Jpn. J. Appl. Phys. 31, 1514–1518 (1992).
[CrossRef]

Alden, M.

J. Kiefer, J. W. Tröger, T. Seeger, A. Leipertz, B. Li, Z. S. Li, and M. Alden, “Laser-induced breakdown spectroscopy in gases using ungated detection in combination with polarization filtering and online background correction,” Meas. Sci. Technol. 21, 065303 (2010).
[CrossRef]

Aldén, M.

L. Martinsson, P.-E. Bengtsson, and M. Aldén, “Oxygen concentration and temperature measurements in N2-O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

P.-E. Bengtsson, L. Martinsson, and M. Aldén, “Combined vibrational and rotational CARS for simultaneous measurements of temperature and concentrations of fuel, oxygen, and nitrogen,” Appl. Spectrosc. 49, 188–192 (1995).
[CrossRef]

P.-E. Bengtsson, L. Martinsson, M. Aldén, and S. Kröll, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129–140 (1992).
[CrossRef]

Allendorf, M. D.

M. D. Allendorf, J. R. Bautista, and E. Potkay, “Temperature measurements in a vapor axial deposition flame by spontaneous Raman spectroscopy,” J. Appl. Phys. 66, 5046–5051 (1989).
[CrossRef]

Arabi-Katbi, O. I.

O. I. Arabi-Katbi, S. E. Pratsinis, P. W. Morrison, and C. M. Megaridis, “Monitoring the flame synthesis of TiO2 particles by in situ FTIR spectroscopy and thermophoretic sampling,” Combust. Flame 124, 560–572 (2001).
[CrossRef]

Artelt, C. P.

P. W. Morrison, R. Raghavan, A. J. Timpone, C. P. Artelt, and S. E. Pratsinis, “In situ Fourier transform infrared characterization of the effect of electrical fields on the flame synthesis of TiO2 particles,” Chem. Mater. 9, 2702–2708 (1997).
[CrossRef]

Bautista, J. R.

M. D. Allendorf, J. R. Bautista, and E. Potkay, “Temperature measurements in a vapor axial deposition flame by spontaneous Raman spectroscopy,” J. Appl. Phys. 66, 5046–5051 (1989).
[CrossRef]

Bengtsson, P. E.

F. Vestin, M. Afzelius, H. Berger, F. Chaussard, R. Saint-Loup, and P. E. Bengtsson, “Rotational CARS thermometry at high temperature (1800 K) and high pressure (0.1–1.55 MPa),” J. Raman Spectrosc. 38, 963–968 (2007).
[CrossRef]

Bengtsson, P.-E.

A. Bohlin and P.-E. Bengtsson, “Rotational CARS thermometry in diffusion flames: On the influence of nitrogen spectral line-broadening by CH4 and H2,” Proc. Combust. Inst. 33, 823–830 (2011).
[CrossRef]

F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Development of rotational CARS for combustion diagnostics using a polarization approach,” Proc. Combust. Inst. 31, 833–840 (2007).
[CrossRef]

F. Vestin, M. Afzelius, C. Brackmann, and P.-E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Inst. 30, 1673–1680 (2005).
[CrossRef]

C. Brackmann, J. Bood, P.-E. Bengtsson, T. Seeger, M. Schenk, and A. Leipertz, “Simultaneous vibrational and pure rotational coherent anti-Stokes Raman spectroscopy for temperature and multispecies concentration measurements demonstrated in sooting flames,” Appl. Opt. 41, 564–572(2002).
[CrossRef]

J. Bood, P.-E. Bengtsson, and T. Dreier, “Rotational coherent anti-Stokes Raman spectroscopy (CARS) in nitrogen at high pressures (0.1–44 MPa): Experimental and modelling results,” J. Raman Spectrosc. 31, 703–710 (2000).
[CrossRef]

L. Martinsson, P.-E. Bengtsson, and M. Aldén, “Oxygen concentration and temperature measurements in N2-O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

P.-E. Bengtsson, L. Martinsson, and M. Aldén, “Combined vibrational and rotational CARS for simultaneous measurements of temperature and concentrations of fuel, oxygen, and nitrogen,” Appl. Spectrosc. 49, 188–192 (1995).
[CrossRef]

P.-E. Bengtsson, L. Martinsson, M. Aldén, and S. Kröll, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129–140 (1992).
[CrossRef]

Berger, H.

F. Vestin, M. Afzelius, H. Berger, F. Chaussard, R. Saint-Loup, and P. E. Bengtsson, “Rotational CARS thermometry at high temperature (1800 K) and high pressure (0.1–1.55 MPa),” J. Raman Spectrosc. 38, 963–968 (2007).
[CrossRef]

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, and J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2 and O2-N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

Beyrau, F.

F. Beyrau, A. Bräuer, T. Seeger, and A. Leipertz, “Gas-phase temperature measurement in the vaporizing spray of a gasoline direct-injection injector by use of pure rotational coherent anti-Stokes Raman scattering,” Opt. Lett. 29, 247–249 (2004).
[CrossRef]

T. Seeger, F. Beyrau, A. Braeuer, and A. Leipertz, “High pressure pure rotational CARS: Comparison of temperature measurements with O2, N2, and synthetic air,” J. Raman Spectrosc. 34, 932–939 (2003).
[CrossRef]

F. Beyrau, A. Datta, T. Seeger, and A. Leipertz, “Dual-pump CARS for the simultaneous detection of N2, O2 and CO in CH4-flames,” J. Raman Spectrosc. 33, 919–924 (2002).
[CrossRef]

Black, J. D.

Bohlin, A.

A. Bohlin and P.-E. Bengtsson, “Rotational CARS thermometry in diffusion flames: On the influence of nitrogen spectral line-broadening by CH4 and H2,” Proc. Combust. Inst. 33, 823–830 (2011).
[CrossRef]

Bonamy, J.

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, and J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2 and O2-N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

Bood, J.

C. Brackmann, J. Bood, P.-E. Bengtsson, T. Seeger, M. Schenk, and A. Leipertz, “Simultaneous vibrational and pure rotational coherent anti-Stokes Raman spectroscopy for temperature and multispecies concentration measurements demonstrated in sooting flames,” Appl. Opt. 41, 564–572(2002).
[CrossRef]

J. Bood, P.-E. Bengtsson, and T. Dreier, “Rotational coherent anti-Stokes Raman spectroscopy (CARS) in nitrogen at high pressures (0.1–44 MPa): Experimental and modelling results,” J. Raman Spectrosc. 31, 703–710 (2000).
[CrossRef]

Brackmann, C.

Braeuer, A.

T. Seeger, F. Beyrau, A. Braeuer, and A. Leipertz, “High pressure pure rotational CARS: Comparison of temperature measurements with O2, N2, and synthetic air,” J. Raman Spectrosc. 34, 932–939 (2003).
[CrossRef]

Bräuer, A.

Brunauer, S.

S. Brunauer, P. Emmett, and E. Teller, “Adsorption of gases in multilayers,” J. Am. Chem. Soc. 60, 309–319 (1938).
[CrossRef]

Chaussard, F.

