Abstract

We demonstrate the distinctive optical properties of disordered nanostructures on glass substrates in accordance with changes in the average size of the nanostructures. Dissimilar sizes of nanostructures were fabricated by using different thicknesses of thermally dewetted Ag nanoparticles as etch masks. Unlike a flat glass substrate, the nanostructured glasses (NSGs) show a changed optical characteristic. By increasing the size of the nanostructures, the wavelength of the peak transmittance of about 99% gradually moved from 730 to 2000 nm. To clearly discern the effect of the different sizes of nanostructures, the normalized angle-dependent transmittance spectra of the NSGs were analyzed. Only if the size becomes relatively larger than the wavelength of the incident light are the transmittance spectra more strongly affected by the incident angle as well as by the relative size, rather than by the Fresnel reflection.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, W. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21, 4731–4734 (2009).
    [CrossRef]
  2. S.-S. Lo, C. C. Chen, F. Garwe, and T. Pertch, “Broad-band anti-reflection coupler for a: Si thin-film solar cell,” J. Phys. D 40, 754–758 (2007).
    [CrossRef]
  3. S. Chen and H. S. Kwok, “Light extraction from organic light-emitting diodes for lighting applications by sand-blasting substrates,” Opt. Express 18, 37–42 (2010).
    [CrossRef]
  4. T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8, 1429–1433 (2008).
    [CrossRef]
  5. Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir 26, 9842–9847 (2010).
    [CrossRef]
  6. D. H. Raguin and G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32, 1154–1167 (1993).
    [CrossRef]
  7. G. Ehret, E. Buhr, S. Gäbler, and H.-M. Bitzer, “Broadband optical antireflection of plastic optics by molded stochastic sub-wavelength structures,” Plasma Process. Polym. 6, 840–843 (2009).
    [CrossRef]
  8. S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithography approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91, 061105 (2007).
    [CrossRef]
  9. Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97, 093110 (2010).
    [CrossRef]
  10. Y. M. Song, E. S. Choi, J. S. Yu, and Y. T. Lee, “Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures,” Opt. Express 17, 20991–20997 (2009).
    [CrossRef]
  11. J.-M. Lee and B.-I. Kim, “Thermal dewetting of Pt thin film: etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A 449–451, 769–773 (2007).
    [CrossRef]
  12. J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Influence of etching process parameters on the antireflection property of Si SWSs by thermally dewetted Ag and Ag/SiO2 nanopatterns,” Phys. Status Solidi A 208, 1902–1907 (2011).
    [CrossRef]
  13. J. W. Leem, Y. Yeh, and J. S. You, “Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns,” Opt. Express 20, 4056–4066 (2012).
    [CrossRef]
  14. J. Park, S. Yoon, K. Kang, and S. Jeon, “Antireflection behavior of multifunctional nanostructures patterned using conformable elastomeric phase mask in a single exposure step,” Small 6, 1981–1985 (2010).
    [CrossRef]
  15. Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5, 117–127 (2010).
    [CrossRef]
  16. S. L. Diedenhofen, G. Vecchi, R. E. A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanoroads,” Adv. Mater. 21, 973–978 (2009).
    [CrossRef]
  17. G. Kwak, S. Jung, and K. Yong, “Multifunctional transparent ZnO nanoroad films,” Nanotechnology 22, 115705(2011).
    [CrossRef]
  18. H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4, 1972–1975 (2008).
    [CrossRef]
  19. W. L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20, 1–5 (2008).
  20. Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6, 984–987 (2010).
    [CrossRef]
  21. K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater. 22, 3713–3718 (2010).
    [CrossRef]
  22. C. David, P. Häberling, M. Schnieper, J. Söchtig, and C. Zschokke, “Nano-structured anti-reflective surfaces replicated by hot embossing,” Microelectron. Eng. 61–62, 435–440 (2002).
    [CrossRef]
  23. H. Kikuta, H. Toyota, and W. Yu, “Optical elements with subwavelength structured surfaces,” Opt. Rev. 10, 63–73 (2003).
    [CrossRef]
  24. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, and Y.-H. Chang, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
    [CrossRef]
  25. P. Lalanne and D. Lemercier-Lalanne, “Depth dependence of the effective properties of subwavelength gratings,” J. Opt. Soc. Am. A 14, 450–458 (1997).
    [CrossRef]
  26. C. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21, 425301 (2010).
    [CrossRef]
  27. Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design and highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18, 13063–13071 (2010).
    [CrossRef]
  28. C. Hedlund, H.-O. Blom, and S. Berg, “Microloading effect in reactive ion etching,” J. Vac. Sci. Technol. A 12, 1962–1965 (1994).
    [CrossRef]
  29. E. Hecht, Optics, 4th ed. (Addison Wesley, 2002), Chap. 10.

