Abstract

Real-time monitoring of the fabrication process of tapering down a multimode-interference-based fiber structure is presented. The device is composed of a pure silica multimode fiber (MMF) with an initial 125 μm diameter spliced between two single-mode fibers. The process allows a thin MMF with adjustable parameters to obtain a high signal transmittance, arising from constructive interference among the guided modes at the output end of the MMF. Tapered structures with waist diameters as low as 55 μm were easily fabricated without the limitation of fragile splices or difficulty in controlling lateral fiber alignments. The sensing device is shown to be sensitive to the external environment, and a maximum sensitivity of 2946nm/refractive index unit in the refractive index range of 1.42–1.43 was attained.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Frazão, S. Silva, J. Viegas, L. A. Ferreira, F. M. Araújo, and J. L. Santos, “Optical fiber refractometry based on multimode interference,” Appl. Opt. 50, E184–E188 (2011).
    [CrossRef]
  2. Q. Wang, G. Farrell, and W. Yan, “Investigation on single mode-multimode-single mode fiber structure,” J. Lightwave Technol. 26, 512–519 (2008).
    [CrossRef]
  3. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging—principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
    [CrossRef]
  4. W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31, 2547–2549 (2006).
    [CrossRef]
  5. J. E. Antonio-Lopez, A. Castillo-Guzman, D. A. May-Arrioja, R. Selvas-Aguilar, and P. L. Wa, “Tunable multimode-interference bandpass fiber filter,” Opt. Lett. 35, 324–326 (2010).
    [CrossRef]
  6. A. Castillo-Guzman, J. E. Antonio-Lopez, R. Selvas-Aguilar, D. A. May-Arrioja, J. Estudillo-Ayala, and P. L. Wa, “Widely tunable erbium-doped fiber laser based on multimode interference effect,” Opt. Express 18, 591–597 (2010).
    [CrossRef]
  7. R. X. Gao, Q. Wang, F. Zhao, B. Meng, and S. L. Qu, “Optimal design and fabrication of SMS fiber temperature sensor for liquid,” Opt. Commun. 283, 3149–3152 (2010).
    [CrossRef]
  8. J. E. Antonio-Lopez, J. J. Sanchez-Mondragon, P. L. Wa, and D. A. May-Arrioja, “Fiber-optic sensor for liquid level measurement,” Opt. Lett. 36, 3425–3427 (2011).
    [CrossRef]
  9. Q. Wu, Y. Semenova, B. Yan, Y. Ma, P. Wang, C. Yu, and G. Farrell, “Fiber refractometer based on a fiber Bragg grating and single-mode-multimode-single-mode fiber structure,” Opt. Lett. 36, 2197–2199 (2011).
    [CrossRef]
  10. Q. Wu, Y. Semenova, P. Wang, A. M. Hatta, and G. Farrell, “Experimental demonstration of a simple displacement sensor based on a bent single-mode—multimode—single-mode fiber structure,” Meas. Sci. Technol. 22, 025203 (2011).
    [CrossRef]
  11. Z. Zang, T. Minato, P. Navaretti, Y. Hinokuma, M. Duelk, C. Velez, and K. Hamamoto, “High power (>110  mW) superluminescent diodes using active multi-mode interferometer,” IEEE Photon. Technol. Lett. 22, 721–723 (2010).
    [CrossRef]
  12. Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100, 031108 (2012).
    [CrossRef]
  13. Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer—analysis and experiment,” Opt. Express 19, 7937–7944 (2011).
    [CrossRef]
  14. S. Silva, E. G. P. Pachon, M. A. R. Franco, J. G. Hayashi, F. X. Malcata, O. Frazão, P. Jorge, and C. M. B. Cordeiro, “Ultrahigh-sensitivity temperature fiber sensor based on multimode interference,” Appl. Opt. 51, 3236–3242 (2012).
    [CrossRef]
  15. P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Opt. Lett. 36, 2233–2235 (2011).
    [CrossRef]
  16. P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “Investigation of single-mode—multimode—single-mode and single-mode—tapered-multimode—single-mode fiber structures and their application for refractive index sensing,” J. Opt. Soc. Am. B 28, 1180–1186 (2011).
    [CrossRef]
  17. G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12, 2258–2263 (2004).
    [CrossRef]
  18. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
    [CrossRef]