F. Vestin, M. Afzelius, H. Berger, F. Chaussard, R. Saint-Loup, and P. E. Bengtsson, “Rotational CARS thermometry at high temperature (1800 K) and high pressure (0.1–1.55 MPa),” J. Raman Spectrosc. 38, 963–968 (2007).
[CrossRef]

Chaux, R.

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, and J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2 and O2-N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

Choi, M.

J. Y. Hwang, Y. S. Gil, J. I. Kim, M. Choi, and S. H. Chung, “Measurements of temperature and OH radical distributions in a silica generating flame using CARS and PLIF,” J. Aerosol Sci. 32, 601–613 (2001).
[CrossRef]

Chung, S. H.

J. Y. Hwang, Y. S. Gil, J. I. Kim, M. Choi, and S. H. Chung, “Measurements of temperature and OH radical distributions in a silica generating flame using CARS and PLIF,” J. Aerosol Sci. 32, 601–613 (2001).
[CrossRef]

Datta, A.

F. Beyrau, A. Datta, T. Seeger, and A. Leipertz, “Dual-pump CARS for the simultaneous detection of N2, O2 and CO in CH4-flames,” J. Raman Spectrosc. 33, 919–924 (2002).
[CrossRef]

Dreier, T.

H. Kronemayer, P. Ifeacho, C. Hecht, T. Dreier, H. Wiggers, and C. Schulz, “Gas-temperature imaging in a low-pressure flame reactor for nano-particle synthesis with multi-line NO-LIF thermometry,” Appl. Phys. B 88, 373–377 (2007).
[CrossRef]

J. Bood, P.-E. Bengtsson, and T. Dreier, “Rotational coherent anti-Stokes Raman spectroscopy (CARS) in nitrogen at high pressures (0.1–44 MPa): Experimental and modelling results,” J. Raman Spectrosc. 31, 703–710 (2000).
[CrossRef]

Dunn-Rankin, D.

Egermann, J.

Emmett, P.

S. Brunauer, P. Emmett, and E. Teller, “Adsorption of gases in multilayers,” J. Am. Chem. Soc. 60, 309–319 (1938).
[CrossRef]

Ewart, P.

J. Kiefer and P. Ewart, “Laser diagnostics and minor species detection in combustion using resonant four-wave mixing,” Prog. Energy Combust. Sci. 37, 525–564 (2011).
[CrossRef]

Fujimori, H.

H. Fujimori, T. Matsui, T. Ajiro, K. Yokose, Y.-M. Hsueh, and S. Izumi, “Detection of fine particles in liquids by laser breakdown method,” Jpn. J. Appl. Phys. 31, 1514–1518 (1992).
[CrossRef]

Gao, Y.

C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy in sooting flames,” Proc. Combust. Inst. 33, 831–838 (2011).
[CrossRef]

Gil, Y. S.

J. Y. Hwang, Y. S. Gil, J. I. Kim, M. Choi, and S. H. Chung, “Measurements of temperature and OH radical distributions in a silica generating flame using CARS and PLIF,” J. Aerosol Sci. 32, 601–613 (2001).
[CrossRef]

Gomez, A.

A. N. Karpetis and A. Gomez, “An experimental study of well-defined turbulent nonpremixed spray flames,” Combust. Flame 121, 1–23 (2000).
[CrossRef]

Gord, J. R.

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010).
[CrossRef]

T. R. Meyer, S. Roy, R. P. Lucht, and J. R. Gord, “Dual-pump dual-broadband CARS for exhaust-gas temperature and CO2-O2-N2 mole-fraction measurements in model gas-turbine combustors,” Combust. Flame 142, 52–61 (2005).
[CrossRef]

Goss, L.

L. Goss, D. Trump, and W. Roquemore, “Simultaneous CARS and LDA measurements in a turbulent flame,” in 20th Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, 1984), paper AIAA-84-1458.

Gülder, Ö. L.

F. Liu, H. Guo, G. J. Smallwood, and Ö. L. Gülder, “Numerical study of the superadiabatic flame temperature phenomenon in hydrocarbon premixed flames,” Proc. Combust. Inst. 29, 1543–1550 (2002).
[CrossRef]

Guo, H.

F. Liu, H. Guo, G. J. Smallwood, and Ö. L. Gülder, “Numerical study of the superadiabatic flame temperature phenomenon in hydrocarbon premixed flames,” Proc. Combust. Inst. 29, 1543–1550 (2002).
[CrossRef]

Hahn, D. W.

H. Lindner, K. H. Loper, D. W. Hahn, and K. Niemax, “The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry,” Spectrochim. Acta Part B 66, 179–185(2011).
[CrossRef]

Hampden-Smith, M. J.

T. T. Kodas and M. J. Hampden-Smith, Aerosol Processing of Materials (Wiley-VCH, 1999).

Hecht, C.

H. Kronemayer, P. Ifeacho, C. Hecht, T. Dreier, H. Wiggers, and C. Schulz, “Gas-temperature imaging in a low-pressure flame reactor for nano-particle synthesis with multi-line NO-LIF thermometry,” Appl. Phys. B 88, 373–377 (2007).
[CrossRef]

Hemmerling, B.

H. K. Kammler, S. E. Pratsinis, P. W. Morrison, and B. Hemmerling, “Flame temperature measurements during electrically assisted aerosol synthesis of nanoparticles,” Combust. Flame 128, 369–381 (2002).
[CrossRef]

Hsueh, Y.-M.

H. Fujimori, T. Matsui, T. Ajiro, K. Yokose, Y.-M. Hsueh, and S. Izumi, “Detection of fine particles in liquids by laser breakdown method,” Jpn. J. Appl. Phys. 31, 1514–1518 (1992).
[CrossRef]

Hwang, J. Y.

J. Y. Hwang, Y. S. Gil, J. I. Kim, M. Choi, and S. H. Chung, “Measurements of temperature and OH radical distributions in a silica generating flame using CARS and PLIF,” J. Aerosol Sci. 32, 601–613 (2001).
[CrossRef]

Ifeacho, P.

H. Kronemayer, P. Ifeacho, C. Hecht, T. Dreier, H. Wiggers, and C. Schulz, “Gas-temperature imaging in a low-pressure flame reactor for nano-particle synthesis with multi-line NO-LIF thermometry,” Appl. Phys. B 88, 373–377 (2007).
[CrossRef]

Izumi, S.

H. Fujimori, T. Matsui, T. Ajiro, K. Yokose, Y.-M. Hsueh, and S. Izumi, “Detection of fine particles in liquids by laser breakdown method,” Jpn. J. Appl. Phys. 31, 1514–1518 (1992).
[CrossRef]

Jackson, T. A.

Jayanthi, G. V.

G. L. Messing, S.-C. Zhang, and G. V. Jayanthi, “Ceramic powder synthesis by spray pyrolysis,” J. Am. Ceram. Soc. 76, 2707–2726 (1993).
[CrossRef]

Johannessen, T.

T. Johannessen, S. E. Pratsinis, and H. Livbjerg, “Computational fluid-particle dynamics for the flame synthesis of alumina particles,” Chem. Eng. Sci. 55, 177–191 (2000).
[CrossRef]

Jonuscheit, J.

