Abstract

In this paper, the absorption coefficient spectra of samples prepared as mixtures of gasoline and diesel in different proportions are obtained by terahertz time-domain spectroscopy. To quantify the components of refined oil mixtures, a method is proposed to evaluate the best frequency band for regression analysis. With the data in this frequency band, dualistic linear regression fitting is used to determine the volume fraction of gasoline and diesel in the mixture based on the Beer–Lambert law. The minimum of regression fitting R-Square is 0.99967, and the mean error of fitted volume fraction of 97# gasoline is 4.3%. Results show that refined oil mixtures can be quantitatively analyzed through absorption coefficient spectra in terahertz frequency, which it has bright application prospects in the storage and transportation field for refined oil.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Tian, Q. L. Zhou, B. Jin, K. Zhao, S. Q. Zhao, Y. L. Shi, and C. L. Zhang, “Optical property and spectroscopy studies on the selected lubricating oil in the terahertz range,” Sci. China Ser. G 52, 1938–1943 (2009).
    [CrossRef]
  2. E. Berry, “Risk perception and safety issues,” J. Biol. Phys. 29, 263–267 (2003).
    [CrossRef]
  3. R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biol. Phys. 29, 179–185 (2003).
    [CrossRef]
  4. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
    [CrossRef]
  5. J. W. Crosby, W. E. Copenhaver, R. E. Ahlfinger, and L. J. Garcar, “New system schedules product pipeline,” Oil Gas J. 73, 63–66 (1975).
  6. R. Techo, “Product-line computer scheduling,” Oil Gas J. 71, 12–41 (1973).
  7. J. C. Zhuge, Z. M. Zeng, L. Lu, J. Li, and Y. Zhang, “Optical sensor for product oil identification,” Opt. Precision Eng. 17, 1479–1484 (2009).
  8. F. M. Al-Douseri, Y. Chen, and X. C. Zhang, “THz wave sensing for petroleum industrial applications,” Int. J. Infrared Millim. Waves 27, 481–503 (2007).
    [CrossRef]
  9. Y. S. Jin, G. J. Kim, C. H. Shon, S. G. Jeon, and J. I. Kim, “Analysis of petroleum products and their mixtures by using terahertz time domain spectroscopy,” J. Korean Phys. Soc. 53, 1879–1885 (2008).
    [CrossRef]
  10. H. Martens, J. P. Nielsen, and S. B. Engelsen, “Light scattering and light absorbance separated by extended multiplicative signal correction. application to near-infrared transmission analysis of powder mixtures,” Anal. Chem. 75, 394–404 (2003).
    [CrossRef]
  11. N. Emami, M. Sjödahl, and K. J. M. Söderholm, “How filler properties, filler fraction, sample thickness and light source affect light attenuation in particulate filled resin composites,” Dent. Mater. 21, 721–730 (2005).
    [CrossRef]
  12. A. G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320, 42–48 (2000).
    [CrossRef]

2009 (2)

L. Tian, Q. L. Zhou, B. Jin, K. Zhao, S. Q. Zhao, Y. L. Shi, and C. L. Zhang, “Optical property and spectroscopy studies on the selected lubricating oil in the terahertz range,” Sci. China Ser. G 52, 1938–1943 (2009).
[CrossRef]

J. C. Zhuge, Z. M. Zeng, L. Lu, J. Li, and Y. Zhang, “Optical sensor for product oil identification,” Opt. Precision Eng. 17, 1479–1484 (2009).