2012

Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100, 031108 (2012).
[CrossRef]

S. Silva, E. G. P. Pachon, M. A. R. Franco, J. G. Hayashi, F. X. Malcata, O. Frazão, P. Jorge, and C. M. B. Cordeiro, “Ultrahigh-sensitivity temperature fiber sensor based on multimode interference,” Appl. Opt. 51, 3236–3242 (2012).
[CrossRef]

2011

Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer—analysis and experiment,” Opt. Express 19, 7937–7944 (2011).
[CrossRef]

P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “Investigation of single-mode—multimode—single-mode and single-mode—tapered-multimode—single-mode fiber structures and their application for refractive index sensing,” J. Opt. Soc. Am. B 28, 1180–1186 (2011).
[CrossRef]

Q. Wu, Y. Semenova, B. Yan, Y. Ma, P. Wang, C. Yu, and G. Farrell, “Fiber refractometer based on a fiber Bragg grating and single-mode-multimode-single-mode fiber structure,” Opt. Lett. 36, 2197–2199 (2011).
[CrossRef]

P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Opt. Lett. 36, 2233–2235 (2011).
[CrossRef]

O. Frazão, S. Silva, J. Viegas, L. A. Ferreira, F. M. Araújo, and J. L. Santos, “Optical fiber refractometry based on multimode interference,” Appl. Opt. 50, E184–E188 (2011).
[CrossRef]

J. E. Antonio-Lopez, J. J. Sanchez-Mondragon, P. L. Wa, and D. A. May-Arrioja, “Fiber-optic sensor for liquid level measurement,” Opt. Lett. 36, 3425–3427 (2011).
[CrossRef]

Q. Wu, Y. Semenova, P. Wang, A. M. Hatta, and G. Farrell, “Experimental demonstration of a simple displacement sensor based on a bent single-mode—multimode—single-mode fiber structure,” Meas. Sci. Technol. 22, 025203 (2011).
[CrossRef]

2010

Z. Zang, T. Minato, P. Navaretti, Y. Hinokuma, M. Duelk, C. Velez, and K. Hamamoto, “High power (>110  mW) superluminescent diodes using active multi-mode interferometer,” IEEE Photon. Technol. Lett. 22, 721–723 (2010).
[CrossRef]

R. X. Gao, Q. Wang, F. Zhao, B. Meng, and S. L. Qu, “Optimal design and fabrication of SMS fiber temperature sensor for liquid,” Opt. Commun. 283, 3149–3152 (2010).
[CrossRef]

A. Castillo-Guzman, J. E. Antonio-Lopez, R. Selvas-Aguilar, D. A. May-Arrioja, J. Estudillo-Ayala, and P. L. Wa, “Widely tunable erbium-doped fiber laser based on multimode interference effect,” Opt. Express 18, 591–597 (2010).
[CrossRef]

J. E. Antonio-Lopez, A. Castillo-Guzman, D. A. May-Arrioja, R. Selvas-Aguilar, and P. L. Wa, “Tunable multimode-interference bandpass fiber filter,” Opt. Lett. 35, 324–326 (2010).
[CrossRef]

2008

2006

2004

1995

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging—principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

1992

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

Antonio-Lopez, J. E.

Araújo, F. M.

Birks, T. A.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

Brambilla, G.

Castillo-Guzman, A.

Cordeiro, C. M. B.

Ding, M.

Duelk, M.

Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100, 031108 (2012).
[CrossRef]

Z. Zang, T. Minato, P. Navaretti, Y. Hinokuma, M. Duelk, C. Velez, and K. Hamamoto, “High power (>110  mW) superluminescent diodes using active multi-mode interferometer,” IEEE Photon. Technol. Lett. 22, 721–723 (2010).
[CrossRef]

Estudillo-Ayala, J.