T. Seeger, J. Jonuscheit, M. Schenk, and A. Leipertz, “Simultaneous temperature and relative oxygen and methane concentration measurements in a partially premixed sooting flame using a novel CARS-technique,” J. Mol. Struct. 661–662, 515–524 (2003).
[CrossRef]

A. Thumann, M. Schenk, J. Jonuscheit, T. Seeger, and A. Leipertz, “Simultaneous temperature and relative nitrogen—oxygen concentration measurements in air with pure rotational coherent anti-Stokes Raman scattering for temperatures to as high as 2050 K,” Appl. Opt. 36, 3500–3506 (1997).
[CrossRef]

Kammler, H. K.

L. Mädler, H. K. Kammler, R. Mueller, and S. E. Pratsinis, “Controlled synthesis of nanostructured particles by flame spray pyrolysis,” J. Aerosol Sci. 33, 369–389 (2002).
[CrossRef]

H. K. Kammler, S. E. Pratsinis, P. W. Morrison, and B. Hemmerling, “Flame temperature measurements during electrically assisted aerosol synthesis of nanoparticles,” Combust. Flame 128, 369–381 (2002).
[CrossRef]

H. K. Kammler, L. Mädler, and S. E. Pratsinis, “Flame synthesis of nanoparticles,” Chem. Eng. Technol. 24, 583–596(2001).
[CrossRef]

Karpetis, A. N.

A. N. Karpetis and A. Gomez, “An experimental study of well-defined turbulent nonpremixed spray flames,” Combust. Flame 121, 1–23 (2000).
[CrossRef]

Kiefer, J.

J. Kiefer and P. Ewart, “Laser diagnostics and minor species detection in combustion using resonant four-wave mixing,” Prog. Energy Combust. Sci. 37, 525–564 (2011).
[CrossRef]

C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy in sooting flames,” Proc. Combust. Inst. 33, 831–838 (2011).
[CrossRef]

J. Kiefer, J. W. Tröger, T. Seeger, A. Leipertz, B. Li, Z. S. Li, and M. Alden, “Laser-induced breakdown spectroscopy in gases using ungated detection in combination with polarization filtering and online background correction,” Meas. Sci. Technol. 21, 065303 (2010).
[CrossRef]

T. Seeger, J. Kiefer, A. Leipertz, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N2 thermometry,” Opt. Lett. 34, 3755–3757 (2009).
[CrossRef]

Kim, J. I.

J. Y. Hwang, Y. S. Gil, J. I. Kim, M. Choi, and S. H. Chung, “Measurements of temperature and OH radical distributions in a silica generating flame using CARS and PLIF,” J. Aerosol Sci. 32, 601–613 (2001).
[CrossRef]

Kliewer, C. J.

C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy in sooting flames,” Proc. Combust. Inst. 33, 831–838 (2011).
[CrossRef]

T. Seeger, J. Kiefer, A. Leipertz, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N2 thermometry,” Opt. Lett. 34, 3755–3757 (2009).
[CrossRef]

Kodas, T. T.

T. T. Kodas and M. J. Hampden-Smith, Aerosol Processing of Materials (Wiley-VCH, 1999).

Kröll, S.

P.-E. Bengtsson, L. Martinsson, M. Aldén, and S. Kröll, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129–140 (1992).
[CrossRef]

Kronemayer, H.

H. Kronemayer, P. Ifeacho, C. Hecht, T. Dreier, H. Wiggers, and C. Schulz, “Gas-temperature imaging in a low-pressure flame reactor for nano-particle synthesis with multi-line NO-LIF thermometry,” Appl. Phys. B 88, 373–377 (2007).
[CrossRef]

Law, C. K.

C. K. Law, A. Makino, and T. F. Lu, “On the off-stoichiometric peaking of adiabatic flame temperature,” Combust. Flame 145, 808–819 (2006).
[CrossRef]

Leipertz, A.

J. Kiefer, J. W. Tröger, T. Seeger, A. Leipertz, B. Li, Z. S. Li, and M. Alden, “Laser-induced breakdown spectroscopy in gases using ungated detection in combination with polarization filtering and online background correction,” Meas. Sci. Technol. 21, 065303 (2010).
[CrossRef]

M. Weikl, S. Tedder, T. Seeger, and A. Leipertz, “Investigation of porous media combustion by coherent anti-Stokes Raman spectroscopy,” Exp. Fluids 49, 775–781 (2010).
[CrossRef]

T. Seeger, J. Kiefer, A. Leipertz, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N2 thermometry,” Opt. Lett. 34, 3755–3757 (2009).
[CrossRef]

S. A. Tedder, M. C. Weikl, T. Seeger, and A. Leipertz, “Determination of probe volume dimensions in coherent measurement techniques,” Appl. Opt. 47, 6601–6605 (2008).
[CrossRef]

J. Egermann, T. Seeger, and A. Leipertz, “Application of 266 nm and 355 nm Nd:YAG laser radiation for the investigation of fuel-rich sooting hydrocarbon flames by Raman scattering,” Appl. Opt. 43, 5564–5574 (2004).
[CrossRef]

F. Beyrau, A. Bräuer, T. Seeger, and A. Leipertz, “Gas-phase temperature measurement in the vaporizing spray of a gasoline direct-injection injector by use of pure rotational coherent anti-Stokes Raman scattering,” Opt. Lett. 29, 247–249 (2004).
[CrossRef]

T. Seeger, F. Beyrau, A. Braeuer, and A. Leipertz, “High pressure pure rotational CARS: Comparison of temperature measurements with O2, N2, and synthetic air,” J. Raman Spectrosc. 34, 932–939 (2003).
[CrossRef]

T. Seeger, J. Jonuscheit, M. Schenk, and A. Leipertz, “Simultaneous temperature and relative oxygen and methane concentration measurements in a partially premixed sooting flame using a novel CARS-technique,” J. Mol. Struct. 661–662, 515–524 (2003).
[CrossRef]

F. Beyrau, A. Datta, T. Seeger, and A. Leipertz, “Dual-pump CARS for the simultaneous detection of N2, O2 and CO in CH4-flames,” J. Raman Spectrosc. 33, 919–924 (2002).
[CrossRef]

C. Brackmann, J. Bood, P.-E. Bengtsson, T. Seeger, M. Schenk, and A. Leipertz, “Simultaneous vibrational and pure rotational coherent anti-Stokes Raman spectroscopy for temperature and multispecies concentration measurements demonstrated in sooting flames,” Appl. Opt. 41, 564–572(2002).
[CrossRef]

A. Thumann, M. Schenk, J. Jonuscheit, T. Seeger, and A. Leipertz, “Simultaneous temperature and relative nitrogen—oxygen concentration measurements in air with pure rotational coherent anti-Stokes Raman scattering for temperatures to as high as 2050 K,” Appl. Opt. 36, 3500–3506 (1997).
[CrossRef]

T. Seeger and A. Leipertz, “Experimental comparison of single shot broadband vibrational and dual broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt. 35, 2665–2671 (1996).
[CrossRef]

R. Obertacke, F. Wintrich, H. Wintrich, and A. Leipertz, “A new sensor system for industrial combustion monitoring and control using UV emission spectroscopy and tomography,” Combust. Sci. Technol. 121, 133–151 (1996).
[CrossRef]

A. Leipertz, S. Pfadler, and R. Schießl, “An overview of combustion diagnostics,” in Handbook of Combustion(Wiley-VCH, 2010).