2012

2011

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Influence of etching process parameters on the antireflection property of Si SWSs by thermally dewetted Ag and Ag/SiO2 nanopatterns,” Phys. Status Solidi A 208, 1902–1907 (2011).
[CrossRef]

G. Kwak, S. Jung, and K. Yong, “Multifunctional transparent ZnO nanoroad films,” Nanotechnology 22, 115705(2011).
[CrossRef]

2010

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6, 984–987 (2010).
[CrossRef]

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater. 22, 3713–3718 (2010).
[CrossRef]

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir 26, 9842–9847 (2010).
[CrossRef]

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97, 093110 (2010).
[CrossRef]

J. Park, S. Yoon, K. Kang, and S. Jeon, “Antireflection behavior of multifunctional nanostructures patterned using conformable elastomeric phase mask in a single exposure step,” Small 6, 1981–1985 (2010).
[CrossRef]

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5, 117–127 (2010).
[CrossRef]

C. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21, 425301 (2010).
[CrossRef]

S. Chen and H. S. Kwok, “Light extraction from organic light-emitting diodes for lighting applications by sand-blasting substrates,” Opt. Express 18, 37–42 (2010).
[CrossRef]

Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design and highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18, 13063–13071 (2010).
[CrossRef]

2009

Y. M. Song, E. S. Choi, J. S. Yu, and Y. T. Lee, “Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures,” Opt. Express 17, 20991–20997 (2009).
[CrossRef]

S. L. Diedenhofen, G. Vecchi, R. E. A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanoroads,” Adv. Mater. 21, 973–978 (2009).
[CrossRef]

G. Ehret, E. Buhr, S. Gäbler, and H.-M. Bitzer, “Broadband optical antireflection of plastic optics by molded stochastic sub-wavelength structures,” Plasma Process. Polym. 6, 840–843 (2009).
[CrossRef]

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, W. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21, 4731–4734 (2009).
[CrossRef]

2008

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4, 1972–1975 (2008).
[CrossRef]

W. L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20, 1–5 (2008).

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8, 1429–1433 (2008).
[CrossRef]

2007

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, and Y.-H. Chang, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

J.-M. Lee and B.-I. Kim, “Thermal dewetting of Pt thin film: etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A 449–451, 769–773 (2007).
[CrossRef]

S.-S. Lo, C. C. Chen, F. Garwe, and T. Pertch, “Broad-band anti-reflection coupler for a: Si thin-film solar cell,” J. Phys. D 40, 754–758 (2007).
[CrossRef]

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithography approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91, 061105 (2007).
[CrossRef]

2003

H. Kikuta, H. Toyota, and W. Yu, “Optical elements with subwavelength structured surfaces,” Opt. Rev. 10, 63–73 (2003).
[CrossRef]

2002

C. David, P. Häberling, M. Schnieper, J. Söchtig, and C. Zschokke, “Nano-structured anti-reflective surfaces replicated by hot embossing,” Microelectron. Eng. 61–62, 435–440 (2002).
[CrossRef]

1997

1994

C. Hedlund, H.-O. Blom, and S. Berg, “Microloading effect in reactive ion etching,” J. Vac. Sci. Technol. A 12, 1962–1965 (1994).
[CrossRef]

1993

Bakkers, E. P. A. M.

S. L. Diedenhofen, G. Vecchi, R. E. A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanoroads,” Adv. Mater. 21, 973–978 (2009).
[CrossRef]

Berg, S.