Farrell, G.

Ferreira, L. A.

Finazzi, V.

Franco, M. A. R.

Frazão, O.

Gao, R. X.

R. X. Gao, Q. Wang, F. Zhao, B. Meng, and S. L. Qu, “Optimal design and fabrication of SMS fiber temperature sensor for liquid,” Opt. Commun. 283, 3149–3152 (2010).
[CrossRef]

Gu, X.

Hamamoto, K.

Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100, 031108 (2012).
[CrossRef]

Z. Zang, T. Minato, P. Navaretti, Y. Hinokuma, M. Duelk, C. Velez, and K. Hamamoto, “High power (>110  mW) superluminescent diodes using active multi-mode interferometer,” IEEE Photon. Technol. Lett. 22, 721–723 (2010).
[CrossRef]

Hatta, A. M.

Q. Wu, Y. Semenova, P. Wang, A. M. Hatta, and G. Farrell, “Experimental demonstration of a simple displacement sensor based on a bent single-mode—multimode—single-mode fiber structure,” Meas. Sci. Technol. 22, 025203 (2011).
[CrossRef]

Hayashi, J. G.

Hinokuma, Y.

Z. Zang, T. Minato, P. Navaretti, Y. Hinokuma, M. Duelk, C. Velez, and K. Hamamoto, “High power (>110  mW) superluminescent diodes using active multi-mode interferometer,” IEEE Photon. Technol. Lett. 22, 721–723 (2010).
[CrossRef]

Jorge, P.

Li, Y. W.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

Ma, Y.

Malcata, F. X.

May-Arrioja, D. A.

Meng, B.

R. X. Gao, Q. Wang, F. Zhao, B. Meng, and S. L. Qu, “Optimal design and fabrication of SMS fiber temperature sensor for liquid,” Opt. Commun. 283, 3149–3152 (2010).
[CrossRef]

Minato, T.

Z. Zang, T. Minato, P. Navaretti, Y. Hinokuma, M. Duelk, C. Velez, and K. Hamamoto, “High power (>110  mW) superluminescent diodes using active multi-mode interferometer,” IEEE Photon. Technol. Lett. 22, 721–723 (2010).
[CrossRef]

Mohammed, W. S.

Mukai, K.

Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100, 031108 (2012).
[CrossRef]

Navaretti, P.

Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100, 031108 (2012).
[CrossRef]

Z. Zang, T. Minato, P. Navaretti, Y. Hinokuma, M. Duelk, C. Velez, and K. Hamamoto, “High power (>110  mW) superluminescent diodes using active multi-mode interferometer,” IEEE Photon. Technol. Lett. 22, 721–723 (2010).
[CrossRef]

Pachon, E. G. P.

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging—principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

Qu, S. L.

R. X. Gao, Q. Wang, F. Zhao, B. Meng, and S. L. Qu, “Optimal design and fabrication of SMS fiber temperature sensor for liquid,” Opt. Commun. 283, 3149–3152 (2010).
[CrossRef]

Richardson, D. J.

Sanchez-Mondragon, J. J.

Santos, J. L.

Selvas-Aguilar, R.

Semenova, Y.

Silva, S.

Smith, P. W. E.

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging—principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

Velez, C.

Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100, 031108 (2012).
[CrossRef]

Z. Zang, T. Minato, P. Navaretti, Y. Hinokuma, M. Duelk, C. Velez, and K. Hamamoto, “High power (>110  mW) superluminescent diodes using active multi-mode interferometer,” IEEE Photon. Technol. Lett. 22, 721–723 (2010).
[CrossRef]

Viegas, J.

Wa, P. L.

Wang, P.

Wang, Q.