A. Leipertz and T. Seeger, “Combustion diagnostics by pure rotational coherent anti-Stokes Raman scattering,” in Optical Processes in Microparticles and Nanostructures: a Festschrift Dedicated to Richard Kounai Chang on His Retirement from Yale University (World Scientific, 2011).

Li, B.

J. Kiefer, J. W. Tröger, T. Seeger, A. Leipertz, B. Li, Z. S. Li, and M. Alden, “Laser-induced breakdown spectroscopy in gases using ungated detection in combination with polarization filtering and online background correction,” Meas. Sci. Technol. 21, 065303 (2010).
[CrossRef]

Li, Z. S.

J. Kiefer, J. W. Tröger, T. Seeger, A. Leipertz, B. Li, Z. S. Li, and M. Alden, “Laser-induced breakdown spectroscopy in gases using ungated detection in combination with polarization filtering and online background correction,” Meas. Sci. Technol. 21, 065303 (2010).
[CrossRef]

Lindner, H.

H. Lindner, K. H. Loper, D. W. Hahn, and K. Niemax, “The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry,” Spectrochim. Acta Part B 66, 179–185(2011).
[CrossRef]

Liu, F.

F. Liu, H. Guo, G. J. Smallwood, and Ö. L. Gülder, “Numerical study of the superadiabatic flame temperature phenomenon in hydrocarbon premixed flames,” Proc. Combust. Inst. 29, 1543–1550 (2002).
[CrossRef]

Livbjerg, H.

T. Johannessen, S. E. Pratsinis, and H. Livbjerg, “Computational fluid-particle dynamics for the flame synthesis of alumina particles,” Chem. Eng. Sci. 55, 177–191 (2000).
[CrossRef]

Long, C. A.

Loper, K. H.

H. Lindner, K. H. Loper, D. W. Hahn, and K. Niemax, “The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry,” Spectrochim. Acta Part B 66, 179–185(2011).
[CrossRef]

Lu, T. F.

C. K. Law, A. Makino, and T. F. Lu, “On the off-stoichiometric peaking of adiabatic flame temperature,” Combust. Flame 145, 808–819 (2006).
[CrossRef]

Lucht, R. P.

T. R. Meyer, S. Roy, R. P. Lucht, and J. R. Gord, “Dual-pump dual-broadband CARS for exhaust-gas temperature and CO2-O2-N2 mole-fraction measurements in model gas-turbine combustors,” Combust. Flame 142, 52–61 (2005).
[CrossRef]

Mädler, L.

L. Mädler, H. K. Kammler, R. Mueller, and S. E. Pratsinis, “Controlled synthesis of nanostructured particles by flame spray pyrolysis,” J. Aerosol Sci. 33, 369–389 (2002).
[CrossRef]

H. K. Kammler, L. Mädler, and S. E. Pratsinis, “Flame synthesis of nanoparticles,” Chem. Eng. Technol. 24, 583–596(2001).
[CrossRef]

Magens, E.

E. Magens, “Nutzung von Rotations-CARS zur Temperatur- und Konzentrationsmessung in Flammen,” Ph.D. dissertation (University Erlangen-Nuremberg, 1992).

Makino, A.

C. K. Law, A. Makino, and T. F. Lu, “On the off-stoichiometric peaking of adiabatic flame temperature,” Combust. Flame 145, 808–819 (2006).
[CrossRef]

Martinsson, L.

L. Martinsson, P.-E. Bengtsson, and M. Aldén, “Oxygen concentration and temperature measurements in N2-O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

P.-E. Bengtsson, L. Martinsson, and M. Aldén, “Combined vibrational and rotational CARS for simultaneous measurements of temperature and concentrations of fuel, oxygen, and nitrogen,” Appl. Spectrosc. 49, 188–192 (1995).
[CrossRef]

P.-E. Bengtsson, L. Martinsson, M. Aldén, and S. Kröll, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129–140 (1992).
[CrossRef]

Matsui, T.

H. Fujimori, T. Matsui, T. Ajiro, K. Yokose, Y.-M. Hsueh, and S. Izumi, “Detection of fine particles in liquids by laser breakdown method,” Jpn. J. Appl. Phys. 31, 1514–1518 (1992).
[CrossRef]

Megaridis, C. M.

O. I. Arabi-Katbi, S. E. Pratsinis, P. W. Morrison, and C. M. Megaridis, “Monitoring the flame synthesis of TiO2 particles by in situ FTIR spectroscopy and thermophoretic sampling,” Combust. Flame 124, 560–572 (2001).
[CrossRef]

Messing, G. L.

G. L. Messing, S.-C. Zhang, and G. V. Jayanthi, “Ceramic powder synthesis by spray pyrolysis,” J. Am. Ceram. Soc. 76, 2707–2726 (1993).
[CrossRef]

Meyer, T. R.

T. R. Meyer, S. Roy, R. P. Lucht, and J. R. Gord, “Dual-pump dual-broadband CARS for exhaust-gas temperature and CO2-O2-N2 mole-fraction measurements in model gas-turbine combustors,” Combust. Flame 142, 52–61 (2005).
[CrossRef]

Millot, G.

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, and J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2 and O2-N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

Miziolek, A. W.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (Cambridge University, 2006).

Morrison, P. W.

H. K. Kammler, S. E. Pratsinis, P. W. Morrison, and B. Hemmerling, “Flame temperature measurements during electrically assisted aerosol synthesis of nanoparticles,” Combust. Flame 128, 369–381 (2002).
[CrossRef]

O. I. Arabi-Katbi, S. E. Pratsinis, P. W. Morrison, and C. M. Megaridis, “Monitoring the flame synthesis of TiO2 particles by in situ FTIR spectroscopy and thermophoretic sampling,” Combust. Flame 124, 560–572 (2001).
[CrossRef]

P. W. Morrison, R. Raghavan, A. J. Timpone, C. P. Artelt, and S. E. Pratsinis, “In situ Fourier transform infrared characterization of the effect of electrical fields on the flame synthesis of TiO2 particles,” Chem. Mater. 9, 2702–2708 (1997).
[CrossRef]

Mueller, R.

L. Mädler, H. K. Kammler, R. Mueller, and S. E. Pratsinis, “Controlled synthesis of nanostructured particles by flame spray pyrolysis,” J. Aerosol Sci. 33, 369–389 (2002).
[CrossRef]

Niemax, K.

H. Lindner, K. H. Loper, D. W. Hahn, and K. Niemax, “The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry,” Spectrochim. Acta Part B 66, 179–185(2011).
[CrossRef]

Obertacke, R.

R. Obertacke, F. Wintrich, H. Wintrich, and A. Leipertz, “A new sensor system for industrial combustion monitoring and control using UV emission spectroscopy and tomography,” Combust. Sci. Technol. 121, 133–151 (1996).
[CrossRef]

Obringer, C. A.

Palleschi, V.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (Cambridge University, 2006).

Palmer, R. E.

Patnaik, A. K.