C. Hedlund, H.-O. Blom, and S. Berg, “Microloading effect in reactive ion etching,” J. Vac. Sci. Technol. A 12, 1962–1965 (1994).
[CrossRef]

Bitzer, H.-M.

G. Ehret, E. Buhr, S. Gäbler, and H.-M. Bitzer, “Broadband optical antireflection of plastic optics by molded stochastic sub-wavelength structures,” Plasma Process. Polym. 6, 840–843 (2009).
[CrossRef]

Blom, H.-O.

C. Hedlund, H.-O. Blom, and S. Berg, “Microloading effect in reactive ion etching,” J. Vac. Sci. Technol. A 12, 1962–1965 (1994).
[CrossRef]

Brunner, R.

C. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21, 425301 (2010).
[CrossRef]

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8, 1429–1433 (2008).
[CrossRef]

Buhr, E.

G. Ehret, E. Buhr, S. Gäbler, and H.-M. Bitzer, “Broadband optical antireflection of plastic optics by molded stochastic sub-wavelength structures,” Plasma Process. Polym. 6, 840–843 (2009).
[CrossRef]

Chang, Y.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, and Y.-H. Chang, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Chattopadhyay, S.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, and Y.-H. Chang, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Chen, C. C.

S.-S. Lo, C. C. Chen, F. Garwe, and T. Pertch, “Broad-band anti-reflection coupler for a: Si thin-film solar cell,” J. Phys. D 40, 754–758 (2007).
[CrossRef]

Chen, S.

Chi, L.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4, 1972–1975 (2008).
[CrossRef]

Choi, E. S.

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97, 093110 (2010).
[CrossRef]

Y. M. Song, E. S. Choi, J. S. Yu, and Y. T. Lee, “Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures,” Opt. Express 17, 20991–20997 (2009).
[CrossRef]

Choi, H. J.

Choi, K.

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater. 22, 3713–3718 (2010).
[CrossRef]

David, C.

C. David, P. Häberling, M. Schnieper, J. Söchtig, and C. Zschokke, “Nano-structured anti-reflective surfaces replicated by hot embossing,” Microelectron. Eng. 61–62, 435–440 (2002).
[CrossRef]

Diedenhofen, S. L.

S. L. Diedenhofen, G. Vecchi, R. E. A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanoroads,” Adv. Mater. 21, 973–978 (2009).
[CrossRef]

Dong, H.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir 26, 9842–9847 (2010).
[CrossRef]

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, W. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21, 4731–4734 (2009).
[CrossRef]

Ehret, G.

G. Ehret, E. Buhr, S. Gäbler, and H.-M. Bitzer, “Broadband optical antireflection of plastic optics by molded stochastic sub-wavelength structures,” Plasma Process. Polym. 6, 840–843 (2009).
[CrossRef]

Fan, H. T.

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithography approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91, 061105 (2007).
[CrossRef]

Gäbler, S.

G. Ehret, E. Buhr, S. Gäbler, and H.-M. Bitzer, “Broadband optical antireflection of plastic optics by molded stochastic sub-wavelength structures,” Plasma Process. Polym. 6, 840–843 (2009).
[CrossRef]

Gao, L.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4, 1972–1975 (2008).
[CrossRef]

Garwe, F.

S.-S. Lo, C. C. Chen, F. Garwe, and T. Pertch, “Broad-band anti-reflection coupler for a: Si thin-film solar cell,” J. Phys. D 40, 754–758 (2007).
[CrossRef]

Häberling, P.

C. David, P. Häberling, M. Schnieper, J. Söchtig, and C. Zschokke, “Nano-structured anti-reflective surfaces replicated by hot embossing,” Microelectron. Eng. 61–62, 435–440 (2002).
[CrossRef]

Hao, J.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4, 1972–1975 (2008).
[CrossRef]

Hartsuiker, R. E. A.

S. L. Diedenhofen, G. Vecchi, R. E. A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanoroads,” Adv. Mater. 21, 973–978 (2009).
[CrossRef]

Hecht, E.

E. Hecht, Optics, 4th ed. (Addison Wesley, 2002), Chap. 10.

Hedlund, C.

