Abstract

We suggest and analyze a new nonreciprocal optical device based on two-dimensional photonic crystal and a magneto-optical cavity that simultaneously fulfills two functions: division of the input signal and isolation of the input port from two output ones. At the central frequency, the division of the signal between the output ports is 3dB and the isolation of the input port from the output ones is about 25dB. For the level 20dB of this isolation, the calculated bandwidth is around 100 GHz at the wavelength 1.5 μm.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystal,” Opt. Lett. 30, 1989–1991 (2005).
    [CrossRef]
  2. W. Smigaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, and M. Vanwolleghem, “Magneto-optical circulator designed for operation in a uniform external magnetic field,” Opt. Lett. 35, 568–570 (2010).
    [CrossRef]
  3. S. Boscolo, M. Midrio, and T. F. Kraus, “Y junctions in photonic crystals channel waveguides: high transmission and impedance matching,” Opt. Lett. 27, 1001–1003 (2002).
    [CrossRef]
  4. Q. Wang, Z. Quyang, K. Tau, M. Lin, and S. Ruan, “T-shaped optical circulator based on coupled magneto-optical rods and a side-coupled cavity in a square-lattice photonic crystal,” Phys. Lett. A 376, 646–649 (2012).
    [CrossRef]
  5. Z. Wang and S. Fan, “Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: an illustration with a four-port circulator,” Photon. Nanostruct. Fundam. Applic. 4, 132–140 (2006).
    [CrossRef]
  6. Q. Wang, Z. Ouyang, and Q. Liu, “Multiport photonic crystal circulators created by cascading magneto-optical cavities,” J. Opt. Soc. Am. B 28, 703–708 (2011).
    [CrossRef]
  7. Comsol, http://www.comsol.com
  8. A. A. Barybin and V. A. Dmitriev, Modern Electrodynamics and Coupled-Mode Theory: Application to Guided-Wave Optics (Rinton, 2002).
  9. E. L. Nagaev, “Ferromagnetic and antiferromagnetic semiconductors,” Sov. Phys. Usp. 18, 863–892 (1975).
    [CrossRef]
  10. H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78, 023804 (2008).
    [CrossRef]

2012 (1)

Q. Wang, Z. Quyang, K. Tau, M. Lin, and S. Ruan, “T-shaped optical circulator based on coupled magneto-optical rods and a side-coupled cavity in a square-lattice photonic crystal,” Phys. Lett. A 376, 646–649 (2012).
[CrossRef]

2011 (1)

2010 (1)

2008 (1)

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78, 023804 (2008).
[CrossRef]

2006 (1)

Z. Wang and S. Fan, “Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: an illustration with a four-port circulator,” Photon. Nanostruct. Fundam. Applic. 4, 132–140 (2006).
[CrossRef]

2005 (1)

2002 (1)

1975 (1)

E. L. Nagaev, “Ferromagnetic and antiferromagnetic semiconductors,” Sov. Phys. Usp. 18, 863–892 (1975).
[CrossRef]

Barybin, A. A.

A. A. Barybin and V. A. Dmitriev, Modern Electrodynamics and Coupled-Mode Theory: Application to Guided-Wave Optics (Rinton, 2002).

Boscolo, S.

Dagens, B.

Dmitriev, V. A.

A. A. Barybin and V. A. Dmitriev, Modern Electrodynamics and Coupled-Mode Theory: Application to Guided-Wave Optics (Rinton, 2002).

Fan, S.

Z. Wang and S. Fan, “Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: an illustration with a four-port circulator,” Photon. Nanostruct. Fundam. Applic. 4, 132–140 (2006).
[CrossRef]

Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystal,” Opt. Lett. 30, 1989–1991 (2005).
[CrossRef]

Gralak, B.

John, S.

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78, 023804 (2008).
[CrossRef]

Kraus, T. F.

Lin, M.

Q. Wang, Z. Quyang, K. Tau, M. Lin, and S. Ruan, “T-shaped optical circulator based on coupled magneto-optical rods and a side-coupled cavity in a square-lattice photonic crystal,” Phys. Lett. A 376, 646–649 (2012).
[CrossRef]

Liu, Q.

Magdenko, L.

Midrio, M.

Nagaev, E. L.

E. L. Nagaev, “Ferromagnetic and antiferromagnetic semiconductors,” Sov. Phys. Usp. 18, 863–892 (1975).
[CrossRef]

Ouyang, Z.