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010).
[CrossRef]

Patterson, B. D.

C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy in sooting flames,” Proc. Combust. Inst. 33, 831–838 (2011).
[CrossRef]

T. Seeger, J. Kiefer, A. Leipertz, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N2 thermometry,” Opt. Lett. 34, 3755–3757 (2009).
[CrossRef]

Pfadler, S.

A. Leipertz, S. Pfadler, and R. Schießl, “An overview of combustion diagnostics,” in Handbook of Combustion(Wiley-VCH, 2010).

Potkay, E.

M. D. Allendorf, J. R. Bautista, and E. Potkay, “Temperature measurements in a vapor axial deposition flame by spontaneous Raman spectroscopy,” J. Appl. Phys. 66, 5046–5051 (1989).
[CrossRef]

Pratsinis, S.

R. Strobel and S. Pratsinis, “Flame aerosol synthesis of smart nanostructured materials,” J. Mater. Chem. 17, 4743–4756 (2007).
[CrossRef]

S. Pratsinis, “Flame aerosol synthesis of ceramic powders,” Prog. Energy Combust. Sci. 24, 197–219 (1998).
[CrossRef]

Pratsinis, S. E.

R. Wegner and S. E. Pratsinis, “Flame synthesis of nanoparticles,” Chimica Oggi 22, 27–29 (2004).

L. Mädler, H. K. Kammler, R. Mueller, and S. E. Pratsinis, “Controlled synthesis of nanostructured particles by flame spray pyrolysis,” J. Aerosol Sci. 33, 369–389 (2002).
[CrossRef]

H. K. Kammler, S. E. Pratsinis, P. W. Morrison, and B. Hemmerling, “Flame temperature measurements during electrically assisted aerosol synthesis of nanoparticles,” Combust. Flame 128, 369–381 (2002).
[CrossRef]

O. I. Arabi-Katbi, S. E. Pratsinis, P. W. Morrison, and C. M. Megaridis, “Monitoring the flame synthesis of TiO2 particles by in situ FTIR spectroscopy and thermophoretic sampling,” Combust. Flame 124, 560–572 (2001).
[CrossRef]

H. K. Kammler, L. Mädler, and S. E. Pratsinis, “Flame synthesis of nanoparticles,” Chem. Eng. Technol. 24, 583–596(2001).
[CrossRef]

T. Johannessen, S. E. Pratsinis, and H. Livbjerg, “Computational fluid-particle dynamics for the flame synthesis of alumina particles,” Chem. Eng. Sci. 55, 177–191 (2000).
[CrossRef]

P. W. Morrison, R. Raghavan, A. J. Timpone, C. P. Artelt, and S. E. Pratsinis, “In situ Fourier transform infrared characterization of the effect of electrical fields on the flame synthesis of TiO2 particles,” Chem. Mater. 9, 2702–2708 (1997).
[CrossRef]

Raghavan, R.

P. W. Morrison, R. Raghavan, A. J. Timpone, C. P. Artelt, and S. E. Pratsinis, “In situ Fourier transform infrared characterization of the effect of electrical fields on the flame synthesis of TiO2 particles,” Chem. Mater. 9, 2702–2708 (1997).
[CrossRef]

Rahn, L. A.

Roquemore, W.

L. Goss, D. Trump, and W. Roquemore, “Simultaneous CARS and LDA measurements in a turbulent flame,” in 20th Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, 1984), paper AIAA-84-1458.

Roy, S.

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010).
[CrossRef]

T. R. Meyer, S. Roy, R. P. Lucht, and J. R. Gord, “Dual-pump dual-broadband CARS for exhaust-gas temperature and CO2-O2-N2 mole-fraction measurements in model gas-turbine combustors,” Combust. Flame 142, 52–61 (2005).
[CrossRef]

Saint-Loup, R.

F. Vestin, M. Afzelius, H. Berger, F. Chaussard, R. Saint-Loup, and P. E. Bengtsson, “Rotational CARS thermometry at high temperature (1800 K) and high pressure (0.1–1.55 MPa),” J. Raman Spectrosc. 38, 963–968 (2007).
[CrossRef]

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, and J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2 and O2-N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

Santos, J.

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, and J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2 and O2-N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

Schechter, I.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (Cambridge University, 2006).

Schenk, M.

Schießl, R.

A. Leipertz, S. Pfadler, and R. Schießl, “An overview of combustion diagnostics,” in Handbook of Combustion(Wiley-VCH, 2010).

Schulz, C.

H. Kronemayer, P. Ifeacho, C. Hecht, T. Dreier, H. Wiggers, and C. Schulz, “Gas-temperature imaging in a low-pressure flame reactor for nano-particle synthesis with multi-line NO-LIF thermometry,” Appl. Phys. B 88, 373–377 (2007).
[CrossRef]

Seeger, T.

C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy in sooting flames,” Proc. Combust. Inst. 33, 831–838 (2011).
[CrossRef]

M. Weikl, S. Tedder, T. Seeger, and A. Leipertz, “Investigation of porous media combustion by coherent anti-Stokes Raman spectroscopy,” Exp. Fluids 49, 775–781 (2010).
[CrossRef]

J. Kiefer, J. W. Tröger, T. Seeger, A. Leipertz, B. Li, Z. S. Li, and M. Alden, “Laser-induced breakdown spectroscopy in gases using ungated detection in combination with polarization filtering and online background correction,” Meas. Sci. Technol. 21, 065303 (2010).
[CrossRef]

T. Seeger, J. Kiefer, A. Leipertz, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N2 thermometry,” Opt. Lett. 34, 3755–3757 (2009).
[CrossRef]

S. A. Tedder, M. C. Weikl, T. Seeger, and A. Leipertz, “Determination of probe volume dimensions in coherent measurement techniques,” Appl. Opt. 47, 6601–6605 (2008).
[CrossRef]

J. Egermann, T. Seeger, and A. Leipertz, “Application of 266 nm and 355 nm Nd:YAG laser radiation for the investigation of fuel-rich sooting hydrocarbon flames by Raman scattering,” Appl. Opt. 43, 5564–5574 (2004).
[CrossRef]

F. Beyrau, A. Bräuer, T. Seeger, and A. Leipertz, “Gas-phase temperature measurement in the vaporizing spray of a gasoline direct-injection injector by use of pure rotational coherent anti-Stokes Raman scattering,” Opt. Lett. 29, 247–249 (2004).
[CrossRef]

T. Seeger, F. Beyrau, A. Braeuer, and A. Leipertz, “High pressure pure rotational CARS: Comparison of temperature measurements with O2, N2, and synthetic air,” J. Raman Spectrosc. 34, 932–939 (2003).
[CrossRef]

T. Seeger, J. Jonuscheit, M. Schenk, and A. Leipertz, “Simultaneous temperature and relative oxygen and methane concentration measurements in a partially premixed sooting flame using a novel CARS-technique,” J. Mol. Struct. 661–662, 515–524 (2003).
[CrossRef]

F. Beyrau, A. Datta, T. Seeger, and A. Leipertz, “Dual-pump CARS for the simultaneous detection of N2, O2 and CO in CH4-flames,” J. Raman Spectrosc. 33, 919–924 (2002).
[CrossRef]