C. Hedlund, H.-O. Blom, and S. Berg, “Microloading effect in reactive ion etching,” J. Vac. Sci. Technol. A 12, 1962–1965 (1994).
[CrossRef]

Helgert, M.

C. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21, 425301 (2010).
[CrossRef]

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8, 1429–1433 (2008).
[CrossRef]

Hsu, C.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, and Y.-H. Chang, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Hsu, Y.-K.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, and Y.-H. Chang, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Huang, Y.-F.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, and Y.-H. Chang, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Hwangbo, C. K.

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater. 22, 3713–3718 (2010).
[CrossRef]

Immink, G.

S. L. Diedenhofen, G. Vecchi, R. E. A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanoroads,” Adv. Mater. 21, 973–978 (2009).
[CrossRef]

Jang, S. J.

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97, 093110 (2010).
[CrossRef]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6, 984–987 (2010).
[CrossRef]

Jen, Y.-J.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, and Y.-H. Chang, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Jeon, S.

J. Park, S. Yoon, K. Kang, and S. Jeon, “Antireflection behavior of multifunctional nanostructures patterned using conformable elastomeric phase mask in a single exposure step,” Small 6, 1981–1985 (2010).
[CrossRef]

Jia, F.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir 26, 9842–9847 (2010).
[CrossRef]

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, W. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21, 4731–4734 (2009).
[CrossRef]

Jiang, B.

W. L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20, 1–5 (2008).

Jiang, P.

W. L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20, 1–5 (2008).

Jung, S.

G. Kwak, S. Jung, and K. Yong, “Multifunctional transparent ZnO nanoroad films,” Nanotechnology 22, 115705(2011).
[CrossRef]

Kang, K.

J. Park, S. Yoon, K. Kang, and S. Jeon, “Antireflection behavior of multifunctional nanostructures patterned using conformable elastomeric phase mask in a single exposure step,” Small 6, 1981–1985 (2010).
[CrossRef]

Kikuta, H.

H. Kikuta, H. Toyota, and W. Yu, “Optical elements with subwavelength structured surfaces,” Opt. Rev. 10, 63–73 (2003).
[CrossRef]

Kim, B.-I.

J.-M. Lee and B.-I. Kim, “Thermal dewetting of Pt thin film: etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A 449–451, 769–773 (2007).
[CrossRef]

Kwak, G.

G. Kwak, S. Jung, and K. Yong, “Multifunctional transparent ZnO nanoroad films,” Nanotechnology 22, 115705(2011).
[CrossRef]

Kwok, H. S.

Lalanne, P.

Lee, H. S.

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater. 22, 3713–3718 (2010).
[CrossRef]

Lee, J.-M.

J.-M. Lee and B.-I. Kim, “Thermal dewetting of Pt thin film: etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A 449–451, 769–773 (2007).
[CrossRef]

Lee, Y. T.

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Influence of etching process parameters on the antireflection property of Si SWSs by thermally dewetted Ag and Ag/SiO2 nanopatterns,” Phys. Status Solidi A 208, 1902–1907 (2011).
[CrossRef]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6, 984–987 (2010).
[CrossRef]

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97, 093110 (2010).
[CrossRef]

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater. 22, 3713–3718 (2010).
[CrossRef]

Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design and highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18, 13063–13071 (2010).
[CrossRef]

Y. M. Song, E. S. Choi, J. S. Yu, and Y. T. Lee, “Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures,” Opt. Express 17, 20991–20997 (2009).
[CrossRef]

Leem, J. W.

J. W. Leem, Y. Yeh, and J. S. You, “Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns,” Opt. Express 20, 4056–4066 (2012).
[CrossRef]

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Influence of etching process parameters on the antireflection property of Si SWSs by thermally dewetted Ag and Ag/SiO2 nanopatterns,” Phys. Status Solidi A 208, 1902–1907 (2011).
[CrossRef]

Lehr, D.

C. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21, 425301 (2010).
[CrossRef]

Lemercier-Lalanne, D.

Li, H.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, W. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21, 4731–4734 (2009).
[CrossRef]

Li, Y.