Quyang, Z.

Q. Wang, Z. Quyang, K. Tau, M. Lin, and S. Ruan, “T-shaped optical circulator based on coupled magneto-optical rods and a side-coupled cavity in a square-lattice photonic crystal,” Phys. Lett. A 376, 646–649 (2012).
[CrossRef]

Romero-Vivas, J.

Ruan, S.

Q. Wang, Z. Quyang, K. Tau, M. Lin, and S. Ruan, “T-shaped optical circulator based on coupled magneto-optical rods and a side-coupled cavity in a square-lattice photonic crystal,” Phys. Lett. A 376, 646–649 (2012).
[CrossRef]

Smigaj, W.

Takeda, H.

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78, 023804 (2008).
[CrossRef]

Tau, K.

Q. Wang, Z. Quyang, K. Tau, M. Lin, and S. Ruan, “T-shaped optical circulator based on coupled magneto-optical rods and a side-coupled cavity in a square-lattice photonic crystal,” Phys. Lett. A 376, 646–649 (2012).
[CrossRef]

Vanwolleghem, M.

Wang, Q.

Q. Wang, Z. Quyang, K. Tau, M. Lin, and S. Ruan, “T-shaped optical circulator based on coupled magneto-optical rods and a side-coupled cavity in a square-lattice photonic crystal,” Phys. Lett. A 376, 646–649 (2012).
[CrossRef]

Q. Wang, Z. Ouyang, and Q. Liu, “Multiport photonic crystal circulators created by cascading magneto-optical cavities,” J. Opt. Soc. Am. B 28, 703–708 (2011).
[CrossRef]

Wang, Z.

Z. Wang and S. Fan, “Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: an illustration with a four-port circulator,” Photon. Nanostruct. Fundam. Applic. 4, 132–140 (2006).
[CrossRef]

Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystal,” Opt. Lett. 30, 1989–1991 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (3)

Photon. Nanostruct. Fundam. Applic. (1)

Z. Wang and S. Fan, “Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: an illustration with a four-port circulator,” Photon. Nanostruct. Fundam. Applic. 4, 132–140 (2006).
[CrossRef]

Phys. Lett. A (1)

Q. Wang, Z. Quyang, K. Tau, M. Lin, and S. Ruan, “T-shaped optical circulator based on coupled magneto-optical rods and a side-coupled cavity in a square-lattice photonic crystal,” Phys. Lett. A 376, 646–649 (2012).
[CrossRef]

Phys. Rev. A (1)

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78, 023804 (2008).
[CrossRef]

Sov. Phys. Usp. (1)

E. L. Nagaev, “Ferromagnetic and antiferromagnetic semiconductors,” Sov. Phys. Usp. 18, 863–892 (1975).
[CrossRef]

Other (2)

Comsol, http://www.comsol.com

A. A. Barybin and V. A. Dmitriev, Modern Electrodynamics and Coupled-Mode Theory: Application to Guided-Wave Optics (Rinton, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schemes of nonreciprocal two-way divider showing two possible ports orientations with respect to antiplane Tσ. Division of the input wave is shown by continuous arrows, reflected in ports 2 and 3 waves by dotted ones.

Fig. 2.
Fig. 2.

Idealized schemes of divider corresponding to port orientation of Fig. 1(a) with dipole resonance mode in the MO cavity.

Fig. 3.
Fig. 3.

Idealized schemes of divider corresponding to port orientation of Fig. 1(b) with dipole resonance mode in the MO cavity.

Fig. 4.
Fig. 4.

Transmission power for excitation at port 1.

Fig. 5.
Fig. 5.

Transmission power for excitation at port 2.

Fig. 6.
Fig. 6.

Transmission power for excitation at port 3.

Fig. 7.
Fig. 7.

Hz component of magnetic field for excitation at port 1.

Fig. 8.
Fig. 8.

Hz component of magnetic field for excitation at port 2.

Fig. 9.
Fig. 9.

Hz component of magnetic field for excitation at port 3.

Tables (1)

Tables Icon

Table 1. Scattering Matrix S for the Schemes of Fig. 1

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P=[00011/201/201/21/20001/21/20].
Ra=[0001001001001000],Rb=[0001010000101000].
ε=ε0[εrig0igεr000εr];μ=μ0.

Metrics