2008 (1)

Y. S. Jin, G. J. Kim, C. H. Shon, S. G. Jeon, and J. I. Kim, “Analysis of petroleum products and their mixtures by using terahertz time domain spectroscopy,” J. Korean Phys. Soc. 53, 1879–1885 (2008).
[CrossRef]

2007 (1)

F. M. Al-Douseri, Y. Chen, and X. C. Zhang, “THz wave sensing for petroleum industrial applications,” Int. J. Infrared Millim. Waves 27, 481–503 (2007).
[CrossRef]

2005 (2)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[CrossRef]

N. Emami, M. Sjödahl, and K. J. M. Söderholm, “How filler properties, filler fraction, sample thickness and light source affect light attenuation in particulate filled resin composites,” Dent. Mater. 21, 721–730 (2005).
[CrossRef]

2003 (3)

E. Berry, “Risk perception and safety issues,” J. Biol. Phys. 29, 263–267 (2003).
[CrossRef]

R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biol. Phys. 29, 179–185 (2003).
[CrossRef]

H. Martens, J. P. Nielsen, and S. B. Engelsen, “Light scattering and light absorbance separated by extended multiplicative signal correction. application to near-infrared transmission analysis of powder mixtures,” Anal. Chem. 75, 394–404 (2003).
[CrossRef]

2000 (1)

A. G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320, 42–48 (2000).
[CrossRef]

1975 (1)

J. W. Crosby, W. E. Copenhaver, R. E. Ahlfinger, and L. J. Garcar, “New system schedules product pipeline,” Oil Gas J. 73, 63–66 (1975).

1973 (1)

R. Techo, “Product-line computer scheduling,” Oil Gas J. 71, 12–41 (1973).

Ahlfinger, R. E.

J. W. Crosby, W. E. Copenhaver, R. E. Ahlfinger, and L. J. Garcar, “New system schedules product pipeline,” Oil Gas J. 73, 63–66 (1975).

Al-Douseri, F. M.

F. M. Al-Douseri, Y. Chen, and X. C. Zhang, “THz wave sensing for petroleum industrial applications,” Int. J. Infrared Millim. Waves 27, 481–503 (2007).
[CrossRef]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[CrossRef]

Berry, E.

E. Berry, “Risk perception and safety issues,” J. Biol. Phys. 29, 263–267 (2003).
[CrossRef]

Bourne, N.

R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biol. Phys. 29, 179–185 (2003).
[CrossRef]

Chen, Y.

F. M. Al-Douseri, Y. Chen, and X. C. Zhang, “THz wave sensing for petroleum industrial applications,” Int. J. Infrared Millim. Waves 27, 481–503 (2007).
[CrossRef]

Clothier, R. H.

R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biol. Phys. 29, 179–185 (2003).
[CrossRef]

Copenhaver, W. E.

J. W. Crosby, W. E. Copenhaver, R. E. Ahlfinger, and L. J. Garcar, “New system schedules product pipeline,” Oil Gas J. 73, 63–66 (1975).

Crosby, J. W.

J. W. Crosby, W. E. Copenhaver, R. E. Ahlfinger, and L. J. Garcar, “New system schedules product pipeline,” Oil Gas J. 73, 63–66 (1975).

Emami, N.

N. Emami, M. Sjödahl, and K. J. M. Söderholm, “How filler properties, filler fraction, sample thickness and light source affect light attenuation in particulate filled resin composites,” Dent. Mater. 21, 721–730 (2005).
[CrossRef]

Engelsen, S. B.

H. Martens, J. P. Nielsen, and S. B. Engelsen, “Light scattering and light absorbance separated by extended multiplicative signal correction. application to near-infrared transmission analysis of powder mixtures,” Anal. Chem. 75, 394–404 (2003).
[CrossRef]

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[CrossRef]

Garcar, L. J.

J. W. Crosby, W. E. Copenhaver, R. E. Ahlfinger, and L. J. Garcar, “New system schedules product pipeline,” Oil Gas J. 73, 63–66 (1975).

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[CrossRef]

Heilweil, E. J.

A. G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320, 42–48 (2000).
[CrossRef]

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[CrossRef]

Jeon, S. G.

Y. S. Jin, G. J. Kim, C. H. Shon, S. G. Jeon, and J. I. Kim, “Analysis of petroleum products and their mixtures by using terahertz time domain spectroscopy,” J. Korean Phys. Soc. 53, 1879–1885 (2008).
[CrossRef]

Jin, B.