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5, 117–127 (2010).
[CrossRef]

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir 26, 9842–9847 (2010).
[CrossRef]

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, W. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21, 4731–4734 (2009).
[CrossRef]

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, W. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21, 4731–4734 (2009).
[CrossRef]

Liu, T.-A.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, and Y.-H. Chang, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Lo, H.-C.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, and Y.-H. Chang, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Lo, S.-S.

S.-S. Lo, C. C. Chen, F. Garwe, and T. Pertch, “Broad-band anti-reflection coupler for a: Si thin-film solar cell,” J. Phys. D 40, 754–758 (2007).
[CrossRef]

Lohmüller, T.

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8, 1429–1433 (2008).
[CrossRef]

Lu, N.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4, 1972–1975 (2008).
[CrossRef]

Min, W. L.

W. L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20, 1–5 (2008).

Morhard, C.

C. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21, 425301 (2010).
[CrossRef]

Morris, G. M.

Muskens, O. L.

S. L. Diedenhofen, G. Vecchi, R. E. A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanoroads,” Adv. Mater. 21, 973–978 (2009).
[CrossRef]

Pacholski, C.

C. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21, 425301 (2010).
[CrossRef]

Pan, C.-L.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, and Y.-H. Chang, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Park, C. Y.

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97, 093110 (2010).
[CrossRef]

Park, G. C.

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97, 093110 (2010).
[CrossRef]

Park, J.

J. Park, S. Yoon, K. Kang, and S. Jeon, “Antireflection behavior of multifunctional nanostructures patterned using conformable elastomeric phase mask in a single exposure step,” Small 6, 1981–1985 (2010).
[CrossRef]

Park, S. H.

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater. 22, 3713–3718 (2010).
[CrossRef]

Peng, C.-Y.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, and Y.-H. Chang, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Pertch, T.

S.-S. Lo, C. C. Chen, F. Garwe, and T. Pertch, “Broad-band anti-reflection coupler for a: Si thin-film solar cell,” J. Phys. D 40, 754–758 (2007).
[CrossRef]

Qi, D.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4, 1972–1975 (2008).
[CrossRef]

Raguin, D. H.

Rivas, J. G.

S. L. Diedenhofen, G. Vecchi, R. E. A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanoroads,” Adv. Mater. 21, 973–978 (2009).
[CrossRef]

Schnieper, M.

C. David, P. Häberling, M. Schnieper, J. Söchtig, and C. Zschokke, “Nano-structured anti-reflective surfaces replicated by hot embossing,” Microelectron. Eng. 61–62, 435–440 (2002).
[CrossRef]

Söchtig, J.

C. David, P. Häberling, M. Schnieper, J. Söchtig, and C. Zschokke, “Nano-structured anti-reflective surfaces replicated by hot embossing,” Microelectron. Eng. 61–62, 435–440 (2002).
[CrossRef]

Song, Y. M.

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Influence of etching process parameters on the antireflection property of Si SWSs by thermally dewetted Ag and Ag/SiO2 nanopatterns,” Phys. Status Solidi A 208, 1902–1907 (2011).
[CrossRef]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6, 984–987 (2010).
[CrossRef]

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97, 093110 (2010).
[CrossRef]

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater. 22, 3713–3718 (2010).
[CrossRef]

Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design and highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18, 13063–13071 (2010).
[CrossRef]

Y. M. Song, E. S. Choi, J. S. Yu, and Y. T. Lee, “Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures,” Opt. Express 17, 20991–20997 (2009).
[CrossRef]

Spatz, J. P.

C. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21, 425301 (2010).
[CrossRef]

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8, 1429–1433 (2008).
[CrossRef]

Sun, Z.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, W. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21, 4731–4734 (2009).
[CrossRef]

Sundermann, M.

C. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21, 425301 (2010).
[CrossRef]

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8, 1429–1433 (2008).
[CrossRef]

Tang, Y.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir 26, 9842–9847 (2010).
[CrossRef]

Toyota, H.

H. Kikuta, H. Toyota, and W. Yu, “Optical elements with subwavelength structured surfaces,” Opt. Rev. 10, 63–73 (2003).
[CrossRef]

Vecchi, G.

