Abstract

We report on the fabrication of a one-dimensional micro-retroreflector array with a pitch of 100 μm. The array was fabricated by x-ray lithography and the lithographie, galvanik und abformung (LIGA) process in a 1 mm thick poly(methyl methacrylate) (PMMA) layer and subsequently covered with Au. The area of the array is 1mm×10mm. The high precision of the LIGA-based fabrication process allows one to use the element in spectrometers. Here, it is suggested to apply it to the implementation of a transversal filter for femtosecond pulses. We present a theoretical description of the performance of the retroreflector array as a filtering device and show experimental results.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Sabatyan and J. Jahns, “Retroreflector array as tapped delay line filter for ultrashort optical pulses,” J. Eur. Opt. Soc.-Rapid Publ. 1, 06022 (2006).
    [CrossRef]
  2. R. Grunwald, M. Bock, and J. Jahns, “Temporal multiplexing and shaping of few-cycle pulses with microoptical retroreflector arrays,” Adv. Opt. Technol. 1, 97–99 (2012).
  3. E. Brinksmeier, R. Gläbe, and C. Flucke, “Manufacturing of molds for replication of micro cube corner retroreflectors,” Prod. Eng. Res. Dev. 2, 33–38 (2008).
    [CrossRef]
  4. U. Wallrabe, J. G. Korvink, and J. Mohr, “LIGA” in Comprehensive Microsystems, Y. B. Gianchandani, O. Tabata, and H. Zappe, eds. (Elsevier, 2008).
  5. M. Hagelstein, J. Heinrich, and D. Rostohar, ANKA Instrumentation Book (ANKA Angströmquelle Karlsruhe, Institute for Synchrotron Radiation, Karlsruhe Institute of Technology, 2009).
  6. H. F. Talbot, “An experiment on the interference of light,” Philos. Mag. 10, 364 (1837).
    [CrossRef]
  7. A. W. Lohmann, Optical Information Processing (Universitätsverlag Ilmenau, 2006).
  8. J. Jahns, A. W. Lohmann, and M. Bohling, “Talbot bands and temporal processing of optical signals,” J. Eur. Opt. Soc.-Rapid Publ. 1, 06001 (2006).
    [CrossRef]
  9. M. B. Sinclair, M. A. Butler, S. H. Kravitz, W. J. Zubrzycki, and A. J. Ricco, “Synthetic infrared spectra,” Opt. Lett. 22, 1036–1038 (1997).
    [CrossRef]

2012 (1)

R. Grunwald, M. Bock, and J. Jahns, “Temporal multiplexing and shaping of few-cycle pulses with microoptical retroreflector arrays,” Adv. Opt. Technol. 1, 97–99 (2012).

2008 (1)

E. Brinksmeier, R. Gläbe, and C. Flucke, “Manufacturing of molds for replication of micro cube corner retroreflectors,” Prod. Eng. Res. Dev. 2, 33–38 (2008).
[CrossRef]

2006 (2)

J. Jahns, A. W. Lohmann, and M. Bohling, “Talbot bands and temporal processing of optical signals,” J. Eur. Opt. Soc.-Rapid Publ. 1, 06001 (2006).
[CrossRef]

A. Sabatyan and J. Jahns, “Retroreflector array as tapped delay line filter for ultrashort optical pulses,” J. Eur. Opt. Soc.-Rapid Publ. 1, 06022 (2006).
[CrossRef]

1997 (1)

1837 (1)

H. F. Talbot, “An experiment on the interference of light,” Philos. Mag. 10, 364 (1837).
[CrossRef]

Bock, M.

R. Grunwald, M. Bock, and J. Jahns, “Temporal multiplexing and shaping of few-cycle pulses with microoptical retroreflector arrays,” Adv. Opt. Technol. 1, 97–99 (2012).

Bohling, M.

J. Jahns, A. W. Lohmann, and M. Bohling, “Talbot bands and temporal processing of optical signals,” J. Eur. Opt. Soc.-Rapid Publ. 1, 06001 (2006).
[CrossRef]

Brinksmeier, E.