L. Tian, Q. L. Zhou, B. Jin, K. Zhao, S. Q. Zhao, Y. L. Shi, and C. L. Zhang, “Optical property and spectroscopy studies on the selected lubricating oil in the terahertz range,” Sci. China Ser. G 52, 1938–1943 (2009).
[CrossRef]

Jin, Y. S.

Y. S. Jin, G. J. Kim, C. H. Shon, S. G. Jeon, and J. I. Kim, “Analysis of petroleum products and their mixtures by using terahertz time domain spectroscopy,” J. Korean Phys. Soc. 53, 1879–1885 (2008).
[CrossRef]

Kim, G. J.

Y. S. Jin, G. J. Kim, C. H. Shon, S. G. Jeon, and J. I. Kim, “Analysis of petroleum products and their mixtures by using terahertz time domain spectroscopy,” J. Korean Phys. Soc. 53, 1879–1885 (2008).
[CrossRef]

Kim, J. I.

Y. S. Jin, G. J. Kim, C. H. Shon, S. G. Jeon, and J. I. Kim, “Analysis of petroleum products and their mixtures by using terahertz time domain spectroscopy,” J. Korean Phys. Soc. 53, 1879–1885 (2008).
[CrossRef]

Li, J.

J. C. Zhuge, Z. M. Zeng, L. Lu, J. Li, and Y. Zhang, “Optical sensor for product oil identification,” Opt. Precision Eng. 17, 1479–1484 (2009).

Lu, L.

J. C. Zhuge, Z. M. Zeng, L. Lu, J. Li, and Y. Zhang, “Optical sensor for product oil identification,” Opt. Precision Eng. 17, 1479–1484 (2009).

Markelz, A. G.

A. G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320, 42–48 (2000).
[CrossRef]

Martens, H.

H. Martens, J. P. Nielsen, and S. B. Engelsen, “Light scattering and light absorbance separated by extended multiplicative signal correction. application to near-infrared transmission analysis of powder mixtures,” Anal. Chem. 75, 394–404 (2003).
[CrossRef]

Nielsen, J. P.

H. Martens, J. P. Nielsen, and S. B. Engelsen, “Light scattering and light absorbance separated by extended multiplicative signal correction. application to near-infrared transmission analysis of powder mixtures,” Anal. Chem. 75, 394–404 (2003).
[CrossRef]

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[CrossRef]

Roitberg, A.

A. G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320, 42–48 (2000).
[CrossRef]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[CrossRef]

Shi, Y. L.

L. Tian, Q. L. Zhou, B. Jin, K. Zhao, S. Q. Zhao, Y. L. Shi, and C. L. Zhang, “Optical property and spectroscopy studies on the selected lubricating oil in the terahertz range,” Sci. China Ser. G 52, 1938–1943 (2009).
[CrossRef]

Shon, C. H.

Y. S. Jin, G. J. Kim, C. H. Shon, S. G. Jeon, and J. I. Kim, “Analysis of petroleum products and their mixtures by using terahertz time domain spectroscopy,” J. Korean Phys. Soc. 53, 1879–1885 (2008).
[CrossRef]

Sjödahl, M.

N. Emami, M. Sjödahl, and K. J. M. Söderholm, “How filler properties, filler fraction, sample thickness and light source affect light attenuation in particulate filled resin composites,” Dent. Mater. 21, 721–730 (2005).
[CrossRef]

Söderholm, K. J. M.

N. Emami, M. Sjödahl, and K. J. M. Söderholm, “How filler properties, filler fraction, sample thickness and light source affect light attenuation in particulate filled resin composites,” Dent. Mater. 21, 721–730 (2005).
[CrossRef]

Techo, R.

R. Techo, “Product-line computer scheduling,” Oil Gas J. 71, 12–41 (1973).

Tian, L.