C. Brackmann, J. Bood, P.-E. Bengtsson, T. Seeger, M. Schenk, and A. Leipertz, “Simultaneous vibrational and pure rotational coherent anti-Stokes Raman spectroscopy for temperature and multispecies concentration measurements demonstrated in sooting flames,” Appl. Opt. 41, 564–572(2002).
[CrossRef]

A. Thumann, M. Schenk, J. Jonuscheit, T. Seeger, and A. Leipertz, “Simultaneous temperature and relative nitrogen—oxygen concentration measurements in air with pure rotational coherent anti-Stokes Raman scattering for temperatures to as high as 2050 K,” Appl. Opt. 36, 3500–3506 (1997).
[CrossRef]

T. Seeger and A. Leipertz, “Experimental comparison of single shot broadband vibrational and dual broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt. 35, 2665–2671 (1996).
[CrossRef]

A. Leipertz and T. Seeger, “Combustion diagnostics by pure rotational coherent anti-Stokes Raman scattering,” in Optical Processes in Microparticles and Nanostructures: a Festschrift Dedicated to Richard Kounai Chang on His Retirement from Yale University (World Scientific, 2011).

Settersten, T. B.

C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy in sooting flames,” Proc. Combust. Inst. 33, 831–838 (2011).
[CrossRef]

T. Seeger, J. Kiefer, A. Leipertz, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N2 thermometry,” Opt. Lett. 34, 3755–3757 (2009).
[CrossRef]

Singh, J. P.

J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).

Smallwood, G. J.

F. Liu, H. Guo, G. J. Smallwood, and Ö. L. Gülder, “Numerical study of the superadiabatic flame temperature phenomenon in hydrocarbon premixed flames,” Proc. Combust. Inst. 29, 1543–1550 (2002).
[CrossRef]

Strobel, R.

R. Strobel and S. Pratsinis, “Flame aerosol synthesis of smart nanostructured materials,” J. Mater. Chem. 17, 4743–4756 (2007).
[CrossRef]

Switzer, G. L.

Tedder, S.

M. Weikl, S. Tedder, T. Seeger, and A. Leipertz, “Investigation of porous media combustion by coherent anti-Stokes Raman spectroscopy,” Exp. Fluids 49, 775–781 (2010).
[CrossRef]

Tedder, S. A.

Teller, E.

S. Brunauer, P. Emmett, and E. Teller, “Adsorption of gases in multilayers,” J. Am. Chem. Soc. 60, 309–319 (1938).
[CrossRef]

Thakur, S. N.

J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).

Thumann, A.

Timpone, A. J.

P. W. Morrison, R. Raghavan, A. J. Timpone, C. P. Artelt, and S. E. Pratsinis, “In situ Fourier transform infrared characterization of the effect of electrical fields on the flame synthesis of TiO2 particles,” Chem. Mater. 9, 2702–2708 (1997).
[CrossRef]

Tröger, J. W.

J. Kiefer, J. W. Tröger, T. Seeger, A. Leipertz, B. Li, Z. S. Li, and M. Alden, “Laser-induced breakdown spectroscopy in gases using ungated detection in combination with polarization filtering and online background correction,” Meas. Sci. Technol. 21, 065303 (2010).
[CrossRef]

Trump, D.

L. Goss, D. Trump, and W. Roquemore, “Simultaneous CARS and LDA measurements in a turbulent flame,” in 20th Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, 1984), paper AIAA-84-1458.

Ulrich, G. D.

G. D. Ulrich, “Special report,” Chem. Eng. News 62, 22–29 (1984).
[CrossRef]

Vestin, F.

F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Development of rotational CARS for combustion diagnostics using a polarization approach,” Proc. Combust. Inst. 31, 833–840 (2007).
[CrossRef]

F. Vestin, M. Afzelius, H. Berger, F. Chaussard, R. Saint-Loup, and P. E. Bengtsson, “Rotational CARS thermometry at high temperature (1800 K) and high pressure (0.1–1.55 MPa),” J. Raman Spectrosc. 38, 963–968 (2007).
[CrossRef]

F. Vestin, M. Afzelius, C. Brackmann, and P.-E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Inst. 30, 1673–1680 (2005).
[CrossRef]

Wegner, R.

R. Wegner and S. E. Pratsinis, “Flame synthesis of nanoparticles,” Chimica Oggi 22, 27–29 (2004).

Weikl, M.

M. Weikl, S. Tedder, T. Seeger, and A. Leipertz, “Investigation of porous media combustion by coherent anti-Stokes Raman spectroscopy,” Exp. Fluids 49, 775–781 (2010).
[CrossRef]

Weikl, M. C.

Wiggers, H.

H. Kronemayer, P. Ifeacho, C. Hecht, T. Dreier, H. Wiggers, and C. Schulz, “Gas-temperature imaging in a low-pressure flame reactor for nano-particle synthesis with multi-line NO-LIF thermometry,” Appl. Phys. B 88, 373–377 (2007).
[CrossRef]

Wintrich, F.

R. Obertacke, F. Wintrich, H. Wintrich, and A. Leipertz, “A new sensor system for industrial combustion monitoring and control using UV emission spectroscopy and tomography,” Combust. Sci. Technol. 121, 133–151 (1996).
[CrossRef]

Wintrich, H.

R. Obertacke, F. Wintrich, H. Wintrich, and A. Leipertz, “A new sensor system for industrial combustion monitoring and control using UV emission spectroscopy and tomography,” Combust. Sci. Technol. 121, 133–151 (1996).
[CrossRef]

Yokose, K.

H. Fujimori, T. Matsui, T. Ajiro, K. Yokose, Y.-M. Hsueh, and S. Izumi, “Detection of fine particles in liquids by laser breakdown method,” Jpn. J. Appl. Phys. 31, 1514–1518 (1992).
[CrossRef]

Zhang, S.-C.

G. L. Messing, S.-C. Zhang, and G. V. Jayanthi, “Ceramic powder synthesis by spray pyrolysis,” J. Am. Ceram. Soc. 76, 2707–2726 (1993).
[CrossRef]

Appl. Opt. (7)

T. Seeger and A. Leipertz, “Experimental comparison of single shot broadband vibrational and dual broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt. 35, 2665–2671 (1996).
[CrossRef]

J. D. Black and C. A. Long, “Rotational coherent anti-Stokes Raman spectroscopy measurements in a rotating cavity with axial throughflow of cooling air: oxygen concentration measurements,” Appl. Opt. 31, 4291–4297 (1992).
[CrossRef]

A. Thumann, M. Schenk, J. Jonuscheit, T. Seeger, and A. Leipertz, “Simultaneous temperature and relative nitrogen—oxygen concentration measurements in air with pure rotational coherent anti-Stokes Raman scattering for temperatures to as high as 2050 K,” Appl. Opt. 36, 3500–3506 (1997).
[CrossRef]

C. Brackmann, J. Bood, P.-E. Bengtsson, T. Seeger, M. Schenk, and A. Leipertz, “Simultaneous vibrational and pure rotational coherent anti-Stokes Raman spectroscopy for temperature and multispecies concentration measurements demonstrated in sooting flames,” Appl. Opt. 41, 564–572(2002).
[CrossRef]