E. Brinksmeier, R. Gläbe, and C. Flucke, “Manufacturing of molds for replication of micro cube corner retroreflectors,” Prod. Eng. Res. Dev. 2, 33–38 (2008).
[CrossRef]

Butler, M. A.

Flucke, C.

E. Brinksmeier, R. Gläbe, and C. Flucke, “Manufacturing of molds for replication of micro cube corner retroreflectors,” Prod. Eng. Res. Dev. 2, 33–38 (2008).
[CrossRef]

Gläbe, R.

E. Brinksmeier, R. Gläbe, and C. Flucke, “Manufacturing of molds for replication of micro cube corner retroreflectors,” Prod. Eng. Res. Dev. 2, 33–38 (2008).
[CrossRef]

Grunwald, R.

R. Grunwald, M. Bock, and J. Jahns, “Temporal multiplexing and shaping of few-cycle pulses with microoptical retroreflector arrays,” Adv. Opt. Technol. 1, 97–99 (2012).

Hagelstein, M.

M. Hagelstein, J. Heinrich, and D. Rostohar, ANKA Instrumentation Book (ANKA Angströmquelle Karlsruhe, Institute for Synchrotron Radiation, Karlsruhe Institute of Technology, 2009).

Heinrich, J.

M. Hagelstein, J. Heinrich, and D. Rostohar, ANKA Instrumentation Book (ANKA Angströmquelle Karlsruhe, Institute for Synchrotron Radiation, Karlsruhe Institute of Technology, 2009).

Jahns, J.

R. Grunwald, M. Bock, and J. Jahns, “Temporal multiplexing and shaping of few-cycle pulses with microoptical retroreflector arrays,” Adv. Opt. Technol. 1, 97–99 (2012).

J. Jahns, A. W. Lohmann, and M. Bohling, “Talbot bands and temporal processing of optical signals,” J. Eur. Opt. Soc.-Rapid Publ. 1, 06001 (2006).
[CrossRef]

A. Sabatyan and J. Jahns, “Retroreflector array as tapped delay line filter for ultrashort optical pulses,” J. Eur. Opt. Soc.-Rapid Publ. 1, 06022 (2006).
[CrossRef]

Korvink, J. G.

U. Wallrabe, J. G. Korvink, and J. Mohr, “LIGA” in Comprehensive Microsystems, Y. B. Gianchandani, O. Tabata, and H. Zappe, eds. (Elsevier, 2008).

Kravitz, S. H.

Lohmann, A. W.

J. Jahns, A. W. Lohmann, and M. Bohling, “Talbot bands and temporal processing of optical signals,” J. Eur. Opt. Soc.-Rapid Publ. 1, 06001 (2006).
[CrossRef]

A. W. Lohmann, Optical Information Processing (Universitätsverlag Ilmenau, 2006).

Mohr, J.

U. Wallrabe, J. G. Korvink, and J. Mohr, “LIGA” in Comprehensive Microsystems, Y. B. Gianchandani, O. Tabata, and H. Zappe, eds. (Elsevier, 2008).

Ricco, A. J.

Rostohar, D.

M. Hagelstein, J. Heinrich, and D. Rostohar, ANKA Instrumentation Book (ANKA Angströmquelle Karlsruhe, Institute for Synchrotron Radiation, Karlsruhe Institute of Technology, 2009).

Sabatyan, A.

A. Sabatyan and J. Jahns, “Retroreflector array as tapped delay line filter for ultrashort optical pulses,” J. Eur. Opt. Soc.-Rapid Publ. 1, 06022 (2006).
[CrossRef]

Sinclair, M. B.

Talbot, H. F.

H. F. Talbot, “An experiment on the interference of light,” Philos. Mag. 10, 364 (1837).
[CrossRef]

Wallrabe, U.

U. Wallrabe, J. G. Korvink, and J. Mohr, “LIGA” in Comprehensive Microsystems, Y. B. Gianchandani, O. Tabata, and H. Zappe, eds. (Elsevier, 2008).

Zubrzycki, W. J.

Adv. Opt. Technol. (1)

R. Grunwald, M. Bock, and J. Jahns, “Temporal multiplexing and shaping of few-cycle pulses with microoptical retroreflector arrays,” Adv. Opt. Technol. 1, 97–99 (2012).