L. Tian, Q. L. Zhou, B. Jin, K. Zhao, S. Q. Zhao, Y. L. Shi, and C. L. Zhang, “Optical property and spectroscopy studies on the selected lubricating oil in the terahertz range,” Sci. China Ser. G 52, 1938–1943 (2009).
[CrossRef]

Zeng, Z. M.

J. C. Zhuge, Z. M. Zeng, L. Lu, J. Li, and Y. Zhang, “Optical sensor for product oil identification,” Opt. Precision Eng. 17, 1479–1484 (2009).

Zhang, C. L.

L. Tian, Q. L. Zhou, B. Jin, K. Zhao, S. Q. Zhao, Y. L. Shi, and C. L. Zhang, “Optical property and spectroscopy studies on the selected lubricating oil in the terahertz range,” Sci. China Ser. G 52, 1938–1943 (2009).
[CrossRef]

Zhang, X. C.

F. M. Al-Douseri, Y. Chen, and X. C. Zhang, “THz wave sensing for petroleum industrial applications,” Int. J. Infrared Millim. Waves 27, 481–503 (2007).
[CrossRef]

Zhang, Y.

J. C. Zhuge, Z. M. Zeng, L. Lu, J. Li, and Y. Zhang, “Optical sensor for product oil identification,” Opt. Precision Eng. 17, 1479–1484 (2009).

Zhao, K.

L. Tian, Q. L. Zhou, B. Jin, K. Zhao, S. Q. Zhao, Y. L. Shi, and C. L. Zhang, “Optical property and spectroscopy studies on the selected lubricating oil in the terahertz range,” Sci. China Ser. G 52, 1938–1943 (2009).
[CrossRef]

Zhao, S. Q.

L. Tian, Q. L. Zhou, B. Jin, K. Zhao, S. Q. Zhao, Y. L. Shi, and C. L. Zhang, “Optical property and spectroscopy studies on the selected lubricating oil in the terahertz range,” Sci. China Ser. G 52, 1938–1943 (2009).
[CrossRef]

Zhou, Q. L.

L. Tian, Q. L. Zhou, B. Jin, K. Zhao, S. Q. Zhao, Y. L. Shi, and C. L. Zhang, “Optical property and spectroscopy studies on the selected lubricating oil in the terahertz range,” Sci. China Ser. G 52, 1938–1943 (2009).
[CrossRef]

Zhuge, J. C.

J. C. Zhuge, Z. M. Zeng, L. Lu, J. Li, and Y. Zhang, “Optical sensor for product oil identification,” Opt. Precision Eng. 17, 1479–1484 (2009).

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[CrossRef]

Anal. Chem. (1)

H. Martens, J. P. Nielsen, and S. B. Engelsen, “Light scattering and light absorbance separated by extended multiplicative signal correction. application to near-infrared transmission analysis of powder mixtures,” Anal. Chem. 75, 394–404 (2003).
[CrossRef]

Chem. Phys. Lett. (1)

A. G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320, 42–48 (2000).
[CrossRef]

Dent. Mater. (1)

N. Emami, M. Sjödahl, and K. J. M. Söderholm, “How filler properties, filler fraction, sample thickness and light source affect light attenuation in particulate filled resin composites,” Dent. Mater. 21, 721–730 (2005).
[CrossRef]

Int. J. Infrared Millim. Waves (1)

F. M. Al-Douseri, Y. Chen, and X. C. Zhang, “THz wave sensing for petroleum industrial applications,” Int. J. Infrared Millim. Waves 27, 481–503 (2007).
[CrossRef]

J. Biol. Phys. (2)

E. Berry, “Risk perception and safety issues,” J. Biol. Phys. 29, 263–267 (2003).
[CrossRef]

R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biol. Phys. 29, 179–185 (2003).
[CrossRef]

J. Korean Phys. Soc. (1)

Y. S. Jin, G. J. Kim, C. H. Shon, S. G. Jeon, and J. I. Kim, “Analysis of petroleum products and their mixtures by using terahertz time domain spectroscopy,” J. Korean Phys. Soc. 53, 1879–1885 (2008).
[CrossRef]

Oil Gas J. (2)

J. W. Crosby, W. E. Copenhaver, R. E. Ahlfinger, and L. J. Garcar, “New system schedules product pipeline,” Oil Gas J. 73, 63–66 (1975).