S. L. Diedenhofen, G. Vecchi, R. E. A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanoroads,” Adv. Mater. 21, 973–978 (2009).
[CrossRef]

Vos, W. L.

S. L. Diedenhofen, G. Vecchi, R. E. A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanoroads,” Adv. Mater. 21, 973–978 (2009).
[CrossRef]

Wang, S.

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithography approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91, 061105 (2007).
[CrossRef]

Wang, W.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, W. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21, 4731–4734 (2009).
[CrossRef]

Wang, Z.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir 26, 9842–9847 (2010).
[CrossRef]

Xu, H.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4, 1972–1975 (2008).
[CrossRef]

Xu, W.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, W. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21, 4731–4734 (2009).
[CrossRef]

Yang, B.

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5, 117–127 (2010).
[CrossRef]

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir 26, 9842–9847 (2010).
[CrossRef]

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, W. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21, 4731–4734 (2009).
[CrossRef]

Yang, H.

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater. 22, 3713–3718 (2010).
[CrossRef]

Yeh, Y.

Yong, K.

G. Kwak, S. Jung, and K. Yong, “Multifunctional transparent ZnO nanoroad films,” Nanotechnology 22, 115705(2011).
[CrossRef]

Yoon, S.

J. Park, S. Yoon, K. Kang, and S. Jeon, “Antireflection behavior of multifunctional nanostructures patterned using conformable elastomeric phase mask in a single exposure step,” Small 6, 1981–1985 (2010).
[CrossRef]

You, J. S.

Yu, J. S.

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Influence of etching process parameters on the antireflection property of Si SWSs by thermally dewetted Ag and Ag/SiO2 nanopatterns,” Phys. Status Solidi A 208, 1902–1907 (2011).
[CrossRef]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6, 984–987 (2010).
[CrossRef]

Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design and highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18, 13063–13071 (2010).
[CrossRef]

Y. M. Song, E. S. Choi, J. S. Yu, and Y. T. Lee, “Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures,” Opt. Express 17, 20991–20997 (2009).
[CrossRef]

Yu, W.

H. Kikuta, H. Toyota, and W. Yu, “Optical elements with subwavelength structured surfaces,” Opt. Rev. 10, 63–73 (2003).
[CrossRef]

Yu, X. Z.

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithography approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91, 061105 (2007).
[CrossRef]

Zhang, B.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4, 1972–1975 (2008).
[CrossRef]

Zhang, J.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir 26, 9842–9847 (2010).
[CrossRef]

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5, 117–127 (2010).
[CrossRef]

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, W. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21, 4731–4734 (2009).
[CrossRef]

Zhang, L.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir 26, 9842–9847 (2010).
[CrossRef]

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, W. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21, 4731–4734 (2009).
[CrossRef]

Zhang, S.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir 26, 9842–9847 (2010).
[CrossRef]

Zhu, S.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir 26, 9842–9847 (2010).
[CrossRef]

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, W. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21, 4731–4734 (2009).
[CrossRef]

Zschokke, C.

C. David, P. Häberling, M. Schnieper, J. Söchtig, and C. Zschokke, “Nano-structured anti-reflective surfaces replicated by hot embossing,” Microelectron. Eng. 61–62, 435–440 (2002).
[CrossRef]

Adv. Mater.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, W. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. 21, 4731–4734 (2009).
[CrossRef]

S. L. Diedenhofen, G. Vecchi, R. E. A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanoroads,” Adv. Mater. 21, 973–978 (2009).
[CrossRef]

W. L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20, 1–5 (2008).

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater. 22, 3713–3718 (2010).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithography approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91, 061105 (2007).
[CrossRef]

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97, 093110 (2010).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. D

S.-S. Lo, C. C. Chen, F. Garwe, and T. Pertch, “Broad-band anti-reflection coupler for a: Si thin-film solar cell,” J. Phys. D 40, 754–758 (2007).
[CrossRef]

J. Vac. Sci. Technol. A

C. Hedlund, H.-O. Blom, and S. Berg, “Microloading effect in reactive ion etching,” J. Vac. Sci. Technol. A 12, 1962–1965 (1994).
[CrossRef]

Langmuir

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir 26, 9842–9847 (2010).
[CrossRef]

Mater. Sci. Eng. A

J.-M. Lee and B.-I. Kim, “Thermal dewetting of Pt thin film: etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A 449–451, 769–773 (2007).
[CrossRef]

Microelectron. Eng.