S. A. Tedder, M. C. Weikl, T. Seeger, and A. Leipertz, “Determination of probe volume dimensions in coherent measurement techniques,” Appl. Opt. 47, 6601–6605 (2008).
[CrossRef]

J. Egermann, T. Seeger, and A. Leipertz, “Application of 266 nm and 355 nm Nd:YAG laser radiation for the investigation of fuel-rich sooting hydrocarbon flames by Raman scattering,” Appl. Opt. 43, 5564–5574 (2004).
[CrossRef]

D. Dunn-Rankin, G. L. Switzer, C. A. Obringer, and T. A. Jackson, “Effect of droplet-induced breakdown on CARS temperature measurements,” Appl. Opt. 29, 3150–3159 (1990).
[CrossRef]

Appl. Phys. B (2)

L. Martinsson, P.-E. Bengtsson, and M. Aldén, “Oxygen concentration and temperature measurements in N2-O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

H. Kronemayer, P. Ifeacho, C. Hecht, T. Dreier, H. Wiggers, and C. Schulz, “Gas-temperature imaging in a low-pressure flame reactor for nano-particle synthesis with multi-line NO-LIF thermometry,” Appl. Phys. B 88, 373–377 (2007).
[CrossRef]

Appl. Spectrosc. (1)

Chem. Eng. News (1)

G. D. Ulrich, “Special report,” Chem. Eng. News 62, 22–29 (1984).
[CrossRef]

Chem. Eng. Sci. (1)

T. Johannessen, S. E. Pratsinis, and H. Livbjerg, “Computational fluid-particle dynamics for the flame synthesis of alumina particles,” Chem. Eng. Sci. 55, 177–191 (2000).
[CrossRef]

Chem. Eng. Technol. (1)

H. K. Kammler, L. Mädler, and S. E. Pratsinis, “Flame synthesis of nanoparticles,” Chem. Eng. Technol. 24, 583–596(2001).
[CrossRef]

Chem. Mater. (1)

P. W. Morrison, R. Raghavan, A. J. Timpone, C. P. Artelt, and S. E. Pratsinis, “In situ Fourier transform infrared characterization of the effect of electrical fields on the flame synthesis of TiO2 particles,” Chem. Mater. 9, 2702–2708 (1997).
[CrossRef]

Chimica Oggi (1)

R. Wegner and S. E. Pratsinis, “Flame synthesis of nanoparticles,” Chimica Oggi 22, 27–29 (2004).

Combust. Flame (5)

A. N. Karpetis and A. Gomez, “An experimental study of well-defined turbulent nonpremixed spray flames,” Combust. Flame 121, 1–23 (2000).
[CrossRef]

O. I. Arabi-Katbi, S. E. Pratsinis, P. W. Morrison, and C. M. Megaridis, “Monitoring the flame synthesis of TiO2 particles by in situ FTIR spectroscopy and thermophoretic sampling,” Combust. Flame 124, 560–572 (2001).
[CrossRef]

H. K. Kammler, S. E. Pratsinis, P. W. Morrison, and B. Hemmerling, “Flame temperature measurements during electrically assisted aerosol synthesis of nanoparticles,” Combust. Flame 128, 369–381 (2002).
[CrossRef]

T. R. Meyer, S. Roy, R. P. Lucht, and J. R. Gord, “Dual-pump dual-broadband CARS for exhaust-gas temperature and CO2-O2-N2 mole-fraction measurements in model gas-turbine combustors,” Combust. Flame 142, 52–61 (2005).
[CrossRef]

C. K. Law, A. Makino, and T. F. Lu, “On the off-stoichiometric peaking of adiabatic flame temperature,” Combust. Flame 145, 808–819 (2006).
[CrossRef]

Combust. Sci. Technol. (2)

P.-E. Bengtsson, L. Martinsson, M. Aldén, and S. Kröll, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129–140 (1992).
[CrossRef]

R. Obertacke, F. Wintrich, H. Wintrich, and A. Leipertz, “A new sensor system for industrial combustion monitoring and control using UV emission spectroscopy and tomography,” Combust. Sci. Technol. 121, 133–151 (1996).
[CrossRef]

Exp. Fluids (1)

M. Weikl, S. Tedder, T. Seeger, and A. Leipertz, “Investigation of porous media combustion by coherent anti-Stokes Raman spectroscopy,” Exp. Fluids 49, 775–781 (2010).
[CrossRef]

J. Aerosol Sci. (2)

J. Y. Hwang, Y. S. Gil, J. I. Kim, M. Choi, and S. H. Chung, “Measurements of temperature and OH radical distributions in a silica generating flame using CARS and PLIF,” J. Aerosol Sci. 32, 601–613 (2001).
[CrossRef]

L. Mädler, H. K. Kammler, R. Mueller, and S. E. Pratsinis, “Controlled synthesis of nanostructured particles by flame spray pyrolysis,” J. Aerosol Sci. 33, 369–389 (2002).
[CrossRef]

J. Am. Ceram. Soc. (1)

G. L. Messing, S.-C. Zhang, and G. V. Jayanthi, “Ceramic powder synthesis by spray pyrolysis,” J. Am. Ceram. Soc. 76, 2707–2726 (1993).
[CrossRef]

J. Am. Chem. Soc. (1)

S. Brunauer, P. Emmett, and E. Teller, “Adsorption of gases in multilayers,” J. Am. Chem. Soc. 60, 309–319 (1938).
[CrossRef]

J. Appl. Phys. (1)

M. D. Allendorf, J. R. Bautista, and E. Potkay, “Temperature measurements in a vapor axial deposition flame by spontaneous Raman spectroscopy,” J. Appl. Phys. 66, 5046–5051 (1989).
[CrossRef]

J. Chem. Phys. (1)

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, and J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2 and O2-N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

J. Mater. Chem. (1)

R. Strobel and S. Pratsinis, “Flame aerosol synthesis of smart nanostructured materials,” J. Mater. Chem. 17, 4743–4756 (2007).
[CrossRef]

J. Mol. Struct. (1)

T. Seeger, J. Jonuscheit, M. Schenk, and A. Leipertz, “Simultaneous temperature and relative oxygen and methane concentration measurements in a partially premixed sooting flame using a novel CARS-technique,” J. Mol. Struct. 661–662, 515–524 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Raman Spectrosc. (4)

F. Beyrau, A. Datta, T. Seeger, and A. Leipertz, “Dual-pump CARS for the simultaneous detection of N2, O2 and CO in CH4-flames,” J. Raman Spectrosc. 33, 919–924 (2002).
[CrossRef]

F. Vestin, M. Afzelius, H. Berger, F. Chaussard, R. Saint-Loup, and P. E. Bengtsson, “Rotational CARS thermometry at high temperature (1800 K) and high pressure (0.1–1.55 MPa),” J. Raman Spectrosc. 38, 963–968 (2007).
[CrossRef]

T. Seeger, F. Beyrau, A. Braeuer, and A. Leipertz, “High pressure pure rotational CARS: Comparison of temperature measurements with O2, N2, and synthetic air,” J. Raman Spectrosc. 34, 932–939 (2003).
[CrossRef]