R. X. Gao, Q. Wang, F. Zhao, B. Meng, and S. L. Qu, “Optimal design and fabrication of SMS fiber temperature sensor for liquid,” Opt. Commun. 283, 3149–3152 (2010).
[CrossRef]

Q. Wang, G. Farrell, and W. Yan, “Investigation on single mode-multimode-single mode fiber structure,” J. Lightwave Technol. 26, 512–519 (2008).
[CrossRef]

Wu, Q.

Yan, B.

Yan, W.

Yu, C.

Zang, Z.

Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100, 031108 (2012).
[CrossRef]

Z. Zang, T. Minato, P. Navaretti, Y. Hinokuma, M. Duelk, C. Velez, and K. Hamamoto, “High power (>110  mW) superluminescent diodes using active multi-mode interferometer,” IEEE Photon. Technol. Lett. 22, 721–723 (2010).
[CrossRef]

Zhao, F.

R. X. Gao, Q. Wang, F. Zhao, B. Meng, and S. L. Qu, “Optimal design and fabrication of SMS fiber temperature sensor for liquid,” Opt. Commun. 283, 3149–3152 (2010).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100, 031108 (2012).
[CrossRef]

IEEE Photon. Technol. Lett.

Z. Zang, T. Minato, P. Navaretti, Y. Hinokuma, M. Duelk, C. Velez, and K. Hamamoto, “High power (>110  mW) superluminescent diodes using active multi-mode interferometer,” IEEE Photon. Technol. Lett. 22, 721–723 (2010).
[CrossRef]

J. Lightwave Technol.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging—principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

Q. Wang, G. Farrell, and W. Yan, “Investigation on single mode-multimode-single mode fiber structure,” J. Lightwave Technol. 26, 512–519 (2008).
[CrossRef]

J. Opt. Soc. Am. B

Meas. Sci. Technol.

Q. Wu, Y. Semenova, P. Wang, A. M. Hatta, and G. Farrell, “Experimental demonstration of a simple displacement sensor based on a bent single-mode—multimode—single-mode fiber structure,” Meas. Sci. Technol. 22, 025203 (2011).
[CrossRef]

Opt. Commun.

R. X. Gao, Q. Wang, F. Zhao, B. Meng, and S. L. Qu, “Optimal design and fabrication of SMS fiber temperature sensor for liquid,” Opt. Commun. 283, 3149–3152 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Supplementary Material (1)

» Media 1: MOV (3113 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup and details of the MMI-based tapered device. D W , L W , and L total indicate the diameter and length of the taper waist region and the coreless MMF total length, respectively.

Fig. 2.
Fig. 2.

(a) Measured transmittance signal of a tapered fiber with a 74 μm diameter (inset shows the corresponding modeled result) and (b) graph superimposing different frames from the movie (Media 1; experimental data) when the diameter is being reduced in the region close to 55 μm. Movie online (Media 1): Temporal evolution of the measured transmittance signal versus wavelength when tapering down the MMF in the interval from 80 to 40 μm.

Fig. 3.
Fig. 3.

Three-dimensional plots of the optical signal intensity (color) at 1550 nm. White dotted lines represent the SMF/MMF interfaces. (a) Plot of the tapered diameter (vertical axis) versus total fiber length (horizontal axis). Yellow lines represent when the transition regions finish or start. The diagonal green line indicates the intensity in the fiber end tip from a 60 to 40 μm taper diameter, also shown in Fig. 4(a). (b) Longitudinal fiber profile with D w = 57.5 μm [related with the pink line in Fig. 3(a)].

Fig. 4.
Fig. 4.

(a) Modeled and experimental transmittance signals versus taper diameter from 60 to 40 μm at 1550 nm wavelength and (b) study (simulation) of the transmittance signal when changing the taper diameter from 53 to 57 μm; arrows indicate the main peak position.

Fig. 5.
Fig. 5.

(a) Optical spectrum variation of the SMS fiber structure when changing the liquid refractive index that surrounds the tapered region with a 55 μm diameter (inset) from 1.30 to 1.43 and (b) wavelength shift (left axis) and sensitivity (right axis) versus liquid refractive index variation.

Metrics