C. David, P. Häberling, M. Schnieper, J. Söchtig, and C. Zschokke, “Nano-structured anti-reflective surfaces replicated by hot embossing,” Microelectron. Eng. 61–62, 435–440 (2002).
[CrossRef]

Nano Lett.

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8, 1429–1433 (2008).
[CrossRef]

Nano Today

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5, 117–127 (2010).
[CrossRef]

Nanotechnology

G. Kwak, S. Jung, and K. Yong, “Multifunctional transparent ZnO nanoroad films,” Nanotechnology 22, 115705(2011).
[CrossRef]

C. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21, 425301 (2010).
[CrossRef]

Nat. Nanotechnol.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, and Y.-H. Chang, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Opt. Express

Opt. Rev.

H. Kikuta, H. Toyota, and W. Yu, “Optical elements with subwavelength structured surfaces,” Opt. Rev. 10, 63–73 (2003).
[CrossRef]

Phys. Status Solidi A

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Influence of etching process parameters on the antireflection property of Si SWSs by thermally dewetted Ag and Ag/SiO2 nanopatterns,” Phys. Status Solidi A 208, 1902–1907 (2011).
[CrossRef]

Plasma Process. Polym.

G. Ehret, E. Buhr, S. Gäbler, and H.-M. Bitzer, “Broadband optical antireflection of plastic optics by molded stochastic sub-wavelength structures,” Plasma Process. Polym. 6, 840–843 (2009).
[CrossRef]

Small

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4, 1972–1975 (2008).
[CrossRef]

J. Park, S. Yoon, K. Kang, and S. Jeon, “Antireflection behavior of multifunctional nanostructures patterned using conformable elastomeric phase mask in a single exposure step,” Small 6, 1981–1985 (2010).
[CrossRef]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6, 984–987 (2010).
[CrossRef]

Other

E. Hecht, Optics, 4th ed. (Addison Wesley, 2002), Chap. 10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Surface morphologies of Ag particles on glass substrates annealed at 500 °C for 1 min in a nitrogen atmosphere with thicknesses of (a) 10 nm, (b) 15 nm, (c) 20 nm, and (d) 30 nm.

Fig. 2.
Fig. 2.

Schematic illustration of the fabrication procedures for nanostructures on a glass substrate with Ag nanoparticles as etch masks.

Fig. 3.
Fig. 3.

SEM images of NSGs etched for (a) 1 min, (b) 4 min, (c) 7 min, and (d) 10 min using 10 nm thick Ag film; (e) Measured transmittance spectra of the single- and dual-sided NSGs in the VIS wavelength region at normal incidence. The measured transmittance for bare glass is also shown for comparison.

Fig. 4.
Fig. 4.

SEM images of the fabricated nanostructures etched for 7 min using (a) 10 nm thick, (b) 15 nm thick, (c) 20 nm thick, and (d) 30 nm thick Ag films. (e) Measured transmittance spectra of the corresponding samples at normal incidence. The measured transmittance of bare glass is shown as a reference.

Fig. 5.
Fig. 5.

Normalized angle-dependent transmittance spectra of (a) bare glass and NSGs using (b) 10 nm thick, (c) 15 nm thick, and (d) 20 nm thick Ag films.

Fig. 6.
Fig. 6.

Photographs of (i) bare glass and dual-sided NSGs fabricated using (ii) 10 nm thick, (iii) 15 nm thick, (iv) 20 nm thick, and (v) 30 nm thick Ag films for an etch duration of 7 min in (a) the VIS region and (b) the IR region. (c) Measured transmittance spectra of samples (ii) and (v) in the VIS region at normal incidence and photograph images of the corresponding samples.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

sin θ r , m = m λ Λ n + sin θ i ,

Metrics