J. Eur. Opt. Soc.-Rapid Publ. (2)

J. Jahns, A. W. Lohmann, and M. Bohling, “Talbot bands and temporal processing of optical signals,” J. Eur. Opt. Soc.-Rapid Publ. 1, 06001 (2006).
[CrossRef]

A. Sabatyan and J. Jahns, “Retroreflector array as tapped delay line filter for ultrashort optical pulses,” J. Eur. Opt. Soc.-Rapid Publ. 1, 06022 (2006).
[CrossRef]

Opt. Lett. (1)

Philos. Mag. (1)

H. F. Talbot, “An experiment on the interference of light,” Philos. Mag. 10, 364 (1837).
[CrossRef]

Prod. Eng. Res. Dev. (1)

E. Brinksmeier, R. Gläbe, and C. Flucke, “Manufacturing of molds for replication of micro cube corner retroreflectors,” Prod. Eng. Res. Dev. 2, 33–38 (2008).
[CrossRef]

Other (3)

U. Wallrabe, J. G. Korvink, and J. Mohr, “LIGA” in Comprehensive Microsystems, Y. B. Gianchandani, O. Tabata, and H. Zappe, eds. (Elsevier, 2008).

M. Hagelstein, J. Heinrich, and D. Rostohar, ANKA Instrumentation Book (ANKA Angströmquelle Karlsruhe, Institute for Synchrotron Radiation, Karlsruhe Institute of Technology, 2009).

A. W. Lohmann, Optical Information Processing (Universitätsverlag Ilmenau, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1.

Retroreflector array used a tapped delay line filter [1].

Fig. 2.
Fig. 2.

Schematic of fabrication process using deep x-ray lithography.

Fig. 3.
Fig. 3.

Process mask, left edge of a micro-retroreflector.

Fig. 4.
Fig. 4.

Process mask, right edge of a micro-retroreflector.

Fig. 5.
Fig. 5.

Process mask, detailed view of the notch of a tooth.

Fig. 6.
Fig. 6.

Process mask, detailed view of the bulge of a tooth.

Fig. 7.
Fig. 7.

Left edge of a micro-retroreflector.

Fig. 8.
Fig. 8.

Details of the teeth.

Fig. 9.
Fig. 9.

Left edge of a micro-retroreflector (side view).

Fig. 10.
Fig. 10.

Details of the notch (surface).

Fig. 11.
Fig. 11.

(a) Profile of the RA measured with a confocal microscope; (b) one-dimensional scan.

Fig. 12.
Fig. 12.

Optical setup for testing the retroreflector array (PS, point source; BS, beam splitter cube; RA, retroreflector array; G, grating).

Fig. 13.
Fig. 13.

Experimental result obtained with white light source. Top: spectrum of the light source (incandescent lamp). Bottom: modulated spectrum by the influence of the micro-retroreflector.

Fig. 14.
Fig. 14.

Experimental result: normalized intensity of the spectrum obtained with light pulses from a femtosecond laser for tilt angle γ=15.25°.

Fig. 15.
Fig. 15.

Situation as considered in the theoretical analysis.

Fig. 16.
Fig. 16.

Graphical representation of the dispersion curves for the grating [according to Eq. (4)] shown here just for the first diffraction order (μ=1) and for the retroreflector array [Eq. (7)]. The light shading indicates the Gaussian spectrum of the light source centered at λ=λ0.

Fig. 17.
Fig. 17.

Theoretical result: normalized intensity of the spectrum calculated for γ=15.25°.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

τr=2wsinγ/c.
I(α)=|S˜(ν)|2|F˜(ν,α)|2|G˜(ν,α)|2dν.
|G˜(ν)|2=|m=0M1exp(2πimντd)|2=sin2(πMντd)sin2(πντd),
τd=psinαc.
sinα=μλp=μcνp,
|F˜(ν,α)|2=|k=0K1exp[2πikν(Mτdτr)]|2=sin2(πKϕ)sin2(πϕ).
ϕ=ν(Mτdτr)=(Mpsinα2wsinγ)(ν/c).
sinα=2sinγ+κλw,
S˜G(λ)=e[λλ0Δλ]2,

Metrics