J. Bood, P.-E. Bengtsson, and T. Dreier, “Rotational coherent anti-Stokes Raman spectroscopy (CARS) in nitrogen at high pressures (0.1–44 MPa): Experimental and modelling results,” J. Raman Spectrosc. 31, 703–710 (2000).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Fujimori, T. Matsui, T. Ajiro, K. Yokose, Y.-M. Hsueh, and S. Izumi, “Detection of fine particles in liquids by laser breakdown method,” Jpn. J. Appl. Phys. 31, 1514–1518 (1992).
[CrossRef]

Meas. Sci. Technol. (1)

J. Kiefer, J. W. Tröger, T. Seeger, A. Leipertz, B. Li, Z. S. Li, and M. Alden, “Laser-induced breakdown spectroscopy in gases using ungated detection in combination with polarization filtering and online background correction,” Meas. Sci. Technol. 21, 065303 (2010).
[CrossRef]

Opt. Lett. (2)

Proc. Combust. Inst. (5)

F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Development of rotational CARS for combustion diagnostics using a polarization approach,” Proc. Combust. Inst. 31, 833–840 (2007).
[CrossRef]

C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy in sooting flames,” Proc. Combust. Inst. 33, 831–838 (2011).
[CrossRef]

A. Bohlin and P.-E. Bengtsson, “Rotational CARS thermometry in diffusion flames: On the influence of nitrogen spectral line-broadening by CH4 and H2,” Proc. Combust. Inst. 33, 823–830 (2011).
[CrossRef]

F. Vestin, M. Afzelius, C. Brackmann, and P.-E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Inst. 30, 1673–1680 (2005).
[CrossRef]

F. Liu, H. Guo, G. J. Smallwood, and Ö. L. Gülder, “Numerical study of the superadiabatic flame temperature phenomenon in hydrocarbon premixed flames,” Proc. Combust. Inst. 29, 1543–1550 (2002).
[CrossRef]

Prog. Energy Combust. Sci. (3)

S. Pratsinis, “Flame aerosol synthesis of ceramic powders,” Prog. Energy Combust. Sci. 24, 197–219 (1998).
[CrossRef]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010).
[CrossRef]

J. Kiefer and P. Ewart, “Laser diagnostics and minor species detection in combustion using resonant four-wave mixing,” Prog. Energy Combust. Sci. 37, 525–564 (2011).
[CrossRef]

Spectrochim. Acta Part B (1)

H. Lindner, K. H. Loper, D. W. Hahn, and K. Niemax, “The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry,” Spectrochim. Acta Part B 66, 179–185(2011).
[CrossRef]

Other (7)

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (Cambridge University, 2006).

J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).

A. Leipertz, S. Pfadler, and R. Schießl, “An overview of combustion diagnostics,” in Handbook of Combustion(Wiley-VCH, 2010).

L. Goss, D. Trump, and W. Roquemore, “Simultaneous CARS and LDA measurements in a turbulent flame,” in 20th Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, 1984), paper AIAA-84-1458.

T. T. Kodas and M. J. Hampden-Smith, Aerosol Processing of Materials (Wiley-VCH, 1999).

A. Leipertz and T. Seeger, “Combustion diagnostics by pure rotational coherent anti-Stokes Raman scattering,” in Optical Processes in Microparticles and Nanostructures: a Festschrift Dedicated to Richard Kounai Chang on His Retirement from Yale University (World Scientific, 2011).

E. Magens, “Nutzung von Rotations-CARS zur Temperatur- und Konzentrationsmessung in Flammen,” Ph.D. dissertation (University Erlangen-Nuremberg, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic of the flame spray pyrolysis process; a: precursor in organic solvent, HMDSO/EtOH; b: dispersion gas, oxygen; c: inlet support flame gases, premixed methane and oxygen; d: sheath gas, oxygen.

Fig. 2.
Fig. 2.

Experimental setup for LIBD measurements. L1-3, spherical lenses; L4+5, achromatic spherical lenses; F1, notch filter; F2+3, long-pass filters; BD, beam dump.

Fig. 3.
Fig. 3.

Experimental setup for O2-based pure rotational CARS measurements with polarization filtering. BS1, T90/R10; BS2, T80/R20; BS3, T65/R35 (BS, beam splitter with transmission T and reflection R); L1-3, spherical lenses; F1, long-pass Razor Edge (laser line 532 nm); P1-4, polarizers; PS, periscope; I, iris; BD, beam dump; the blueshifted CARS signal is indicated by the blue color of the CARS signal path in the diagram.

Fig. 4.
Fig. 4.

The diagrams show (a) a bimodal CARS spectrum, (b) a breakdown affected CARS spectrum, and (c) a CARS spectrum suitable for temperature fitting here resulting in 936 K.

Fig. 5.
Fig. 5.

Spectra of air with (dashed black line) and without (solid red line) laser-induced breakdown signals. Laser-induced breakdown transitions of N II and O I are shown in reference to the corresponding peak.

Fig. 6.
Fig. 6.

Pure rotational CARS spectra acquired with (blue solid curve) and without (red dashed curve) stray light suppression. The plot shows the normalized signal intensity as a function of the Raman shift.

Fig. 7.
Fig. 7.

Radial temperature profiles for OP 1 obtained with pure rotational CARS in the (a) particle regime at 37 mm downstream from the nozzle and in the (b) droplet regime at 25 mm downstream. Silica nanoparticles were produced with 0.05 (○) and 0.5(Δ)mol·l1 HMDSO in ethanol as precursor. Temperatures are based on 500 recorded single-shot CARS spectra.

Fig. 8.
Fig. 8.

Axial temperature profiles above the nozzle obtained with pure rotational CARS for OP 2 in the (a) particle and the (b) droplet regime. The temperature profiles are shown along the (a) centerline and (b) with a radial distance of 2 mm from the centerline. The liquid feed was pure ethanol (□) and HMDSO in ethanol with a concentration of 0.5()mol·l1. Temperatures are based on 500 recorded single-shot CARS spectra.

Fig. 9.
Fig. 9.

Distribution plot of the single-pulse temperature measurements taken at a downstream position of 27 mm in the centerline of the burner configuration during particle generation [also displayed as arithmetic mean value in Fig. 8(a)]. The solid line represents a Gaussian fit to the temperature distribution with given mean value σGauss,1-2 and standard deviation μGauss,1-2. The arithmetic mean value presented in Fig. 8(a) is 1261.9 K.

Fig. 10.
Fig. 10.

Distribution plots of the single-pulse temperature measurements taken at a downstream position of 37 mm and a radial position of 4 mm with (a) large and (b) small precursor concentrations and (c) at the same local position of that one in Fig. 9 but without particle generation. Additionally given are the arithmetic mean values σarithm,ac and the standard deviations μarithm,ac. Please note that the y-axis scaling is not identical for the figures (a), (b), and (c).

Tables (2)

Tables Icon

Table 1. Flow Rates for Nanoparticle Production

Tables Icon

Table 2. Parameters of the Modified Exponential Gap (MEG) Law

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

γji=αpF(T)(T0T)n(1+aEikBTδ1+aEikBT)2exp(βΔEijkBT),
F(T)=1em1emTT0,

Metrics