R. Techo, “Product-line computer scheduling,” Oil Gas J. 71, 12–41 (1973).

Opt. Precision Eng. (1)

J. C. Zhuge, Z. M. Zeng, L. Lu, J. Li, and Y. Zhang, “Optical sensor for product oil identification,” Opt. Precision Eng. 17, 1479–1484 (2009).

Sci. China Ser. G (1)

L. Tian, Q. L. Zhou, B. Jin, K. Zhao, S. Q. Zhao, Y. L. Shi, and C. L. Zhang, “Optical property and spectroscopy studies on the selected lubricating oil in the terahertz range,” Sci. China Ser. G 52, 1938–1943 (2009).
[CrossRef]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of THz-TDS system. CH is a chopper, which could export a reference signal for a phase-locked amplifier. PM1, PM2, PM3, and PM4 are off-axis parabolic mirrors. The focal length of PM1 and PM4 is 101.6 mm, and that of PM2 and PM3 is 50.8 mm. PA is the photoconductive antennas. PAD is a photoconductive antenna detector. SM is the sample holder with two holes of diameter 5 mm, which enclose the sample and reference cuvettes. CA is the current amplifier. Lock-in is the phase-locked amplifier. The sampling rate of the detection light is 10 Hz, and the signal-to-noise ratio of the system is 80 dB.

Fig. 2.
Fig. 2.

Time-domain waveform. Amplitudes represent THz electric field amplitudes. Pulses on the left-hand side are reference signals (r) and on the right-hand side are sample signals (s). Sample signals, from left to right, are pure 97# gasoline, a mixture of 90% gasoline and 10% diesel (volume fraction), a mixture of 80% gasoline and 20% diesel, etc. (the rest follow this pattern). The sample signal on the far right is pure 10# diesel.

Fig. 3.
Fig. 3.

(a) Real absorption coefficient spectra and (b) fitted spectra. In both (a) and (b), curves, from top to bottom, are pure 97# gasoline, a mixture of 90% gasoline and 10% diesel (volume fraction), a mixture of 80%gasoline and 20% diesel, etc. (the rest follow this pattern). The curve at the bottom is pure 10#.

Fig. 4.
Fig. 4.

Refractive index spectra. Curves, from top to bottom, are pure 10# diesel, a mixture of 90% diesel and 10% gasoline (volume fraction), a mixture of 80% diesel and 20% gasoline, etc. (the rest follow this rule). The curve at the bottom is pure 97# gasoline.

Fig. 5.
Fig. 5.

Curve of A with frequency. The value of A represents the linear correlation of the absorption coefficient spectra. The smaller A is, the better the linear correlation is. The value of A between 0.25 and 1.5 THz is close to zero. Thus, the frequency range 0.25-1.5 THz should be selected.

Fig. 6.
Fig. 6.

(a) Real and fitted volume fraction of 97# gasoline; (b) real and fitted volume fraction of 10# diesel. In (a), the fitted volume fractions of 97# gasoline are (from left to right) 0.12, 0.2, 0.32, 0.38, 0.49, 0.6, 0.7, 0.78, and 0.875. In (b), the fitted volume fractions of 10# diesel are (from left to right) 0.79, 0.72, 0.525, 0.49, 0.37, 0.29, 0.24, 0.17, and 0.06.

Tables (1)

Tables Icon

Table 1. Numbers of Different Samplesa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A=i=1n(αiα¯)2n,
α=c1α1+c2α2,

Metrics